Ischaemia–Reperfusion Injury in Organ Transplantation: Role of Coenzyme Q10
Abstract
1. Introduction
2. IRI and Mitochondrial Dysfunction
3. IRI and Oxidative Stress
4. IRI and Inflammation
5. IRI and Apoptosis/Ferroptosis
6. IRI and Mesenchymal Stem Cells
7. IRI and Mitochondrial Transplantation
8. IRI and Coenzyme Q10
9. CoQ10 and Immunosuppression
10. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, H.; Alam, A.; Soo, A.P.; George, A.J.T.; Ma, D. Ischemia-reperfusion injury reduces long term renal graft survival: Mechanism and beyond. EBioMedicine 2018, 28, 31–42. [Google Scholar] [CrossRef]
- Dugbartey, G.J. Cellular and molecular mechanisms of cell damage and cell death in ischemia-reperfusion injury in organ transplantation. Mol. Biol. Rep. 2024, 51, 473. [Google Scholar] [CrossRef]
- Chouchani, E.T.; Pell, V.R.; Gaude, E.; Aksentijević, D.; Sundier, S.Y.; Robb, E.L.; Logan, A.; Nadtochiy, S.M.; Ord, E.N.J.; Smith, A.C.; et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014, 515, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Pollara, J.; Edwards, R.W.; Lin, L.; Bendersky, V.A.; Brennan, T.V. Circulating mitochondria in deceased organ donors are associated with immune activation and early allograft dysfunction. J. Clin. Investig. Insight 2018, 3, e121622. [Google Scholar] [CrossRef] [PubMed]
- Scozzi, D.; Ibrahim, M.; Liao, F.; Lin, X.; Hsiao, H.M.; Hachem, R.; Tague, L.K.; Ricci, A.; Kulkarni, H.S.; Huang, H.J.; et al. Mitochondrial damage-associated molecular patterns released by lung transplants are associated with primary graft dysfunction. Am. J. Transplant. 2019, 19, 1464–1477. [Google Scholar] [CrossRef]
- Lin, L.; Xu, H.; Bishawi, M.; Feng, F.; Samy, K.; Truskey, G.; Barbas, A.S.; Kirk, A.D.; Brennan, T.V. Circulating mitochondria in organ donors promote allograft rejection. Am. J. Transplant. 2019, 19, 1917–1929. [Google Scholar] [CrossRef]
- Nagakawa, K.; Soyama, A.; Hidaka, M.; Adachi, T.; Ono, S.; Hara, T.; Takatsuki, M.; Eguchi, S. Elevated Plasma Levels of Mitochondria-Derived Damage-Associated Molecular Patterns during Liver Transplantation: Predictors for Postoperative Multi-Organ Dysfunction Syndrome. Tohoku J. Exp. Med. 2020, 250, 87–93. [Google Scholar] [CrossRef]
- Martins, R.M.; Teodoro, J.S.; Furtado, E.; Rolo, A.P.; Palmeira, C.M.; Tralhão, J.G. Evaluation of bioenergetic and mitochondrial function in liver transplantation. Clin. Mol. Hepatol. 2019, 25, 190–198. [Google Scholar] [CrossRef]
- Zepeda-Orozco, D.; Kong, M.; Scheuermann, R.H. Molecular profile of mitochondrial dysfunction in Kidney Transplant biopsies is associated with poor allograft outcome. Transplant. Proc. 2015, 47, 1675–1682. [Google Scholar] [CrossRef]
- Meszaros, A.T.; Weissenbacher, A.; Schartner, M.; Egelseer-Bruendl, T.; Hermann, M.; Unterweger, J.; Mittelberger, C.; Reyer, B.A.; Hofmann, J.; Zelger, B.G.; et al. The predictive value of graft viability and bioenergetics testing towards the outcome in liver transplantation. Transpl. Int. 2024, 37, 12380. [Google Scholar] [CrossRef]
- Scheiber, D.; Zweck, E.; Albermann, S.; Jelenik, T.; Spieker, M.; Bönner, F.; Horn, P.; Schultheiss, H.; Aleshcheva, G.; Escher, F.; et al. Human myocardial mitochondrial oxidative capacity is impaired in mild acute heart transplant rejection. ESC Heart Fail. 2021, 8, 4674–4684. [Google Scholar] [CrossRef] [PubMed]
- Romero, E.; Chang, E.; Tabak, E.; Pinheiro, D.; Tallaj, J.; Litovsky, S.; Keating, B.; Deng, M.; Cadeiras, M. Rejection-associated mitochondrial impairment after heart transplantation. Transplant. Direct 2020, 6, e616. [Google Scholar] [CrossRef] [PubMed]
- Sammut, I.A.; Thorniley, M.S.; Simpkin, S.; Fuller, B.J.; Bates, T.E.; Green, C.J. Impairment of hepatic mitochondrial respiratory function following storage and orthotopic transplantation of rat livers. Cryobiology 1998, 36, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Akande, O.; Chen, Q.; Toldo, S.; Lesnefsky, E.J.; Quader, M. Ischemia and reperfusion injury to mitochondria and cardiac function in donation after circulatory death hearts- an experimental study. PLoS ONE 2020, 15, e0243504. [Google Scholar] [CrossRef]
- Duboc, D.; Abastado, P.; Muffat-Joly, M.; Perrier, P.; Toussaint, M.; Marsac, C.; Francois, D.; Lavergne, T.; Pocidalo, J.J.; Guerin, F.; et al. Evidence of mitochondrial impairment during cardiac allograft rejection. Transplantation 1990, 50, 751–755. [Google Scholar]
- Crane, F.L. Biochemical functions of coenzyme Q10. J. Am. Coll. Nutr. 2001, 20, 591–598. [Google Scholar] [CrossRef]
- Shi, S.; Xue, F. Current antioxidant treatments in organ transplantation. Oxidative Med. Cell Longev. 2016, 2016, 8678510. [Google Scholar] [CrossRef]
- Riley, J.S.; Tait, S.W. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 2020, 21, e49799. [Google Scholar] [CrossRef]
- Mantle, D.; Heaton, R.A.; Hargreaves, I.P. Coenzyme Q10 and immune function: An overview. Antioxidants 2021, 10, 759. [Google Scholar] [CrossRef]
- Li, X.; Zhan, J.; Hou, Y.; Chen, S.; Hou, Y.; Xiao, Z.; Luo, D.; Lin, D. Coenzyme Q10 suppresses oxidative stress and apoptosis via activating the Nrf-2/NQO-1 and NF-κB signaling pathway after spinal cord injury in rats. Am. J. Transl. Res. 2019, 11, 6544–6552. [Google Scholar]
- Sumi, K.; Okura, T.; Fujioka, Y.; Kato, M.; Imamura, T.; Taniguchi, S.I.; Yamamoto, K. Coenzyme Q10 suppresses apoptosis of mouse pancreatic β-cell line MIN6. Diabetol. Metab. Syndr. 2018, 10, 47. [Google Scholar] [CrossRef]
- Qi, Y.; Hu, M.; Wang, Z.; Shang, W. Mitochondrial iron regulation as an emerging target in ischemia/reperfusion injury during kidney transplantation. Biochem. Pharmacol. 2023, 215, 115725. [Google Scholar] [CrossRef] [PubMed]
- Yamada, N.; Karasawa, T.; Wakiya, T.; Sadatomo, A.; Ito, H.; Kamata, R.; Watanabe, S.; Komada, T.; Kimura, H.; Sanada, Y. Iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation: Potential role of ferroptosis. Am. J. Transplant. 2020, 20, 1606–1618. [Google Scholar] [CrossRef] [PubMed]
- Fikry, H.; Saleh, L.A.; Mahmoud, F.A.; Gawad, S.A.; Abd-Alkhalek, H.A. CoQ10 targeted hippocampal ferroptosis in a status epilepticus rat model. Cell Tissue Res. 2024, 396, 371–397. [Google Scholar] [CrossRef]
- Peng, Z.; Ding, Y.N.; Yang, Z.M.; Li, X.J.; Zhuang, Z.; Lu, Y.; Tang, Q.S.; Hang, C.H.; Li, W. Neuron-targeted liposomal coenzyme Q10 attenuates neuronal ferroptosis after subarachnoid hemorrhage by activating the ferroptosis suppressor protein 1/coenzyme Q10 system. Acta Biomater. 2024, 179, 325–339. [Google Scholar] [CrossRef]
- Li, D.; Zhang, G.; Wang, Z.; Guo, J.; Liu, Y.; Lu, Y.; Qin, Z.; Xu, Y.; Cao, C.; Wang, B.; et al. Idebenone attenuates ferroptosis by inhibiting excessive autophagy via the ROS-AMPK-mTOR pathway to preserve cardiac function after myocardial infarction. Eur. J. Pharmacol. 2023, 943, 175569. [Google Scholar] [CrossRef]
- Avcı, B.; Günaydın, C.; Güvenç, T.; Yavuz, C.K.; Kuruca, N.; Bilge, S.S. Idebenone ameliorates rotenone-induced parkinson’s disease in rats through decreasing lipid peroxidation. Neurochem. Res. 2021, 46, 513–522. [Google Scholar] [CrossRef]
- Tao, L.; Xue, Y.F.; Sun, F.F.; He, X.; Wang, H.Q.; Tong, C.C.; Zhang, C.; Xu, D.X.; Chen, X. MitoQ protects against carbon tetrachloride-induced hepatocyte ferroptosis and acute liver injury by suppressing mtROS-mediated ACSL4 upregulation. Toxicol. Appl. Pharmacol. 2024, 486, 116914. [Google Scholar] [CrossRef]
- La Francesca, S.; Ting, A.E.; Sakamoto, J.; Rhudy, J.; Bonenfant, N.R.; Borg, Z.D.; Cruz, F.F.; Goodwin, M.; Lehman, N.A.; Taggart, J.M.; et al. Multipotent adult progenitor cells decrease cold ischemic injury in ex vivo perfused human lungs: An initial pilot and feasibility study. Transplant. Res. 2014, 3, 19. [Google Scholar] [CrossRef]
- Thompson, E.R.; Bates, L.; Ibrahim, I.K.; Sewpaul, A.; Stenberg, B.; McNeill, A.; Figueiredo, R.; Girdlestone, T.; Wilkins, G.C.; Wang, L.; et al. Novel delivery of cellular therapy to reduce ischemia reperfusion injury in kidney transplantation. Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. 2021, 21, 1402–1414. [Google Scholar] [CrossRef]
- Maruo, Y.; Shiraishi, M.; Hibino, M.; Abe, J.; Takeda, A.; Yamada, Y. Activation of Mitochondria in Mesenchymal Stem Cells by Mitochondrial Delivery of Coenzyme Q10. Biol. Pharm. Bull. 2024, 47, 1415–1421. [Google Scholar] [CrossRef]
- Hernández-Pérez, O.R.; Juárez-Navarro, K.J.; Diaz, N.F.; Padilla-Camberos, E.; Beltran-Garcia, M.J.; Cardenas-Castrejon, D.; Corona-Perez, H.; Hernández-Jiménez, C.; Díaz-Martínez, N.E. Biomolecules resveratrol + coenzyme Q10 recover the cell state of human mesenchymal stem cells after 1-methyl-4-phenylpyridinium-induced damage and improve proliferation and neural differentiation. Front. Neurosci. 2022, 16, 929590. [Google Scholar] [CrossRef]
- Sun, J.; Yang, F.; Wang, L.; Yu, H.; Yang, Z.; Wei, J.; Vasilev, K.; Zhang, X.; Liu, X.; Zhao, Y. Delivery of coenzyme Q10 loaded micelle targets mitochondrial ROS and enhances efficiency of mesenchymal stem cell therapy in intervertebral disc degeneration. Bioact. Mater. 2022, 23, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Alt, E.U.; Senst, C.; Murthy, S.N.; Slakey, D.P.; Dupin, C.L.; Chaffin, A.E.; Kadowitz, P.J.; Izadpanah, R. Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res. 2012, 8, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.W.; Xu, X.C.; Liu, T.; Yuan, S. Mitochondrion-permeable antioxidants to treat ROS-burst-mediated acute diseases. Oxid. Med. Cell. Longev. 2016, 2016, 6859523. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Li, T.; Zhang, N.; Tang, S.; Tao, Z.; Zhou, X.; Sun, X.; Chen, H. Effect of idebenone on bone marrow mesenchymal stem cells in vitro. Mol. Med. Rep. 2018, 17, 5376–5383. [Google Scholar] [CrossRef]
- Zhong, L.; Deng, J.; Gu, C.; Shen, L.; Ren, Z.; Ma, X.; Yan, Q.; Deng, J.; Zuo, Z.; Wang, Y.; et al. Protective effect of MitoQ on oxidative stress-mediated senescence of canine bone marrow mesenchymal stem cells via activation of the Nrf2/ARE pathway. Vitr. Cell Dev. Biol. Anim. 2021, 57, 685–694. [Google Scholar] [CrossRef]
- Guariento, A.; Piekarski, B.L.; Doulamis, I.P.; Blitzer, D.; Ferraro, A.M.; Harrild, D.M.; Zurakowski, D.; del Nido, P.J.; McCully, J.D.; Emani, S.M. Autologous mitochondrial transplantation for cardiogenic shock in pediatric patients following ischemia-reperfusion injury. J. Thorac. Cardiovasc. Surg. 2020, 162, 992–1001. [Google Scholar] [CrossRef]
- Gvozdjáková, A.; Kucharská, J.; Mizera, S.; Braunová, Z.; Schreinerová, Z.; Schrameková, E.; Pechán, I.; Fabián, J. Coenzyme Q10 depletion and mitochondrial energy disturbances in rejection development in patients after heart transplantation. Biofactors 1999, 9, 301–306. [Google Scholar] [CrossRef]
- Kucharská, J.; Gvozdjáková, A.; Mizera, S.; Margitfalvi, P.; Schreinerová, Z.; Schrameková, E.; Solcanská, K.; Nôtová, P.; Pechán, I.; Fabián, J. Coenzyme Q10 and alpha tocopherol in patients after heart transplantation. Bratisl. Lek. Listy 1996, 97, 603–606. [Google Scholar]
- Karlsson, J.; Liška, J.; Gunnes, S.; Koul, B.; Semb, B.; Aström, H.; Diamant, B.; Folkers, K. Heart muscle ubiquinone and plasma antioxidants following cardiac transplantation. J. Mol. Med. 1993, 71, S76–S83. [Google Scholar] [CrossRef]
- Karlsson, J.; Semb, B. Heart muscle and plasma vitamin Q with heart transplantation. Can. J. Cardiol. 1997, 13, 147–152. [Google Scholar] [PubMed]
- Długosz, A.; Kuźniar, J.; Sawicka, E.; Marchewka, Z.; Lembas-Bogaczyk, J.; Sajewicz, W.; Boratyńska, M. Oxidative stress and coenzyme Q10 supplementation in renal transplant recipients. Int. Urol. Nephrol. 2004, 36, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Kłoda, K.; Domański, L.; Mierzecki, A. Telomere Length Assessment for Prediction of Organ Transplantation Outcome. Future or Failure: A Review of the Literature. Med. Sci. Monit. 2017, 23, 158–162. [Google Scholar] [CrossRef]
- Musso, C.G.; Giordani, M.C.; Imperiali, N. Aging kidney transplantation. Rev. Investig. Clin. 2016, 68, 68–74. [Google Scholar] [CrossRef]
- Joosten, S.A.; van Ham, V.; Nolan, C.E.; Borrias, M.C.; Jardine, A.G.; Shiels, P.G.; van Kooten, C.; Paul, L.C. Telomere shortening and cellular senescence in a model of chronic renal allograft rejection. Am. J. Pathol. 2003, 162, 1305–1312. [Google Scholar] [CrossRef]
- Opstad, T.B.; Alexander, J.; Aaseth, J.O.; Larsson, A.; Seljeflot, I.; Alehagen, U. Selenium and Coenzyme Q10 Intervention Prevents Telomere Attrition, with Association to Reduced Cardiovascular Mortality-Sub-Study of a Randomized Clinical Trial. Nutrients 2022, 14, 3346. [Google Scholar] [CrossRef]
- Sumimoto, K.; Inagaki, K.; Ito, H.; Marubayashi, S.; Yamada, K.; Kawasaki, T.; Dohi, K. Ischemic damage prevention by coenzyme Q10 treatment of the donor before orthotopic liver transplantation: Biochemical and histologic findings. Surgery 1987, 102, 821–827. [Google Scholar]
- Yuan, S.; Che, Y.; Wang, Z.; Xing, K.; Xie, X.; Chen, Y. Mitochondrion-targeted carboxymethyl chitosan hybrid nanoparticles loaded with Coenzyme Q10 protect cardiac grafts against cold ischaemia—Reperfusion injury in heart transplantation. J. Transl. Med. 2023, 21, 925. [Google Scholar] [CrossRef]
- Matsushima, T.; Sueda, T.; Matsuura, Y.; Kawasaki, T. Protection by coenzyme Q10 of canine myocardial reperfusion injury after preservation. J. Thorac. Cardiovasc. Surg. 1992, 103, 945–951. [Google Scholar] [CrossRef]
- Mitchell, T.; Rotaru, D.; Saba, H.; Smith, R.A.; Murphy, M.P.; MacMillan-Crow, L.A. The mitochondria-targeted antioxidant mitoquinone protects against cold storage injury of renal tubular cells and rat kidneys. Pharmacol. Exp. Ther. 2011, 336, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, N.; Campbell, L.H.; Marine, A.; Brockbank, K.G.; Macmillan-Crow, L.A. MitoQ blunts mitochondrial and renal damage during cold preservation of porcine kidneys. PLoS ONE 2012, 7, e48590. [Google Scholar] [CrossRef] [PubMed]
- Dare, A.J.; Logan, A.; Prime, T.A.; Rogatti, S.; Goddard, M.; Bolton, E.M.; Bradley, J.A.; Pettigrew, G.J.; Murphy, M.P.; Saeb-Parsy, K. The mitochondria-targeted antioxidant MitoQ decreases ischemia-reperfusion injury in a murine syngeneic heart transplant model. J. Heart Lung Transplant. 2015, 34, 1471–1480. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Rivero, J.M.; Pastor-Maldonado, C.J.; Povea-Cabello, S.; Álvarez-Córdoba, M.; Villalón-García, I.; Munuera-Cabeza, M.; Suárez-Carrillo, A.; Talaverón-Rey, M.; Sánchez-Alcázar, J.A. Coenzyme Q10 analogues: Benefits and challenges for therapeutics. Antioxidants 2021, 10, 236. [Google Scholar] [CrossRef]
- Wieland, E.; Schütz, E.; Armstrong, V.W.; Küthe, F.; Heller, C.; Oellerich, M. Idebenone protects hepatic microsomes against oxygen radical-mediated damage in organ preservation solutions. Transplantation 1995, 60, 444–451. [Google Scholar] [CrossRef]
- Schütz, E.; Wieland, E.; Heine, L.; Hensel, A.; Schmiedl, A.; Armstrong, V.W.; Richter, J.; Schuff-Werner, P.; Günther, E.; Oellerich, M. Acceleration of hepatocellular energy by idebenone during early reperfusion after cold preservation ameliorates heat shock protein 70 gene expression in a pig liver model. Transplantation 1997, 64, 901–907. [Google Scholar] [CrossRef]
- Briere, J.-J.; Schlemmer, D.; Chretien, D.; Rustin, P. Quinone analogues regulate mitochondrial substrate competitive oxidation. Biochem. Biophys. Res. Commun. 2004, 316, 1138–1142. [Google Scholar] [CrossRef]
- Chello, M.; Mastroroberto, P.; Romano, R.; Bevacqua, E.; Pantaleo, D.; Ascione, R.; Marchese, A.R.; Spampinato, N. Protection by coenzyme Q10 from myocardial reperfusion injury during coronary artery bypass grafting. Ann. Thorac. Surg. 1994, 58, 1427–1432. [Google Scholar] [CrossRef]
- Yazdi, A.; Shirmohammadi, K.; Parvaneh, E.; Entezari-Maleki, T.; Hosseini, S.K.; Ranjbar, A.; Mehrpooya, M. Effects of coenzyme Q10 supplementation on oxidative stress biomarkers following reperfusion in STEMI patients undergoing primary percutaneous coronary intervention. J. Cardiovasc. Thorac. Res. 2023, 15, 250–261. [Google Scholar] [CrossRef]
- Atar, D.; Mortensen, S.A.; Flachs, H.; Herzog, W.R. Coenzyme Q10 protects ischemic myocardium in an open-chest swine model. Clin. Investig. 1993, 71 (Suppl. 8), S103–S111. [Google Scholar] [CrossRef]
- Niibori, K.; Yokoyama, H.; Crestanello, J.A.; Whitman, G.J. Acute administration of liposomal coenzyme Q10 increases myocardial tissue levels and improves tolerance to ischemia reperfusion injury. J. Surg. Res. 1998, 79, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Maulik, N.; Yoshida, T.; Engelman, R.M.; Bagchi, D.; Otani, H.; Das, D.K. Dietary coenzyme Q(10) supplement renders swine hearts resistant to ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H1084–H1090. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.D.; Hartner, W.C.; Thakkar, V.; Levchenko, T.S.; Torchilin, V.P. Protective effect of coenzyme Q10-loaded liposomes on the myocardium in rabbits with an acute experimental myocardial infarction. Pharm. Res. 2007, 24, 2131–2137. [Google Scholar] [CrossRef] [PubMed]
- Juan, Y.S.; Hydery, T.; Mannikarottu, A.; Kogan, B.; Schuler, C.; Leggett, R.E.; Lin, W.Y.; Huang, C.H.; Levin, R.M. Coenzyme Q10 protect against ischemia/reperfusion induced biochemical and functional changes in rabbit urinary bladder. Mol. Cell. Biochem. 2008, 311, 73–80. [Google Scholar] [CrossRef]
- Erol, B.; Bozlu, M.; Hanci, V.; Tokgoz, H.; Bektas, S.; Mungan, G. Coenzyme Q10 treatment reduces lipid peroxidation, inducible and endothelial nitric oxide synthases, and germ cell-specific apoptosis in a rat model of testicular ischemia/reperfusion injury. Fertil. Steril. 2010, 93, 280–282. [Google Scholar] [CrossRef]
- Ozler, A.; Turgut, A.; Görük, N.Y.; Alabalik, U.; Basarali, M.K.; Akdemir, F. Evaluation of the protective effects of CoQ10 on ovarian I/R injury: An experimental study. Gynecol. Obstet. Investig. 2013, 76, 100–106. [Google Scholar] [CrossRef]
- Peerapanyasut, W.; Thamprasert, K.; Wongmekiat, O. Ubiquinol supplementation protects against renal ischemia and reperfusion injury in rats. Free Radic. Res. 2014, 48, 180–189. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Min, S.W.; Jeon, Y.T.; Hwang, J.W.; Park, S.H.; Kim, J.H.; Han, S.H. Effect of coenzyme Q10 on spinal cord ischemia-reperfusion injury. J. Neurosurg. Spine 2015, 22, 432–438. [Google Scholar] [CrossRef]
- Özalp, B.; Elbey, H.; Aydın, H.; Tekkesin, M.S.; Uzun, H. The effect of coenzyme Q10 on venous ischemia reperfusion injury. J. Surg. Res. 2016, 204, 304–310. [Google Scholar] [CrossRef]
- Belousova, M.; Tokareva, O.G.; Gorodetskaya, E.; Kalenikova, E.I.; Medvedev, O.S. Intravenous treatment with Coenzyme Q10 improves neurological outcome and reduces infarct volume after transient focal brain ischemia in rats. J. Cardiovasc. Pharmacol. 2016, 67, 103–109. [Google Scholar] [CrossRef]
- Liang, S.; Ping, Z.; Ge, J. Coenzyme Q10 regulates antioxidative stress and autophagy in acute myocardial ischemia-reperfusion injury. Oxidative Med. Cell Longev. 2017, 2017, 9863181. [Google Scholar] [CrossRef]
- Boroujeni, M.B.; Khayat, Z.K.; Anbari, K.; Niapour, A.; Gholami, M.; Gharravi, A.M. Coenzyme Q10 protects skeletal muscle from ischemia-reperfusion through the NF-kappa B pathway. Perfusion 2017, 32, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.J.; Guo, Y.Z.; Zhang, Y.; Yang, L.; Chang, Y.; Zhang, J.W.; Jing, L.; Zhang, J.Z. Coenzyme Q10 ameliorates cerebral ischemia reperfusion injury in hyperglycemic rats. Pathol. Res. Pract. 2017, 213, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Ju, W.K.; Shim, M.S.; Kim, K.Y.; Bu, J.H.; Park, T.L.; Ahn, S.; Weinreb, R.N. Ubiquinol promotes retinal ganglion cell survival and blocks the apoptotic pathway in ischemic retinal degeneration. Biochem. Biophys. Res. Commun. 2018, 503, 2639–2645. [Google Scholar] [CrossRef]
- Akbulut, A.; Keseroglu, B.B.; Koca, G.; Yuceturk, C.N.; Ozgur, B.C.; Surer, H.; Ogus, E.; Yumuşak, N.; Karakaya, J.; Korkmaz, M. Scintigraphic evaluation of renoprotective effects of coenzyme Q10 in a rat renal ischemia-reperfusion injury. Nucl. Med. Commun. 2019, 40, 1011–1021. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Li, C.; Yu, L.; Chang, Y.; Qu, M. Delivery of coenzyme Q10 with mitochondria-targeted nanocarrier attenuates renal ischemia-reperfusion injury in mice. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 131, 112536. [Google Scholar] [CrossRef]
- Ayengin, K.; Alp, H.H.; Huyut, Z.; Yıldırım, S.; Altındag, F.; Avci, V. The effects of CoQ10 supplement on matrix metalloproteinases, oxidative DNA damage and pro-inflammatory cytokines in testicular ischaemia/reperfusion injury in rats. Andrologia 2021, 53, e13839. [Google Scholar] [CrossRef]
- Fatemi, I.; Saeed Askari, P.; Hakimizadeh, E.; Kaeidi, A.; Esmaeil Moghaddam, S.; Pak-Hashemi, M.; Allahtavakoli, M. Chronic treatment with coenzyme Q10 mitigates the behavioral dysfunction of global cerebral ischemia/reperfusion injury in rats. Iran. J. Basic. Med. Sci. 2022, 25, 39–45. [Google Scholar] [CrossRef]
- Fakharaldeen, Z.A.; Al-Mudhafar, A.; Gany, S.N.; Radhi, A.N.; Hadi, N.R. Neuroprotective effects of Coenzyme Q10 in ischemia-reperfusion injury via inflammation and oxidative stress reduction in adult male rats. J. Med. Life 2023, 16, 1534–1539. [Google Scholar] [CrossRef]
- Guan, Y.; Liu, J.; Yang, J.; Chen, S.; Yao, W.; Gong, S.; Xiao, C.; Li, M.; Luo, G.; Hei, Z. Oxidation-responsive PEG-poly(α-lipoic acid) nanoparticles for coenzyme Q10 delivery attenuate hepatic ischemia-reperfusion injury via ROS scavenging and ferroptosis inhibition. J. Mater. Chem. B 2025, 13, 10159–10169. [Google Scholar] [CrossRef]
- Yu, J.H.; Lim, S.W.; Luo, K.; Cui, S.; Quan, Y.; Shin, Y.J.; Lee, K.E.; Kim, H.L.; Ko, E.J.; Chung, B.H.; et al. Coenzyme Q10 alleviates tacrolimus-induced mitochondrial dysfunction in kidney. FASEB J. 2019, 33, 12288–12298. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.; Yu, J.H.; Quan, Y.; Shin, Y.J.; Lee, K.E.; Kim, H.L.; Ko, E.J.; Chung, B.H.; Lim, S.W.; Yang, C.W. Therapeutic potential of coenzyme Q10 in mitochondrial dysfunction during tacrolimus-induced beta cell injury. Sci. Rep. 2019, 9, 7995. [Google Scholar] [CrossRef]
- Cui, S.; Luo, K.; Quan, Y.; Lim, S.W.; Shin, Y.J.; Lee, K.E.; Kim, H.L.; Ko, E.J.; Kim, J.H.; Chung, S.J.; et al. Water-soluble coenzyme Q10 provides better protection than lipid-soluble coenzyme Q10 in a rat model of chronic tacrolimus nephropathy. Korean J. Intern. Med. 2021, 36, 949–961. [Google Scholar] [CrossRef] [PubMed]
- Quan, Y.; Luo, K.; Cui, S.; Lim, S.W.; Shin, Y.J.; Ko, E.J.; Kim, J.H.; Chung, S.J.; Bae, S.K.; Chung, B.H.; et al. The therapeutic efficacy of water-soluble coenzyme Q10 in an experimental model of tacrolimus-induced diabetes mellitus. Korean J. Intern. Med. 2020, 35, 1443–1456. [Google Scholar] [CrossRef] [PubMed]
- Sun, I.O.; Jin, L.; Jin, J.; Lim, S.W.; Chung, B.H.; Yang, C.W. The effects of addition of coenzyme Q10 to metformin on sirolimus-induced diabetes mellitus. Korean J. Intern. Med. 2019, 34, 365–374. [Google Scholar] [CrossRef]
- Ahmed, G.A.; Siam, M.G.; Shaban, S.F.; Awwad, I.A. The Role of Coenzyme Q10 against Cyclosporine-A Induced Cardiotoxicity in Adult Male Albino Rats (Histological and Toxicological Study. Ain Shams J. Forensic Med. Clin. Toxicol. 2013, 20, 18–29. [Google Scholar] [CrossRef]
- Sato, T.; Ishikawa, A.; Homma, Y. Effect of reduced form of coenzyme Q10 on cyclosporine nephrotoxicity. Exp. Clin. Transplant. 2013, 11, 17–20. [Google Scholar] [CrossRef]
- Ishikawa, A.; Homma, Y. Beneficial effect of ubiquinol, the reduced form of coenzyme Q10, on cyclosporine nephrotoxicity. Int. Braz. J. Urol. 2012, 38, 230–234, discussion 234. [Google Scholar] [CrossRef]
- Kara, O. Protective effect of coenzyme Q10 in cyclophosphamide-induced kidney damage in rats. Rev. Assoc. Med. Bras. (1992) 2024, 70, e20230990. [Google Scholar] [CrossRef]
- Hussein, Z.; Michel, H.E.; El-Naga, R.N.; El-Demerdash, E.; Mantawy, E.M. Coenzyme Q10 ameliorates cyclophosphamide-induced chemobrain by repressing neuronal apoptosis and preserving hippocampal neurogenesis: Mechanistic roles of Wnt/β-catenin signaling pathway. Neurotoxicology 2024, 105, 21–33. [Google Scholar] [CrossRef]
- Kaur, S.; Ahuja, P.; Kapil, L.; Sharma, D.; Singh, C.; Singh, A. Coenzyme Q10 ameliorates chemotherapy-induced cognitive impairment in mice: A preclinical study. Mol. Biol. Rep. 2024, 51, 930. [Google Scholar] [CrossRef]
- Samimi, F.; Baazm, M.; Nadi, Z.; Dastghaib, S.; Rezaei, M.; Jalali-Mashayekhi, F. Evaluation of antioxidant effects of Coenzyme Q10 against hyperglycemia-mediated oxidative stress by focusing on Nrf2/Keap1/HO-1 signaling pathway in the Liver of diabetic rats. Iran. J. Med. Sci. 2024, 49, 661–670. [Google Scholar] [CrossRef]
- Li, L.; Xu, D.; Lin, J.; Zhang, D.; Wang, G.; Sui, L.; Ding, H.; Du, J. Coenzyme Q10 attenuated β-amyloid25-35-induced inflammatory responses in PC12 cells through regulation of the NF-κB signaling pathway. Brain Res. Bull. 2017, 131, 192–198. [Google Scholar] [CrossRef]
- Xue, R.; Yang, J.; Wu, J.; Meng, Q.; Hao, J. Coenzyme Q10 inhibits the activation of pancreatic stellate cells through PI3K/AKT/mTOR signaling pathway. Oncotarget 2017, 8, 92300–92311. [Google Scholar] [CrossRef] [PubMed]
- Duncan, A.J.; Heales, S.J.; Mills, K.; Eaton, S.; Land, J.M.; Hargreaves, I.P. Determination of coenzyme Q10 status in blood mononuclear cells, skeletal muscle, and plasma by HPLC with di-propoxy-coenzyme Q10 as an internal standard. Clin. Chem. 2005, 51, 2380–2382. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Liu, S.; Shen, Z.; Zhao, Y.; Hong, J.; Ma, J. Corneal oxidative stress, inflammation, and senescence as key drivers of ocular pathology in a chronic graft-versus-host disease model. BMC Ophthalmol. 2025, 25, 379. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Park, M.J.; Lee, S.H.; Cho, M.L. Coenzyme Q10 exerts anti-inflammatory activity and induces Treg in Graft Versus Host Disease. J. Med. Food 2016, 19, 238–244. [Google Scholar] [CrossRef]
Outcomes Following CoQ10 Supplementation | Model System | Study |
---|---|---|
Myocardial stunning time reduced | Cardiac ischaemia and reperfusion in pigs | Atar et al. [60] |
Reduced oxidative stress and improved cardiac function | Cardiac ischaemia and reperfusion in rats | Niibori et al. [61] |
Reduced oxidative stress and improved cardiac function | Cardiac ischaemia and reperfusion in pigs | Maulik et al. [62] |
Reduction in irreversibly damaged myocardium | Cardiac ischaemia and reperfusion in rabbits | Verma et al. [63] |
Reduced oxidative stress and improved bladder function | Effect of ischaemia–reperfusion on bladder in rabbits | Juan et al. [64] |
Reduced oxidative stress and apoptosis | Testicular ischaemia–reperfusion in rats | Erol et al. [65] |
Reduced oxidative stress; improved histologic evaluation scores | Ischaemia–reperfusion in rat ovary; intraperitoneal injection of CoQ10 | Ozler et al. [66] |
Reduced oxidative stress, reduced inflammation, and improved renal morphology | Effect of ischaemia–reperfusion on kidneys in rats; ubiquinol form of CoQ10 supplemented | Peerapanyasut et al. [67] |
Reduced oxidative stress, greater preservation of motor neurons, and improved neurological function | Spinal cord ischaemia–reperfusion in rats | Hwang et al. [68] |
Improved flap survival rate | Effect of ischaemia–reperfusion on epigastric flap in rats | Ozalp et al. [69] |
Reduced cerebral infarct volume and improved neurological behaviour | Cerebral ischaemia–reperfusion in rats | Belousova et al. [70] |
Reduced oxidative stress, reduced apoptosis, and improved cardiac function | Cardiac ischaemia–reperfusion in rats; intraperitoneal injection of CoQ10 | Liang et al. [71] |
Reduced interstitial oedema, degeneration of muscle fibres, and infiltration of mast cells via inhibition of the NF-κB pathway | Ischaemia–reperfusion of skeletal muscle in rats; intraperitoneal injection of CoQ10 | Boroujeni et al. [72] |
Reduced infarct volume and improved neurological function | Cerebral ischaemia–reperfusion in hyperglycaemic rats | Lu et al. [73] |
Reduced apoptosis and improved retinal ganglion cell survival | Ischaemia–reperfusion of mouse retina; ubiquinol form of CoQ10 supplemented | Ju et al. [74] |
Reduced oxidative stress, inflammation, and apoptosis; improved renal function | Renal ischaemia–reperfusion in rats | Akbulut et al. [75] |
Reduced oxidative stress, inflammation, apoptosis, and mtDNA damage; improved renal function | Renal ischaemia–reperfusion in mice | Liu et al. [76] |
Reduced oxidative stress, inflammation, and apoptosis | Testicular ischaemia–reperfusion in rats | Ayengin et al. [77] |
Reduced brain oedema and improved cognitive function | Cerebral ischaemia–reperfusion in rats | Fatemi et al. [78] |
Reduced oxidative stress and inflammation; reduced cerebral tissue damage | Cerebral ischaemia–reperfusion in rats | Fakharaldeen et al. [79] |
Reduced oxidative stress and ferroptosis | Hepatic ischaemia–reperfusion in mice | Guan et al. [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantle, D.; Cufflin, N.; Purcell, T.T.; Hargreaves, I.P. Ischaemia–Reperfusion Injury in Organ Transplantation: Role of Coenzyme Q10. J. Clin. Med. 2025, 14, 6486. https://doi.org/10.3390/jcm14186486
Mantle D, Cufflin N, Purcell TT, Hargreaves IP. Ischaemia–Reperfusion Injury in Organ Transplantation: Role of Coenzyme Q10. Journal of Clinical Medicine. 2025; 14(18):6486. https://doi.org/10.3390/jcm14186486
Chicago/Turabian StyleMantle, David, Neve Cufflin, Tyler T. Purcell, and Iain P. Hargreaves. 2025. "Ischaemia–Reperfusion Injury in Organ Transplantation: Role of Coenzyme Q10" Journal of Clinical Medicine 14, no. 18: 6486. https://doi.org/10.3390/jcm14186486
APA StyleMantle, D., Cufflin, N., Purcell, T. T., & Hargreaves, I. P. (2025). Ischaemia–Reperfusion Injury in Organ Transplantation: Role of Coenzyme Q10. Journal of Clinical Medicine, 14(18), 6486. https://doi.org/10.3390/jcm14186486