Outcome of Metastatic Biliary Tract Cancer Harbouring IDH1 or FGFR2 Alterations: A Retrospective Observational Real-World Study from a French Cohort
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Objectives
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Primary Objective
3.3. Secondary Objective
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Banales, J.M.; Marin, J.J.G.; Lamarca, A.; Rodrigues, P.M.; Khan, S.A.; Roberts, L.R.; Cardinale, V.; Carpino, G.; Andersen, J.B.; Braconi, C.; et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 557–588. [Google Scholar] [CrossRef]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA. Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- Clements, O.; Eliahoo, J.; Kim, J.U.; Taylor-Robinson, S.D.; Khan, S.A. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: A systematic review and meta-analysis. J. Hepatol. 2020, 72, 95–103. [Google Scholar] [CrossRef]
- Lepage, C.; Capocaccia, R.; Hackl, M.; Lemmens, V.; Molina, E.; Pierannunzio, D.; Sant, M.; Trama, A.; Faivre, J.; EUROCARE-5 Working Group. Survival in patients with primary liver cancer, gallbladder and extrahepatic biliary tract cancer and pancreatic cancer in Europe 1999–2007: Results of EUROCARE-5. Eur. J. Cancer 2015, 51, 2169–2178. [Google Scholar] [CrossRef]
- Valle, J.; Wasan, H.; Palmer, D.H.; Cunningham, D.; Anthoney, A.; Maraveyas, A.; Madhusudan, S.; Iveson, T.; Hughes, S.; Pereira, S.P.; et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N. Engl. J. Med. 2010, 362, 1273–1281. [Google Scholar] [CrossRef]
- Oh, D.-Y.; Ruth He, A.; Qin, S.; Chen, L.-T.; Okusaka, T.; Vogel, A.; Kim, J.W.; Suksombooncharoen, T.; Ah Lee, M.; Kitano, M.; et al. Durvalumab plus Gemcitabine and Cisplatin in Advanced Biliary Tract Cancer. NEJM Evid. 2022, 1, EVIDoa2200015. [Google Scholar] [CrossRef]
- Lamarca, A.; Palmer, D.H.; Wasan, H.S.; Ross, P.J.; Ma, Y.T.; Arora, A.; Falk, S.; Gillmore, R.; Wadsley, J.; Patel, K.; et al. Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): A phase 3, open-label, randomised, controlled trial. Lancet Oncol. 2021, 22, 690–701. [Google Scholar] [CrossRef]
- Gkountakos, A.; Martelli, F.M.; Silvestris, N.; Bevere, M.; De Bellis, M.; Alaimo, L.; Sapuppo, E.; Masetto, F.; Mombello, A.; Simbolo, M.; et al. Extrahepatic Distal Cholangiocarcinoma vs. Pancreatic Ductal Adenocarcinoma: Histology and Molecular Profiling for Differential Diagnosis and Treatment. Cancers 2023, 15, 1454. [Google Scholar] [CrossRef]
- Kendre, G.; Murugesan, K.; Brummer, T.; Segatto, O.; Saborowski, A.; Vogel, A. Charting co-mutation patterns associated with actionable drivers in intrahepatic cholangiocarcinoma. J. Hepatol. 2023, 78, 614–626. [Google Scholar] [CrossRef]
- Vogel, A.; Bridgewater, J.; Edeline, J.; Kelley, R.K.; Klümpen, H.J.; Malka, D.; Primrose, J.N.; Rimassa, L.; Stenzinger, A.; Valle, J.W.; et al. Biliary tract cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2023, 34, 127–140. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Macarulla, T.; Javle, M.M.; Kelley, R.K.; Lubner, S.J.; Adeva, J.; Cleary, J.M.; Catenacci, D.V.; Borad, M.J.; Bridgewater, J.; et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): A multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2020, 21, 796–807. [Google Scholar] [CrossRef] [PubMed]
- Goyal, L.; Meric-Bernstam, F.; Hollebecque, A.; Valle, J.W.; Morizane, C.; Karasic, T.B.; Abrams, T.A.; Furuse, J.; Kelley, R.K.; Cassier, P.A.; et al. Futibatinib for FGFR2-Rearranged Intrahepatic Cholangiocarcinoma. N. Engl. J. Med. 2023, 388, 228–239. [Google Scholar] [CrossRef]
- Foundation Medicine|A World-Leading Molecular Insights Company. Available online: https://www.foundationmedicine.com/ (accessed on 20 May 2025).
- Reitman, Z.J.; Yan, H. Isocitrate dehydrogenase 1 and 2 mutations in cancer: Alterations at a crossroads of cellular metabolism. J. Natl. Cancer Inst. 2010, 102, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.K.; Parachoniak, C.A.; Ghanta, K.S.; Fitamant, J.; Ross, K.N.; Najem, M.S.; Gurumurthy, S.; Akbay, E.A.; Sia, D.; Cornella, H.; et al. Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer. Nature 2014, 513, 110–114. [Google Scholar] [CrossRef]
- Wang, P.; Dong, Q.; Zhang, C.; Kuan, P.-F.; Liu, Y.; Jeck, W.R.; Andersen, J.B.; Jiang, W.; Savich, G.L.; Tan, T.-X.; et al. Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas. Oncogene 2013, 32, 3091–3100. [Google Scholar] [CrossRef]
- Boscoe, A.N.; Rolland, C.; Kelley, R.K. Frequency and prognostic significance of isocitrate dehydrogenase 1 mutations in cholangiocarcinoma: A systematic literature review. J. Gastrointest. Oncol. 2019, 10, 751–765. [Google Scholar] [CrossRef] [PubMed]
- Goyal, L.; Govindan, A.; Sheth, R.A.; Nardi, V.; Blaszkowsky, L.S.; Faris, J.E.; Clark, J.W.; Ryan, D.P.; Kwak, E.L.; Allen, J.N.; et al. Prognosis and Clinicopathologic Features of Patients with Advanced Stage Isocitrate Dehydrogenase (IDH) Mutant and IDH Wild-Type Intrahepatic Cholangiocarcinoma. Oncologist 2015, 20, 1019–1027. [Google Scholar] [CrossRef]
- Wintheiser, G.; Zemla, T.; Shi, Q.; Tran, N.; Prasai, K.; Tella, S.H.; Mody, K.; Ahn, D.; Borad, M.; Bekaii-Saab, T.; et al. Isocitrate Dehydrogenase-Mutated Cholangiocarcinoma: Natural History and Clinical Outcomes. JCO Precis. Oncol. 2022, 6, e2100156. [Google Scholar] [CrossRef]
- Sareen, H.; Ma, Y.; Becker, T.M.; Roberts, T.L.; de Souza, P.; Powter, B. Molecular Biomarkers in Glioblastoma: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2022, 23, 8835. [Google Scholar] [CrossRef]
- Venneker, S.; Bovée, J.V.M.G. IDH Mutations in Chondrosarcoma: Case Closed or Not? Cancers 2023, 15, 3603. [Google Scholar] [CrossRef]
- Montesinos, P.; Recher, C.; Vives, S.; Zarzycka, E.; Wang, J.; Bertani, G.; Heuser, M.; Calado, R.T.; Schuh, A.C.; Yeh, S.-P.; et al. Ivosidenib and Azacitidine in IDH1-Mutated Acute Myeloid Leukemia. N. Engl. J. Med. 2022, 386, 1519–1531. [Google Scholar] [CrossRef] [PubMed]
- Mellinghoff, I.K.; van den Bent, M.J.; Blumenthal, D.T.; Touat, M.; Peters, K.B.; Clarke, J.; Mendez, J.; Yust-Katz, S.; Welsh, L.; Mason, W.P.; et al. Vorasidenib in IDH1- or IDH2-Mutant Low-Grade Glioma. N. Engl. J. Med. 2023, 389, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.; Borad, M.J. The rise of the FGFR inhibitor in advanced biliary cancer: The next cover of time magazine? J. Gastrointest. Oncol. 2016, 7, 789–796. [Google Scholar] [CrossRef]
- Buckarma, E.; De La Cruz, G.; Truty, M.; Nagorney, D.; Cleary, S.; Kendrick, M.; Borad, M.; Graham, R.P.; Gores, G.; Smoot, R. Impact of FGFR2 gene fusions on survival of patients with intrahepatic cholangiocarcinoma following curative intent resection. HPB 2022, 24, 1748–1756. [Google Scholar] [CrossRef]
- Graham, R.P.; Barr Fritcher, E.G.; Pestova, E.; Schulz, J.; Sitailo, L.A.; Vasmatzis, G.; Murphy, S.J.; McWilliams, R.R.; Hart, S.N.; Halling, K.C.; et al. Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma. Hum. Pathol. 2014, 45, 1630–1638. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Borad, M.J.; Kelley, R.K.; Wang, Y.; Abdel-Wahab, R.; Meric-Bernstam, F.; Baggerly, K.A.; Kaseb, A.O.; Al-Shamsi, H.O.; Ahn, D.H.; et al. Cholangiocarcinoma with FGFR Genetic Aberrations: A Unique Clinical Phenotype. JCO Precis. Oncol. 2018, 2, 1–12. [Google Scholar] [CrossRef]
- Maruki, Y.; Morizane, C.; Arai, Y.; Ikeda, M.; Ueno, M.; Ioka, T.; Naganuma, A.; Furukawa, M.; Mizuno, N.; Uwagawa, T.; et al. Molecular detection and clinicopathological characteristics of advanced/recurrent biliary tract carcinomas harboring the FGFR2 rearrangements: A prospective observational study (PRELUDE Study). J. Gastroenterol. 2021, 56, 250–260. [Google Scholar] [CrossRef]
- Favre, L.; Sako, N.; Tarfi, S.; Quang, V.T.; Joy, C.; Dupuy, A.; Guillerm, E.; Gaulard, P.; Wagner-Ballon, O.; Pujals, A.; et al. Evaluation of two new highly multiplexed PCR assays as an alternative to next-generation sequencing for IDH1/2 mutation detection. Mol. Oncol. 2022, 16, 3916–3926. [Google Scholar] [CrossRef]
- Zou, Y.; Zhu, K.; Pang, Y.; Han, J.; Zhang, X.; Jiang, Z.; Huang, Y.; Gu, W.; Ji, Y. Molecular Detection of FGFR2 Rearrangements in Resected Intrahepatic Cholangiocarcinomas: FISH Could Be An Ideal Method in Patients with Histological Small Duct Subtype. J. Clin. Transl. Hepatol. 2023, 11, 1355–1367. [Google Scholar] [CrossRef]
- Hofman, P. ALK in Non-Small Cell Lung Cancer (NSCLC) Pathobiology, Epidemiology, Detection from Tumor Tissue and Algorithm Diagnosis in a Daily Practice. Cancers 2017, 9, 107. [Google Scholar] [CrossRef]
- Krook, M.A.; Reeser, J.W.; Ernst, G.; Barker, H.; Wilberding, M.; Li, G.; Chen, H.-Z.; Roychowdhury, S. Fibroblast growth factor receptors in cancer: Genetic alterations, diagnostics, therapeutic targets and mechanisms of resistance. Br. J. Cancer 2021, 124, 880–892. [Google Scholar] [CrossRef]
- Berchuck, J.E.; Facchinetti, F.; DiToro, D.F.; Baiev, I.; Majeed, U.; Reyes, S.; Chen, C.; Zhang, K.; Sharman, R.; Uson Junior, P.L.S.; et al. The clinical landscape of cell-free DNA alterations in 1671 patients with advanced biliary tract cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2022, 33, 1269–1283. [Google Scholar] [CrossRef]
- Qin, K.; Hou, H.; Liang, Y.; Zhang, X. Prognostic value of TP53 concurrent mutations for EGFR- TKIs and ALK-TKIs based targeted therapy in advanced non-small cell lung cancer: A meta-analysis. BMC Cancer 2020, 20, 328. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.; Yip, S.; Sorensen, P.H. Methods for Identifying Patients with Tropomyosin Receptor Kinase (TRK) Fusion Cancer. Pathol. Oncol. Res. POR 2020, 26, 1385–1399. [Google Scholar] [CrossRef]
- Zhao, Y.; Dimou, A.; Fogarty, Z.C.; Jiang, J.; Liu, H.; Wong, W.B.; Wang, C. Real-world Trends, Rural-urban Differences, and Socioeconomic Disparities in Utilization of Narrow versus Broad Next-generation Sequencing Panels. Cancer Res. Commun. 2024, 4, 303–311. [Google Scholar] [CrossRef]
- Tazuma, S.; Unno, M.; Igarashi, Y.; Inui, K.; Uchiyama, K.; Kai, M.; Tsuyuguchi, T.; Maguchi, H.; Mori, T.; Yamaguchi, K.; et al. Evidence-based clinical practice guidelines for cholelithiasis 2016. J. Gastroenterol. 2017, 52, 276–300. [Google Scholar] [CrossRef]
- Motta, R.V.; Saffioti, F.; Mavroeidis, V.K. Hepatolithiasis: Epidemiology, presentation, classification and management of a complex disease. World J. Gastroenterol. 2024, 30, 1836–1850. [Google Scholar] [CrossRef] [PubMed]
- Brown, Z.J.; Baghdadi, A.; Kamel, I.; Labiner, H.E.; Hewitt, D.B.; Pawlik, T.M. Diagnosis and management of choledochal cysts. HPB 2023, 25, 14–25. [Google Scholar] [CrossRef]
- Calomino, N.; Carbone, L.; Kelmendi, E.; Piccioni, S.A.; Poto, G.E.; Bagnacci, G.; Resca, L.; Guarracino, A.; Tripodi, S.; Barbato, B.; et al. Western Experience of Hepatolithiasis: Clinical Insights from a Case Series in a Tertiary Center. Med. Kaunas Lith. 2025, 61, 860. [Google Scholar] [CrossRef] [PubMed]
- Conway, A.-M.; Morris, G.C.; Smith, S.; Vekeria, M.; Manoharan, P.; Mitchell, C.; Backen, A.; Oliveira, P.; Hubner, R.A.; Lamarca, A.; et al. Intrahepatic cholangiocarcinoma hidden within cancer of unknown primary. Br. J. Cancer 2022, 127, 531–540. [Google Scholar] [CrossRef]
Characteristics | Entire Cohort N = 119 (%) |
---|---|
Median age (range)—years | 66 (31–85) |
Sexe—no. (%) | |
Male | 51 (44) |
Female | 68 (56) |
ECOG performance status score—no. (%) | |
0–1 | 80 (67) |
2 or more | 39 (33) |
Weight loss > 10% | 41 (35) |
Primary Tumor Type—no. (%) | |
Intrahepatic cholangiocarcinoma | 84 (71) |
Extrahepatic cholangiocarcinoma | 18 (15) |
Gallbladder | 17 (14) |
Histological differentiation—no. (%) | |
Well differentiated | 64 (54) |
Poorly differentiated | 53 (45) |
Unknown | 2 (2) |
Disease Status | |
Initially Unresectable | 82 (69) |
Recurrent | 37 (31) |
Tumor > 5 cm—no. (%) | 45 (38%) |
Biliary stent—no. (%) | 22 (19%) |
Metastatic site—no. (%) | |
Liver | 72 (61) |
Lymph node | 52 (44) |
Pulmonary | 34 (29) |
Molecular Screening—no. (%) | |
Yes | 64 (54) |
Intrahepatic cholangiocarcinoma | 49 (77) |
Extrahepatic cholangiocarcinoma | 10 (16) |
Gallbladder | 5 (8) |
No—Unknown | 55(46) |
Molecular Alteration—no. (%) | |
IDH1 | 13 (11) |
FGFR2 | 5 (4) |
First Line Therapy—no. (%) | |
Cisplatin-Gemcitabine-Durvalumab | 13 (11%) |
Gemcitabine-Platinum | 81 (68%) |
Gemcitabine | 25 (21%) |
Characteristics | No. of Patients N = 18 (%) |
---|---|
Median age (range)—years | 61 (46–80) |
Sexe | |
Male—no. (%) | 6 (33) |
Female—no. (%) | 12 (67) |
Primary Tumor Type no. (%) | |
Intrahepatic | 18 (100) |
Disease Status—no. (%) | |
Initially Unresectable | 13 (72) |
Recurrent | 5 (28) |
Mutation | |
IDH1 Mutation | 13 (72) |
IDH1 R132C | 8 (62) |
Co-mutation | 6 (46) |
FGFR2 alteration | 5 (28) |
FGFR2-BICC1 | 2 (40) |
Co-mutation | 4 (80) |
First-Line Of Therapy—no. (%) | |
Cisplatin-Gemcitabine-Durvalumab | 3 (17) |
Platinum-Gemcitabine | 13 (72) |
Gemcitabine | 2 (11) |
Patients receiving IVOSIDENIB—no. (%) | 9 (69) |
Second-Line | 3 (33) |
Third-Line | 5 (56) |
Fourth-Line | 1 (11) |
Patients receiving treatment after progression | 6 (67) |
Patients receiving PEMIGATINIB—no. (%) | 4 (80) |
Second-Line | 3 (75) |
Third-Line | 1 (25) |
Patients receiving treatment after progression | 1 (25) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbe-Richaud, J.-B.; Moinard-Butot, F.; Cotton, M.; Bigot, C.; Rivière, P.; Belletier, C.; Pencreach, E.; Karouby, D.; Chiappa, P.; Eberst, L.; et al. Outcome of Metastatic Biliary Tract Cancer Harbouring IDH1 or FGFR2 Alterations: A Retrospective Observational Real-World Study from a French Cohort. J. Clin. Med. 2025, 14, 6759. https://doi.org/10.3390/jcm14196759
Barbe-Richaud J-B, Moinard-Butot F, Cotton M, Bigot C, Rivière P, Belletier C, Pencreach E, Karouby D, Chiappa P, Eberst L, et al. Outcome of Metastatic Biliary Tract Cancer Harbouring IDH1 or FGFR2 Alterations: A Retrospective Observational Real-World Study from a French Cohort. Journal of Clinical Medicine. 2025; 14(19):6759. https://doi.org/10.3390/jcm14196759
Chicago/Turabian StyleBarbe-Richaud, Jean-Baptiste, Fabien Moinard-Butot, Mathieu Cotton, Cécile Bigot, Pierre Rivière, Christine Belletier, Erwan Pencreach, Dan Karouby, Pascale Chiappa, Lauriane Eberst, and et al. 2025. "Outcome of Metastatic Biliary Tract Cancer Harbouring IDH1 or FGFR2 Alterations: A Retrospective Observational Real-World Study from a French Cohort" Journal of Clinical Medicine 14, no. 19: 6759. https://doi.org/10.3390/jcm14196759
APA StyleBarbe-Richaud, J.-B., Moinard-Butot, F., Cotton, M., Bigot, C., Rivière, P., Belletier, C., Pencreach, E., Karouby, D., Chiappa, P., Eberst, L., Kurtz, J.-E., & Ben Abdelghani, M. (2025). Outcome of Metastatic Biliary Tract Cancer Harbouring IDH1 or FGFR2 Alterations: A Retrospective Observational Real-World Study from a French Cohort. Journal of Clinical Medicine, 14(19), 6759. https://doi.org/10.3390/jcm14196759