Structural Abnormalities of the Brain Detected by 7 Tesla MRI in Patients with Usher Syndrome
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. 7 Tesla MRI Data Acquisition
2.3. 7 Tesla MRI Data Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mathur, P.; Yang, J. Biochemica et Biophysica Acta USH: Hearing loss, retinal degeneration and associated abnormalities. Mol. Basis Dis. 2015, 1852, 406–420. [Google Scholar] [CrossRef]
- Usher, C.H. On the inheritance of Retinitis pigmentosa with notes of cases. Lond. Opthalmol. Hosp. Rep. 1914, 19, 130–236. [Google Scholar]
- Yan, D.; Liu, X. Genetics and pathological mechanisms of Usher syndrome. J. Hum. Genet. 2010, 55, 327–335. [Google Scholar] [CrossRef]
- Millán, J.M.; Aller, E.; Jaijo, T.; Blanco-Kelly, F.; Gimenez-Pardo, A.; Ayuso, C. An Update on the Genetics of USH. J. Ophthalmol. 2011, 2011, 417217. [Google Scholar] [CrossRef] [PubMed]
- Saihan, Z.; Webster, A.R.; Luxon, L.; Bitner-Glindzicz, M. Update on USH. Curr. Opin. Neurol. 2009, 22, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.J.; Berlin, C.I.; Hejtmancik, J.F.; Keats, B.J.; Kimberling, W.J.; Lewis, R.A.; Möller, C.G.; Pelias, M.Z.; Tranebjaerg, L. Clinical diagnosis of the Usher syndromes. Usher Syndrome Consortium. Am. J. Med. Genet. 1994, 50, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Kalloniatis, M.; Fletcher, E.L. Retinitis pigmentosa: Understanding the clinical presentation, mechanisms and treatment options. Clin. Exp. Optom. 2004, 87, 65–80. [Google Scholar] [CrossRef] [PubMed]
- Whatley, M.; Francis, A.; Ng, Z.Y.; Khoh, X.E.; Atlas, M.D.; Dilley, R.J.; Wong, E.Y. Usher Syndrome: Genetics and Molecular Links of Hearing Loss and Directions for Therapy. Front. Genet. 2020, 11, 565216. [Google Scholar] [CrossRef]
- Fuster-García, C.; García-Bohórquez, B.; Rodríguez-Muñoz, A.; Aller, E.; Jaijo, T.; Millán, J.M.; García-García, G. Usher Syndrome: Genetics of a Human Ciliopathy. Int. J. Mol. Sci. 2021, 22, 6723. [Google Scholar] [CrossRef]
- Malvasi, M.; Casillo, L.; Avogaro, F.; Abbouda, A.; Vingolo, E.M. Gene Therapy in Hereditary Retinal Dystrophies: The Usefulness of Diagnostic Tools in Candidate Patient Selections. Int. J. Mol. Sci. 2023, 24, 13756. [Google Scholar] [CrossRef]
- Lee, D.S.; Lee, J.S.; Oh, S.H.; Kim, S.K.; Kim, J.W.; Chung, J.K.; Lee, M.C.; Kim, C.S. Cross-modal plasticity and cochlear implants. Nature 2001, 409, 149–150. [Google Scholar] [CrossRef]
- García-Gomar, M.G.; Strong, C.; Toschi, N.; Singh, K.; Rosen, B.R.; Wald, L.L.; Bianciardi, M. In vivo Probabilistic Structural Atlas of the Inferior and Superior Colliculi, Medial and Lateral Geniculate Nuclei and Superior Olivary Complex in Humans Based on 7 Tesla MRI. Front. Mol. Neurosci. 2019, 13, 764. [Google Scholar] [CrossRef] [PubMed]
- Nowomiejska, K.; Baltaziak, K.; Czarnek-Chudzik, A.; Toborek, M.; Niedziałek, A.; Wiśniewska, K.; Midura, M.; Rejdak, R.; Pietura, R. 7 Tesla MRI Reveals Brain Structural Abnormalities and Neural Plasticity in RPGR-Related Retinitis Pigmentosa. J. Clin. Med. 2025, 14, 1617. [Google Scholar] [CrossRef] [PubMed]
- Kosior-Jarecka, E.; Pankowska, A.; Polit, P.; Stępniewski, A.; Symms, M.R.; Kozioł, P.; Żarnowski, T.; Pietura, R. Volume of Lateral Geniculate Nucleus in Patients with Glaucoma in 7Tesla MRI. J. Clin. Med. 2020, 9, 2382. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.A.; Knott, M.; Heidemann, R.; Michelson, G.; Kober, T.; Dörfler, A.; Engelhorn, T. Investigation of lateral geniculate nucleus volume and diffusion tensor imaging in patients with normal tension glaucoma using 7 tesla magnetic resonance imaging. PLoS ONE 2018, 13, e0198830. [Google Scholar] [CrossRef]
- Jonak, K.; Krukow, P.; Jonak, K.E.; Radzikowska, E.; Baj, J.; Niedziałek, A.; Symms, M.; Stępniewski, A.; Podkowiński, A.; Osuchowska, I.; et al. Decreased Volume of Lateral and Medial Geniculate Nuclei in Patients with LHON Disease-7 Tesla MRI Study. J. Clin. Med. 2020, 9, 2914. [Google Scholar] [CrossRef]
- Georgy, L.; Lewis, J.D.; Bezgin, G.; Diano, M.; Celeghin, A.; Evans, A.C.; Tamietto, M.; Ptito, A. Changes in peri-calcarine cortical thickness in blindsight. Neuropsychologia 2020, 143, 107463. [Google Scholar] [CrossRef]
- Jiang, J.; Zhu, W.; Shi, F.; Liu, Y.; Li, J.; Qin, W.; Li, K.; Yu, C.; Jiang, T. Thick visual cortex in the early blind. J. Neurosci. 2009, 29, 2205–2211. [Google Scholar] [CrossRef]
- Cohen, R.A. Cuneus. In Encyclopedia of Clinical Neuropsychology; Kreutzer, J.S., DeLuca, J., Caplan, B., Eds.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Palejwala, A.H.; Dadario, N.B.; Young, I.M.; O’cOnnor, K.; Briggs, R.G.; Conner, A.K.; O’dOnoghue, D.L.; Sughrue, M.E. Anatomy and White Matter Connections of the Lingual Gyrus and Cuneus. World Neurosurg. 2021, 151, 426–437. [Google Scholar] [CrossRef]
- Devinsky, O.; Morrell, M.J.; Vogt, B.A. Contributions of anterior cingulate cortex to behaviour. Brain 1995, 118, 279–306. [Google Scholar] [CrossRef]
- Anbuhl, K.L.; Diez Castro, M.; Lee, N.A.; Lee, V.S.; Sanes, D.H. The cingulate cortex facilitates auditory perception under challenging listening conditions. Proc. Natl. Acad. Sci. USA 2025, 122, e2412453122. [Google Scholar] [CrossRef]
- Leaver, A.M.; Renier, L.; Chevillet, M.A.; Morgan, S.; Kim, H.J.; Rauschecker, J.P. Dysregulation of limbic and auditory networks in tinnitus. Neuron 2011, 69, 33–43. [Google Scholar] [CrossRef]
- Rauschecker, J.P.; May, E.S.; Maudoux, A.; Ploner, M. Frontostriatal Gating of Tinnitus and Chronic Pain. Trends Cogn. Sci. 2015, 19, 567–578. [Google Scholar] [CrossRef]
- Frasnelli, J.; Lundström, J.N.; Boyle, J.A.; Djordjevic, J.; Zatorre, R.J.; Jones-Gotman, M. Neuroanatomical correlates of olfactory performance. Exp. Brain Res. 2010, 201, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.C.; Oliveiros, B.; Pereira, P.; António, N.; Hummel, T.; Paiva, A.; Silva, E.D. Accelerated age-related olfactory decline among type 1 Usher patients. Sci. Rep. 2016, 6, 28309. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, J.; Kopietz, R.; Frasnelli, J.; Wiesmann, M.; Hummel, T.; Lundström, J.N. The neuronal correlates of intranasal trigeminal function—An ALE meta-analysis of human functional brain imaging data. Brain Res. Rev. 2010, 62, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Seubert, J.; Freiherr, J.; Djordjevic, J.; Lundstörm, J.N. Statistical localization of human olfactory cortex. Neuroimage 2013, 66, 333–342. [Google Scholar] [CrossRef]
- Gottfried, J.A. Smell: Central nervous processing. Adv. Oto-Rhino-Laryngol. 2006, 63, 44–69. [Google Scholar]
- Ferreira, S.; Duarte, I.C.; Paula, A.; Ribeiro, J.C.; Quental, H.; Reis, A.; Silva, E.D.; Castelo-Branco, M. Decreased activity of piriform cortex and orbitofrontal hyperactivation in USH, a human disorder of ciliary dysfunction. Brain Imaging Behav. 2022, 16, 1176–1185. [Google Scholar] [CrossRef]
- Boucard, C.C.; Hernowo, A.T.; Maguire, R.P.; Jansonius, N.M.; Roerdink, J.B.T.M.; Hooymans, J.M.M.; Cornelissen, F.W. Changes in cortical grey matter density associated with long-standing retinal visual field defects. Brain A J. Neurol. 2009, 132, 1898–1906. [Google Scholar] [CrossRef]
- Chen, W.W.; Wang, N.; Cai, S.; Fang, Z.; Yu, M.; Wu, Q.; Tang, L.; Guo, B.; Feng, Y.; Jonas, J.B.; et al. Structural brain abnormalities in patients with primary open-angle glaucoma: A study with 3T MR imaging. Investig. Ophthalmol. Vis. Sci. 2013, 54, 545–554. [Google Scholar] [CrossRef]
- Sun, J.C.; van Alphen, A.M.; Wagenaar, M.; Huygen, P.; Hoogenraad, C.C.; Hasson, T.; Koekkoek, S.K.; Bohne, B.A.; De Zeeuw, C.I. Origin of vestibular dysfunction in Usher syndrome type 1B. Neurobiol. Dis. 2001, 8, 69–77. [Google Scholar] [CrossRef][Green Version]
Patient ID | Gene | Pathogenic Variant | Age (Years) | Gender (F-Female, M-Male) | Visual Acuity Right Eye (Snellen) | Visual Acuity Left Eye (Snellen) | Central Retinal Thickness (µm) Right Eye | Central Retinal Thickness (µm) Left Eye |
---|---|---|---|---|---|---|---|---|
1 | USH2A | c.9067_9070dup; p.Leu3024Hisfs*30; deletion of exons 11–23 | 25 | F | 0.5 | 0.6 | 234 | 235 |
2 | USH2A | c.2299delG; p.Glu767Serfs*21 | 21 | F | 0.8 | 0.8 | 223 | 221 |
3 | USH2A | c.11864G > A; p.Trp3955*, c.2231G > A; p.Cys744Tyr | 48 | F | 0.8 | 0.7 | 219 | 225 |
4 | USH2A | c.8682-9A > G, c.3157 + 3_3157 + 5delinsTAA; | 30 | M | 0.8 | 0.8 | 250 | 248 |
5 | USH2A PDE6B | NM_206933.2c.2299del; NM_206933.2c.4714C > T | 28 | F | 0.6 | 0.7 | 217 | 219 |
6 | USH2A | c.8682-9A > G, c.3157 + 3_3157 + 5delinsTAA | 31 | M | 0.02 | 0.1 | 203 | 205 |
7 | USH2A | c.11864G > A; p.Trp3955* | 22 | M | 0.5 | 0.4 | 210 | 211 |
8 | USH2A | c.11864G > A; p.Trp3955*, c.9424G > T; p.Gly3142* | 44 | F | 0.5 | 0.5 | 230 | 232 |
9 | USH2A | c.2299delG; p.Glu767Serfs*21; c.2231G > A; p.Cys744Tyr | 44 | F | 0.6 | 0.6 | 225 | 219 |
10 | USH2A | c.638A > G; p.His213Arg VUS | 28 | F | 0.6 | 0.6 | 220 | 242 |
11 | USH2A | c.11864G > A; p.Trp3955* | 44 | F | 0.5 | 0.6 | 230 | 242 |
12 | USH2C | c.15602delT; p.Val5201Glyfs*10 | 22 | M | 0.7 | 0.2 | 217 | 235 |
13 | USH2A | NM_206933.2_c.2610C > A; NM_206933.2_c.10732A > C | 39 | M | 1.0 | 1.0 | 205 | 205 |
14 | USH2A | c.8682-9A > G | 36 | M | 1.0 | 0.8 | 262 | 258 |
15 | USH2A | deletion of coding exons 21–23 c.4627 + 25435_4987 + 658de | 33 | F | 0.7 | 0.8 | 229 | 232 |
16 | USH2A | c.1663C > G, c.11864G > A c.1841-2A > G | 36 | F | 0.4 | 0.5 | 229 | 230 |
17 | USH1C | c.175_178delTTTG; p.Phe59Metfs*6 | 39 | F | 0.08 | 0.08 | 201 | 210 |
18 | USH2A | NM_206933.2c.2299del: NM_206933.2c.4714C > T | 28 | F | 0.9 | 0.6 | 225 | 233 |
19 | USH2A | c.638A > G; p.His213Arg | 27 | F | 0.9 | 0.3 | 227 | 246 |
20 | USH2A | c.11105G > A; p.Trp3702* | 17 | F | 0.8 | 0.8 | 222 | 218 |
3D BRAVO T1-W | 3D MT-W SILENT | |
---|---|---|
Scan duration | 4 min 24 s | 6 min 30 s |
FOV (cm) | 22 × 22 | 17.6 × 17.6 |
Slice thickness [mm] | 1.0 | 0.8 |
TE [ms] | 2.6 | 0.0 |
TR [ms] | 6.6 | 257 |
TI [ms] | 450 | not applicable |
Matrix size | 288 × 288 | 224 × 2 24 |
NEX | 1 | 3 |
Flip Angle | 12 | 2 |
Variable | Group | Mean | SD | Median | Min | Max | N |
---|---|---|---|---|---|---|---|
lh_lingual_mm | C | 2.09 | 0.11 | 2.06 | 1.92 | 2.25 | 15 |
lh_lingual_mm | U | 1.99 | 0.13 | 1.99 | 1.81 | 2.19 | 20 |
rh_pericalcarine_mm | C | 2.00 | 0.21 | 2.00 | 1.67 | 2.39 | 15 |
rh_pericalcarine_mm | U | 1.84 | 0.21 | 1.80 | 1.56 | 2.34 | 20 |
rh_insula_mm | C | 2.49 | 0.17 | 2.44 | 2.22 | 2.80 | 15 |
rh_insula_mm | U | 2.74 | 0.21 | 2.72 | 2.41 | 3.17 | 20 |
lh_cuneus_mm3 | C | 4.673.73 | 764.66 | 4.916.00 | 3.143.00 | 5.691.00 | 15 |
lh_cuneus_mm3 | U | 4.102.85 | 769.95 | 4.160.50 | 2.371.00 | 5.279.00 | 20 |
rh_parsorbitalis_mm3 | C | 2.485.13 | 430.30 | 2.517.00 | 1.652.00 | 3.297.00 | 15 |
rh_parsorbitalis_mm3 | U | 2.133.95 | 439.57 | 2.125.50 | 1.149.00 | 2.799.00 | 20 |
rh_rostralanteriorcingulate_mm3 | C | 2.060.00 | 474.92 | 1.936.00 | 1.341.00 | 2.980.00 | 15 |
rh_rostralanteriorcingulate_mm3 | U | 1.727.60 | 448.79 | 1.834.00 | 529.00 | 2.570.00 | 20 |
p for Shapiro-Wilk’s Test | Levene’s Test | t Test | ||||
---|---|---|---|---|---|---|
Variable | Control group | Usher Syndrome | F | p | t test | p value |
lh_lingual_mm | 0.2436 | 0.2077 | 0.38 | 0.54241 | 2.36 | 0.02449 * |
rh_pericalcarine_mm | 0.9758 | 0.1553 | 0.04 | 0.83649 | 2.25 | 0.03153 * |
rh_insula_mm | 0.4957 | 0.8247 | 1.21 | 0.27997 | −3.93 | 0.00041 * |
lh_cuneus_mm3 | 0.5339 | 0.7333 | 0.01 | 0.94550 | 2.18 | 0.03673 * |
rh_parsorbitalis_mm3 | 0.7313 | 0.6487 | 0.11 | 0.74270 | 2.36 | 0.02434 * |
rh_rostralanteriorcingulate_mm3 | 0.2303 | 0.4874 | 0.04 | 0.83632 | 2.12 | 0.04204 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowomiejska, K.; Czarnek-Chudzik, A.; Niedziałek, A.; Toborek, M.; Midura, M.; Rejdak, R.; Pietura, R. Structural Abnormalities of the Brain Detected by 7 Tesla MRI in Patients with Usher Syndrome. J. Clin. Med. 2025, 14, 6493. https://doi.org/10.3390/jcm14186493
Nowomiejska K, Czarnek-Chudzik A, Niedziałek A, Toborek M, Midura M, Rejdak R, Pietura R. Structural Abnormalities of the Brain Detected by 7 Tesla MRI in Patients with Usher Syndrome. Journal of Clinical Medicine. 2025; 14(18):6493. https://doi.org/10.3390/jcm14186493
Chicago/Turabian StyleNowomiejska, Katarzyna, Aleksandra Czarnek-Chudzik, Anna Niedziałek, Michał Toborek, Mateusz Midura, Robert Rejdak, and Radosław Pietura. 2025. "Structural Abnormalities of the Brain Detected by 7 Tesla MRI in Patients with Usher Syndrome" Journal of Clinical Medicine 14, no. 18: 6493. https://doi.org/10.3390/jcm14186493
APA StyleNowomiejska, K., Czarnek-Chudzik, A., Niedziałek, A., Toborek, M., Midura, M., Rejdak, R., & Pietura, R. (2025). Structural Abnormalities of the Brain Detected by 7 Tesla MRI in Patients with Usher Syndrome. Journal of Clinical Medicine, 14(18), 6493. https://doi.org/10.3390/jcm14186493