Should Topical Ice Slush Be Used Routinely in Cardiac Surgery? Topical Ice Slush in Cardiac Surgery
Abstract
1. Introduction
2. Methods
3. Statistics
4. Results
5. Discussion
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Braathen, B.; Vengen, O.A.; Tonnessen, T. Myocardial cooling with ice-slush provides no cardioprotective effects in aortic valve replacement. Scand. Cardiovasc. J. 2006, 40, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Alassar, A.; Bazerbashi, S.; Moawad, N.; Marchbank, A. What is the value of topical cooling as an adjunct to myocardial protection? Interact. Cardiovasc. Thorac. Surg. 2014, 19, 856–860. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, V.J.; Sinha, P.; Zimmet, A.; Lee, G.A.; Kwa, L.; Rosenfeldt, F. Phrenic nerve injury during cardiac surgery: Mechanisms, management and prevention. Heart Lung Circ. 2013, 22, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Kadan, M.; Erol, G.; Oz, B.S.; Arslan, M. Effects of topical hypothermia on postoperative inflammatory markers in patients undergoing coronary artery bypass surgery. Cardiovasc. J. Afr. 2014, 25, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Civelek, I.; Celikten, A.E.; Ozbek, H.M.; Akkaya, B.B.; Ozen, A.; Unal, E.U.; Birincioglu, C.L. Diaphragmatic elevations following cardiac surgery. Turk. Gogus Kalp Damar Cerrahisi Derg. 2024, 32, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Draeger, H.; Salman, J.; Aburahma, K.; Becker, L.S.; Siemeni, T.; Boethig, D.; Sommer, W.; Avsar, M.; Bobylev, D.; Schwerk, N.; et al. Impact of unilateral diaphragm elevation on postoperative outcomes in bilateral lung transplantation—A retrospective single-center study. Transpl. Int. 2021, 34, 474–487. [Google Scholar] [CrossRef] [PubMed]
- Nazer, R.I.; Albarrati, A.M. Topical Ice Slush Adversely Affects Sniff Nasal Inspiratory Force After Coronary Bypass Surgery. Heart Lung Circ. 2018, 27, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Nikas, D.J.; Ramadan, F.M.; Elefteriades, J.A. Topical hypothermia: Ineffective and deleterious as adjunct to cardioplegia for myocardial protection. Ann. Thorac. Surg. 1998, 65, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Canbaz, S.; Turgut, N.; Halici, U.; Balci, K.; Ege, T.; Duran, E. Electrophysiological evaluation of phrenic nerve injury during cardiac surgery—A prospective, controlled, clinical study. BMC Surg. 2004, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Cassese, M.; Martinelli, G.; Nasso, G.; Anselmi, A.; De Filippo, C.M.; Braccio, M.; Baraldi, C.; De Rosis, M.G.; Agnino, A. Topical cooling for myocardial protection: The results of a prospective randomized study of the “shallow technique”. J. Card. Surg. 2006, 21, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Laghlam, D.; Naudin, C.; Srour, A.; Monsonego, R.; Malvy, J.; Rahoual, G.; Squara, P.; Nguyen, L.S.; Estagnasie, P. Persistent diaphragm dysfunction after cardiac surgery is associated with adverse respiratory outcomes: A prospective observational ultrasound study. Can. J. Anaesth. 2023, 70, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Merino-Ramirez, M.A.; Juan, G.; Ramon, M.; Cortijo, J.; Rubio, E.; Montero, A.; Morcillo, E.J. Electrophysiologic evaluation of phrenic nerve and diaphragm function after coronary bypass surgery: Prospective study of diabetes and other risk factors. J. Thorac. Cardiovasc. Surg. 2006, 132, 530–536.e2. [Google Scholar] [CrossRef] [PubMed]
- Baradaran, A.; El-Hawary, H.; Efanov, J.I.; Xu, L. Peripheral Nerve Healing: So Near and Yet So Far. Semin. Plast. Surg. 2021, 35, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Xu, W.D.; Shen, Y.D.; Xu, J.G.; Gu, Y.D. An anatomical study of the full-length phrenic nerve and its blood supply: Clinical implications for endoscopic dissection. Anat. Sci. Int. 2011, 86, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Bruni, A.; Garofalo, E.; Pasin, L.; Serraino, G.F.; Cammarota, G.; Longhini, F.; Landoni, G.; Lembo, R.; Mastroroberto, P.; Navalesi, P.; et al. Diaphragmatic Dysfunction After Elective Cardiac Surgery: A Prospective Observational Study. J. Cardiothorac. Vasc. Anesth. 2020, 34, 3336–3344. [Google Scholar] [CrossRef] [PubMed]
Group A (Slush +) (n = 549) | Group B (Slush −) (n = 341) | ||||||
---|---|---|---|---|---|---|---|
Min–Max or n (%) | Median (Mean) | IQR | Min–Max or n (%) | Median (Mean) | IQR | p | |
Demographic data | |||||||
Gender male | 392 (71.4) | 252 (73.9) | 0.41 | ||||
Age (years) | 20–90 | 61 | 14 | 19–86 | 59 | 16 | 0.18 |
Height (cm) | 140–195 | 168 | 12 | 140–196 | 169 | 13 | 0.56 |
Weight (kg) | 42–127 | 78 | 18 | 38–130 | 80 | 20 | 0.22 |
Body surface area (kg/m2) | 1.33–2.42 | 1.88 | 0.22 | 1.22–2.38 | 1.89 | 0.25 | 0.24 |
Body mass index (m2) | 17.1–48.8 | 27.7 | 6.1 | 15.6–55.6 | 28 | 6.5 | 0.55 |
Comorbid diseases | |||||||
Diabetes Mellitus | 230 (41.9) | 152 (44.6) | 0.43 | ||||
Hypertension | 298 (54.3) | 190 (55.7) | 0.67 | ||||
Chronic obstructive pulmonary disease | 46 (8.4) | 33 (9.7) | 0.50 | ||||
Cerebrovascular accident | 44 (8) | 23 (6.7) | 0.48 | ||||
Chronic renal failure | 25 (4.6) | 19 (5.6) | 0.49 | ||||
Peripheral artery disease | 30 (5.5) | 15 (4.4) | 0.48 | ||||
Malignancy history | 26 (4.7) | 17 (5) | 0.86 | ||||
Thyroid disorder | 50 (9.1) | 32 (9.4) | 0.89 | ||||
Rheumatic disease | 9 (1.6) | 10 (2.9) | 0.19 | ||||
Operation with dual antiplatelet | 11 (2) | 8 (2.3) | 0.73 | ||||
Immunosuppressive drug | 5 (0.9) | 6 (1.8) | 0.20 | ||||
FEV1/FVC (%) | 35.4–99.3 | 83.1 | 10.9 | 40.2–99.4 | 82.2 | 10.3 | 0.96 |
EuroSCORE II | 0.5–45 | 2 (3) | 2 | 0.6–28 | 2 (2.6) | 2 | 0.65 |
Preop NYHA stage | 1–4 | 2 (2.07) | 0 | 1–4 | 2 (2.06) | 0 | 0.77 |
Echocardiographic findings | |||||||
Preop ejection fraction (%) | 20–65 | 60 | 10 | 20–65 | 60 | 10 | 0.22 |
Preop TAPSE (mm) | 14–41 | 23 | 5 | 13–36 | 23 | 5 | 0.17 |
Postop ejection fraction (%) | 20–65 | 55 | 10 | 25–65 | 55 | 10 | 0.51 |
Postop TAPSE (mm) | 5–31 | 16 | 5 | 6–27 | 16 | 6 | 0.57 |
Group A (Slush +) (n = 549) | Group B (Slush −) (n = 341) | ||||||
---|---|---|---|---|---|---|---|
Min–Max or n (%) | Median (Mean) | IQR | Min–Max or n (%) | Median (Mean) | IQR | p | |
Operative data | |||||||
Emergency surgery | 26 (4.7) | 12 (3.5) | 0.38 | ||||
Isolated CABG | 352 (64.1) | 208 (61) | 0.34 | ||||
Isolated valvular surgery | 116 (21.1) | 67 (19.6) | 0.59 | ||||
Aortic surgery | 40 (7.3) | 19 (5.6) | 0.31 | ||||
Concomitant procedures | 86 (15.7) | 63 (18.5) | 0.27 | ||||
LITA usage | 314 (57.2) | 230 (67.4) | 0.002 | ||||
The number of grafts | 0–7 | 2 (2.1) | 3 | 0–6 | 3 (2.2) | 4 | 0.08 |
Cross-clamp time (min) | 15–323 | 94 | 61 | 3–288 | 83 | 58 | 0.002 |
Cardiopulmonary bypass time (min) | 36–418 | 140 | 65 | 46–391 | 132 | 67 | 0.27 |
Before XCL NIRS right (%) | 33–99 | 62 | 12 | 32–85 | 62 | 12 | 0.52 |
Before XCL NIRS left (%) | 30–93 | 62 | 12 | 31–83 | 62 | 11 | 0.59 |
After XCL NIRS right (%) | 32–87 | 59 | 10 | 29–77 | 59 | 9 | 0.46 |
After XCL NIRS left (%) | 23–95 | 59 | 9 | 31–83 | 58.5 | 10 | 0.98 |
Arterial blood gas | |||||||
Preop pH | 7.05–7.59 | 7.41 | 0.05 | 7.28–7.54 | 7.42 | 0.05 | 0.67 |
Preop PaCO2 (mmHg) | 22–78 | 38 | 6 | 23–90 | 38 | 6 | 0.42 |
Preop lactate (mmol/L) | 0.3–15 | 1 (1.1) | 0.6 | 0.4–4.9 | 1 (1.1) | 0.6 | 0.73 |
Cross clamp 30th minute pH | 7.21–7.61 | 7.41 | 0.06 | 7.30–7.58 | 7.40 | 0.07 | 0.14 |
Cross clamp 30th minute hematocrit (%) | 16–42 | 26.7 | 6 | 16–43 | 26.2 | 6 | 0.94 |
Cross clamp 30th minute PaCO2 (mmHg) | 20–58 | 38.2 | 5 | 25–49 | 38.2 | 6 | 0.50 |
Cross clamp 30th minute lactate (mmol/L) | 0.3–15 | 1.8 (2.05) | 1.1 | 0.1–7.4 | 1.8 (2.03) | 1.5 | 0.87 |
Postop 1st day pH | 7.12–7.60 | 7.43 | 0.06 | 7.29–7.58 | 7.43 | 0.06 | 0.66 |
Postop 1st day PaCO2 (mmHg) | 20–99 | 37.9 | 6 | 22–49 | 37.3 | 5 | 0.10 |
Postop 1st day lactate (mmol/L) | 0.6–28 | 2.1 (2.7) | 1.8 | 0.6–18 | 2 (2.4) | 1.6 | 0.11 |
Group A (Slush +) (n = 549) | Group B (Slush −) (n = 341) | ||||||
---|---|---|---|---|---|---|---|
Min–Max or n (%) | Median (Mean) | IQR | Min–Max or n (%) | Median (Mean) | IQR | p | |
Inotrope doses | |||||||
Postop epinephrine < 0.1 mcg/kg/min | 2 (0.4) | 1 (0.3) | 0.67 | ||||
Postop epinephrine ≥ 0.1 mcg/kg/min | 26 (4.7) | 11 (3.2) | 0.27 | ||||
Postop norepinephrine < 0.1 mcg/kg/min | 23 (4.2) | 11 (3.2) | 0.46 | ||||
Postop norepinephrine ≥ 0.1 mcg/kg/min | 65 (11.8) | 28 (8.2) | 0.08 | ||||
Postop dopamine < 10 mcg/kg/min | 32 (5.8) | 7 (2.1) | 0.007 | ||||
Postop dopamine ≥ 10 mcg/kg/min | 46 (8.4) | 17 (5) | 0.055 | ||||
Postop dobutamine < 10 mcg/kg/min | 171 (31.1) | 98 (28.7) | 0.44 | ||||
Postop dobutamine ≥ 10 mcg/kg/min | 97 (17.7) | 41 (12) | 0.02 | ||||
Bleeding and blood products | |||||||
Intraop red blood cells using | 0–13 | 0 (1.03) | 2 | 0–14 | 0 (1.05) | 2 | 0.97 |
Intraop fresh frozen plasma using | 0–4 | 0 (0.4) | 0 | 0–4 | 0 (0.3) | 0 | 0.17 |
Intraop platelet suspensions | 0–6 | 0 (0.2) | 0 | 0–4 | 0 (0.1) | 0 | 0.13 |
Postop red blood cells using | 0–16 | 0 (1.1) | 2 | 0–9 | 0 (0.88) | 1 | 0.01 |
Postop fresh frozen plasma using | 0–9 | 1 (0.99) | 2 | 0–6 | 0 (0.59) | 1 | <0.001 |
Postop platelet suspensions | 0–6 | 0 (0.1) | 0 | 0–9 | 0 (0.14) | 0 | 0.14 |
Amount of bleeding (mL) | 100–4060 | 700 | 500 | 100–4050 | 700 | 425 | 0.39 |
Group A (Slush +) (n = 549) | Group B (Slush −) (n = 341) | ||||
---|---|---|---|---|---|
Min–Max or n (%) | Median (IQR) | Min–Max or n (%) | Median (IQR) | p | |
Preop laboratory parameters | |||||
White blood cells (109/L) | 2.6–29.1 | 8.1 (3.2) | 2–21.1 | 8.5 (3) | 0.92 |
Hematocrit (%) | 22–53 | 41 (7) | 21–57 | 41 (7) | 0.98 |
Platelets (109/L) | 88–772 | 243 (96) | 46–670 | 253 (94) | 0.34 |
Urea (mg/dL) | 8.2–272 | 34.8 (15.7) | 9.3–122.4 | 34 (16.8) | 0.57 |
Creatinine (mg/dL) | 0.4–9.02 | 0.91 (0.3) | 0.27–10.9 | 0.92 (0.3) | 0.95 |
Sodium (mEq/L) | 122–149 | 139 (4) | 120–149 | 139 (4) | 0.69 |
Potassium (mEq/L) | 2.2–5.9 | 4.4 (0.6) | 2.9–6.0 | 4.34 (0.6) | 0.10 |
Alanine aminotransferase (IU/L) | 1–338 | 18 (12) | 3–172 | 17 (13) | 0.90 |
Aspartate aminotransferase (IU/L) | 4–340 | 20 (10) | 5–431 | 20 (11) | 0.43 |
C-reactive protein (mg/dL) | 0.2–195 | 3.6 (8) | 0.1–270 | 3.8 (8.5) | 0.71 |
HbA1c (mmol/mol) | 4.4–16.2 | 6 (1.4) | 4.2–14.3 | 6 (1.5) | 0.76 |
Troponin T (ng/mL) | 1–1994 | 15 (23) | 1–1860 | 15 (24) | 0.53 |
CK-MB (IU/L) | 0.1–353 | 1.5 (1.2) | 0.1–37.5 | 1.5 (1.3) | 0.67 |
Postop 1st day laboratory parameters | |||||
White blood cells (109/L) | 5.5–59.8 | 16.8 (9) | 4.4–44.3 | 15.7 (8.6) | 0.02 |
Hematocrit (%) | 19–60 | 28 (5) | 13–44 | 29 (6) | 0.06 |
Platelets (109/L) | 33–550 | 170 (80) | 39–496 | 182 (82) | 0.01 |
Urea (mg/dL) | 5.3–200 | 41 (18) | 16–170.7 | 41.3 (18.9) | 0.57 |
Creatinine (mg/dL) | 0.04–5.7 | 1.27 (0.47) | 0.4–7.82 | 1.22 (0.47) | 0.87 |
Sodium (mEq/L) | 126–163 | 143 (4) | 133–158 | 142 (4) | 0.001 |
Potassium (mEq/L) | 2.7–8.9 | 4.26 (0.73) | 3.18–5.76 | 4.3 (0.66) | 0.75 |
Alanine aminotransferase (IU/L) | 1–1221 | 24 (18) | 2–704 | 22 (15) | 0.07 |
Aspartate aminotransferase (IU/L) | 11–3962 | 62 (43) | 8–7031 | 57.5 (38) | 0.006 |
C-reactive protein (mg/dL) | 6.2–304 | 36.6 (25.3) | 4.4–324 | 37.8 (24.5) | 0.66 |
Troponin T (ng/mL) | 11–11,306 | 561 (701) | 24 (2301) | 473 (423) | 0.01 |
CK-MB (IU/L) | 0.1–1373 | 10.6 (24.2) | 0.1–300 | 9 (22.4) | 0.70 |
Postop 1st month laboratory parameters | |||||
White blood cells (109/L) | 1.4–111 | 8.2 (3.3) | 2.6–21.3 | 8.1 (3.5) | 0.48 |
Hematocrit (%) | 23–61 | 35 (6) | 20–45 | 34 (6) | 0.53 |
Platelets (109/L) | 27–922 | 343 (167) | 9–819 | 355 (161) | 0.52 |
Urea (mg/dL) | 10.4–177.8 | 33.4 (18.5) | 10–134 | 33.1 (16.4) | 0.93 |
Creatinine (mg/dL) | 0.38–7.48 | 0.93 (0.31) | 0.39–11.2 | 0.96 (0.35) | 0.29 |
Sodium (mEq/L) | 120–150 | 138 (4) | 126–147 | 138 (4) | 0.21 |
Potassium (mEq/L) | 3.05–6 | 4.52 (0.67) | 3.15–5.75 | 4.57 (0.61) | 0.52 |
Alanine aminotransferase (IU/L) | 3–5703 | 16 (12) | 4–248 | 17 (14) | 0.11 |
Aspartate aminotransferase (IU/L) | 4–7000 | 16 (9) | 7–128 | 16 (9) | 0.89 |
C-reactive protein (mg/dL) | 0.3–195.3 | 19.4 (38.7) | 2–418 | 18.6 (33.4) | 0.60 |
Troponin T (ng/mL) | 10–263 | 33.5 (49) | 9–1387 | 29.5 (44) | 0.57 |
CK-MB (IU/L) | 0.1–43.1 | 1.4 (1) | 0.1–8.5 | 1.4 (1) | 0.37 |
Group A (Slush +) (n = 549) n (%) | Group B (Slush −) (n = 341) n (%) | ||
---|---|---|---|
Preop diaphragmatic elevations (DE) | 14 (2.6) | 11 (3.2) | 0.55 |
Postop 1st week DE | 199 (36.2) | 127 (37.2) | 0.76 |
Postop 1st month DE | 121 (22) | 70 (20.5) | 0.59 |
Postop 3rd month DE | 69 (12.6) | 42 (12.3) | 0.91 |
Postop 6th month DE | 38 (6.9) | 32 (9.4) | 0.11 |
Postop 12th month DE | 20 (3.6) | 12 (3.5) | 0.54 |
Postoperative exploration | 52 (9.5) | 25 (7.3) | 0.26 |
Cerebrovascular accident | 16 (2.9) | 5 (1.5) | 0.16 |
Continuous renal replacement therapy | 26 (4.7) | 14 (4.1) | 0.65 |
Postop atrial fibrillation | 104 (18.9) | 65 (19.1) | 0.96 |
Deep sternal wound infection | 21 (3.8) | 11 (3.2) | 0.64 |
Gastrointestinal bleeding | 2 (0.4) | 3 (0.9) | 0.28 |
Percutaneous coronary intervention | 3 (0.5) | 1 (0.3) | 0.50 |
Pleural effusion drainage | 28 (5.1) | 24 (7) | 0.23 |
Tracheostomy | 9 (1.6) | 6 (1.8) | 0.89 |
Total mortality | 32 (5.8) | 19 (5.6) | 0.87 |
Early mortality (<30 days) | 24 (4.4) | 15 (4.4) | 0.98 |
Late mortality (≥30 days) | 8 (1.5) | 4 (1.2) | 0.48 |
Group A (Slush +) (n = 549) | Group B (Slush −) (n = 341) | ||||||
---|---|---|---|---|---|---|---|
Min–Max or | Median (Mean) | IQR | Min–Max or | Median (Mean) | IQR | p | |
Intubation time (hours) | 1–1430 | 11 (26.3) | 8 | 1–1400 | 10 (20.9) | 8 | 0.04 |
Intensive care unit stay (days) | 1–357 | 2 (4.2) | 2 | 1–120 | 2 (3.7) | 1 | 0.09 |
Hospital stay (days) | 1–357 | 7 (11.9) | 5 | 1–124 | 7 (11.5) | 5 | 0.83 |
Odds Ratio | CI %95 | p | |
---|---|---|---|
Gender male | 0.915 | 0.660–1.270 | 0.59 |
Age | 1.002 | 0.989–1.015 | 0.81 |
Diabetes Mellitus | 0.854 | 0.639–1.141 | 0.28 |
COPD | 0.460 | 0.155–0.071 | 0.46 |
Ice slush | 0.002 | 0.500–1.368 | 0.94 |
LITA harvest | 1.468 | 1.081–1.995 | 0.01 |
Group C (Slush +) (n = 235) n (%) | Group D (Slush −) (n = 111) n (%) | ||
---|---|---|---|
Postop 1st week diaphragmatic elevations (DE) | 76 (32.3) | 32 (28.8) | 0.51 |
Postop 1st month DE | 43 (18.3) | 17 (15.3) | 0.49 |
Postop 3rd month DE | 26 (11.1) | 11 (9.9) | 0.74 |
Postop 6th month DE | 13 (5.5) | 6 (6.3) | 0.54 |
Postop 12th month DE | 4 (1.7) | 2 (1.8) | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beyazal, O.F.; Yazici, S.; Temizturk, Z.; Aydin, C.; Tezcan, H.; Citak, S.S.; Kayalar, N.; Yanartas, M. Should Topical Ice Slush Be Used Routinely in Cardiac Surgery? Topical Ice Slush in Cardiac Surgery. J. Clin. Med. 2025, 14, 6980. https://doi.org/10.3390/jcm14196980
Beyazal OF, Yazici S, Temizturk Z, Aydin C, Tezcan H, Citak SS, Kayalar N, Yanartas M. Should Topical Ice Slush Be Used Routinely in Cardiac Surgery? Topical Ice Slush in Cardiac Surgery. Journal of Clinical Medicine. 2025; 14(19):6980. https://doi.org/10.3390/jcm14196980
Chicago/Turabian StyleBeyazal, Osman Fehmi, Suleyman Yazici, Zeki Temizturk, Cemalettin Aydin, Hasan Tezcan, Selman Sadi Citak, Nihan Kayalar, and Mehmed Yanartas. 2025. "Should Topical Ice Slush Be Used Routinely in Cardiac Surgery? Topical Ice Slush in Cardiac Surgery" Journal of Clinical Medicine 14, no. 19: 6980. https://doi.org/10.3390/jcm14196980
APA StyleBeyazal, O. F., Yazici, S., Temizturk, Z., Aydin, C., Tezcan, H., Citak, S. S., Kayalar, N., & Yanartas, M. (2025). Should Topical Ice Slush Be Used Routinely in Cardiac Surgery? Topical Ice Slush in Cardiac Surgery. Journal of Clinical Medicine, 14(19), 6980. https://doi.org/10.3390/jcm14196980