Magnetic Resonance Imaging-Based Assessment of Bone Quality Using Vertebral Bone Quality (VBQ) Scores in Spine Surgery—A Critical Assessment and Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Using MRI Signal Intensity to Measure Bone Quality
3.1. Vertebral Bone Quality Calculation
3.2. Endplate Bone Quality
3.3. S1 VBQ
4. VBQ Evaluation of Osteoporosis
5. Factors That Influence VBQ
5.1. Degenerative Spine and Scoliosis
5.2. Limitations in VBQ
5.3. Interrater and Inter-Device Reliability
6. Predicting Surgical Complications Using VBQ
6.1. Cage Subsidence Following TLIF
6.2. Cage Subsidence Following OLIF and LLIF
6.3. Pedicle Screw Loosening
6.4. Proximal Junctional Kyphosis
6.5. Reoperation and Adjacent Segment Disease
7. Sarcopenia
8. Fragility Fractures
Publication | Mean VBQ Fracture vs. No Fracture | Threshold Value | Sensitivity | Specificity | AUC | Odds Ratio (OR) |
---|---|---|---|---|---|---|
Fragility fracture | ||||||
Li et al., 2022 [63] | 4.0 vs. 3.5 | -- | -- | -- | -- | 2.58 |
Yin et al., 2023 [62] | 4.21 vs. 3.84 | 3.72 | 81.3% | 45.1% | 0.6717 | 1.496 |
Ehresman et al., 2021 [61] | 3.50 vs. 3.01 | -- | -- | -- | -- | 2.40 |
Li et al., 2023 [64] | 3.58 vs. 2.88 | 3.22 | 68.8% | 84.4% | 0.815 | -- |
Li et al., 2023 [64] | Single level L1 VBQ 3.60 vs. 2.95 | 3.16 | 81.7% | 68.8% | 0.817 | -- |
Wang et al., 2024 [65] | 3.58 vs. 3.13 | 3.32 | 83% | 72% | 0.799 | 3.07 |
Wang et al., 2024 [65] | S1 VBQ 3.73 vs. 3.11 | 3.40 | 81% | 72% | 0.806 | 3.33 |
Zhang et al., 2023 [67] | 3.50 vs. 3.27 | 3.37 | 53.85% | 74.36% | 0.602 | -- |
Pathologic fracture | ||||||
Ehresman et al., 2019 [13] | 3.26 vs. 2.48 | 3.0 | 75.0% | 85.7% | 0.80 | 3.051 |
Pennington et al., 2023 [69] | 2.70 vs. 2.49 | -- | -- | -- | -- | -- |
Pennington et al., 2023 [69] | VBQ at tumor level ±1 2.77 vs. 2.53 | -- | -- | -- | -- | -- |
Pennington et al., 2023 [69] | VBQ at level above and below tumor 3.21 vs. 3.74 | -- | -- | -- | -- | -- |
Pathologic Fracture
9. Cervical VBQ Scores
Publication | Procedure | Mean VBQ Complication vs. No Complication | Threshold Value | Sensitivity | Specificity | AUC | Odds Ratio |
---|---|---|---|---|---|---|---|
Cage subsidence | |||||||
Bernatz et al., 2024 [77] | ACDF | 3.80 vs. 2.40 | 3.2 | 100% | 94.1% | 0.99 | -- |
Li et al., 2024 [78] | ACCF | 3.75 vs. 3.20 | 3.445 | 69.6% | 85.2% | 0.810 | 13.563 |
Soliman et al., 2023 [70] | ACDF | 2.83 vs. 2.22 | -- | -- | -- | -- | 1.85 |
Li et al., 2024 [79] | ACDF | 3.33 vs. 2.36 | 2.92 | 78.9% | 85.7% | 0.892 | -- |
Li et al., 2024 [79] | ACDF | C-EBQ 2.59 vs. 1.81 | 2.12 | 84.8% | 89.8% | 0.937 | 5.700 |
Wang et al., 2024 [80] | ACDF | 2.94 vs. 2.33 | 2.68 | 72.7% | 82.1% | 0.785 | 1.823 |
Distal junctional kyphosis | |||||||
Aguirre et al., 2024 [81] | Posterior cervical fusion | 2.97 vs. 2.26 | 2.66 | 84.2% | 81.1% | 0.886 | 1.46 |
Prediction of Cervical Surgery Outcomes
10. Adolescent Patients
11. Discussion
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BMD | Bone mineral density |
PJK | Proximal junctional kyphosis |
PJF | Proximal junctional failure |
DEXA | Dual-energy X-ray absorptiometry |
CT | Computed tomography |
HU | Hounsfield unit |
MRI | Magnetic resonance imaging |
SI | Signal intensity |
ROI | Region of interest |
CSF | Cerebrospinal fluid |
EBQ | Endplate bone quality |
OP | Osteoporosis/osteopenia |
AUC | Area under the curve |
QCT | Quantitative computed tomography |
DISH | Diffuse idiopathic skeletal hyperostosis |
OR | Odds ratio |
TLIF | Transforaminal lumbar interbody fusion |
OLIF | Oblique lumbar interbody fusion |
SA-OLIF | Standalone oblique lumbar interbody fusion |
OLIF-PF | Oblique lumbar interbody fusion with posterior fixation |
LLIF | Lateral lumbar interbody fusion |
ICC | Intraclass correlation coefficient |
VCF | Vertebral compression fracture |
ASD | Adjacent segment disease |
FRS | Fusion risk score |
CSA | Cross-sectional area |
FI | Fat infiltration |
C-VBQ | Cervical vertebral bone quality |
C-EBQ | Cervical endplate bone quality |
ACCF | Anterior cervical corpectomy and fusion |
ACDF | Anterior cervical discectomy and fusion |
DJK | Distal junctional kyphosis |
SINS | Spinal instability neoplastic score |
References
- Filley, A.; Baldwin, A.; Ben-Natan, A.R.; Hansen, K.; Arora, A.; Xiao, A.; Hammond, D.; Chen, C.; Tweedt, I.; Rohde, J.; et al. The influence of osteoporosis on mechanical complications in lumbar fusion surgery: A systematic review. N. Am. Spine Soc. J. 2024, 18, 100327. [Google Scholar] [CrossRef]
- Kijowski, R.; Tuite, M.; Kruger, D.; Del Rio, A.M.; Kleerekoper, M.; Binkley, N. Evaluation of trabecular microarchitecture in nonosteoporotic postmenopausal women with and without fracture. J. Bone Miner. Res. 2012, 27, 1494–1500. [Google Scholar] [CrossRef]
- Link, T.M.; Kazakia, G. Update on Imaging-Based Measurement of Bone Mineral Density and Quality. Curr. Rheumatol. Rep. 2020, 22, 13. [Google Scholar] [CrossRef]
- Mai, H.T.; Tran, T.S.; Ho-Le, T.P.; Center, J.R.; Eisman, J.A.; Nguyen, T.V. Two-Thirds of All Fractures Are Not Attributable to Osteoporosis and Advancing Age: Implications for Fracture Prevention. J. Clin. Endocrinol. Metab. 2019, 104, 3514–3520. [Google Scholar] [CrossRef] [PubMed]
- Sanders, K.M.; Nicholson, G.C.; Watts, J.J.; Pasco, J.A.; Henry, M.J.; Kotowicz, M.A.; Seeman, E. Half the burden of fragility fractures in the community occur in women without osteoporosis. When is fracture prevention cost-effective? Bone 2006, 38, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Langsetmo, L.; Goltzman, D.; Kovacs, C.S.; Adachi, J.D.; Hanley, D.A.; Kreiger, N.; Josse, R.; Papaioannou, A.; Olszynski, W.P.; Jamal, S.A. Repeat Low-Trauma Fractures Occur Frequently Among Men and Women Who Have Osteopenic BMD. J. Bone Miner. Res. 2009, 24, 1515–1522. [Google Scholar] [CrossRef]
- Cranney, A.; Jamal, S.A.; Tsang, J.F.; Josse, R.G.; Leslie, W.D. Low bone mineral density and fracture burden in postmenopausal women. Can. Med. Assoc. J. 2007, 177, 575–580. [Google Scholar] [CrossRef]
- Gupta, A.; Upadhyaya, S.; Patel, A.; Fogel, H.A.; Cha, T.; Schwab, J.; Bono, C.; Hershman, S. DEXA sensitivity analysis in patients with adult spinal deformity. Spine J. 2020, 20, 174–180. [Google Scholar] [CrossRef]
- Bao, J.; Zou, D.; Li, W. Characteristics of the DXA Measurements in Patients Undergoing Lumbar Fusion for Lumbar Degenerative Diseases: A Retrospective Analysis of Over 1000 Patients. Clin. Interv. Aging 2021, 16, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wu, X.-Y.; Jin, Q.; Chen, G.-Y.; Ma, X. The correlation between osteoporotic vertebrae fracture risk and bone mineral density measured by quantitative computed tomography and dual energy X-ray absorptiometry: A systematic review and meta-analysis. Eur. Spine J. 2023, 32, 3875–3884. [Google Scholar] [CrossRef]
- Chang, G.; Boone, S.; Martel, D.; Rajapakse, C.S.; Hallyburton, R.S.; Valko, M.; Honig, S.; Regatte, R.R. MRI assessment of bone structure and microarchitecture. J. Magn. Reson. Imaging 2017, 46, 323–337. [Google Scholar] [CrossRef]
- Sollmann, N.; Löffler, M.T.; Kronthaler, S.; Böhm, C.; Dieckmeyer, M.; Ruschke, S.; Kirschke, J.S.; Carballido-Gamio, J.; Karampinos, D.C.; Krug, R.; et al. MRI-Based Quantitative Osteoporosis Imaging at the Spine and Femur. J. Magn. Reson. Imaging 2021, 54, 12–35. [Google Scholar] [CrossRef]
- Ehresman, J.; Schilling, A.; Pennington, Z.; Gui, C.; Chen, X.; Lubelski, D.; Ahmed, A.K.; Cottrill, E.; Khan, M.; Redmond, K.J.; et al. A novel MRI-based score assessing trabecular bone quality to predict vertebral compression fractures in patients with spinal metastasis. J. Neurosurg. Spine 2020, 32, 499–506. [Google Scholar] [CrossRef]
- Shah, L.M.; Hanrahan, C.J. MRI of Spinal Bone Marrow: Part 1—Techniques and Normal Age-Related Appearances. Am. J. Roentgenol. 2011, 197, 1298–1308. [Google Scholar] [CrossRef]
- Jones, C.; Okano, I.; Arzani, A.; Dodo, Y.; Moser, M.; Reisener, M.; Chiapparelli, E.; Amini, D.A.; Shue, J.; Sama, A.A.; et al. The predictive value of a novel site-specific MRI-based bone quality assessment, endplate bone quality (EBQ), for severe cage subsidence among patients undergoing standalone lateral lumbar interbody fusion. Spine J. 2022, 22, 1875–1883. [Google Scholar] [CrossRef]
- Huang, W.; Gong, Z.; Wang, H.; Zheng, C.; Chen, Y.; Xia, X.; Ma, X.; Jiang, J. Use of MRI-based vertebral bone quality score (VBQ) of S1 body in bone mineral density assessment for patients with lumbar degenerative diseases. Eur. Spine J. 2023, 32, 1553–1560. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, N.; Hadi, M.S.; Lillard, J.C.; Passias, P.G.; Linzey, J.R.; Saadeh, Y.S.; LaBagnara, M.; Park, P. Alternatives to DEXA for the assessment of bone density: A systematic review of the literature and future recommendations. J. Neurosurg. Spine 2023, 38, 436–445. [Google Scholar] [CrossRef]
- Salzmann, S.N.; Okano, I.; Jones, C.; Zhu, J.; Lu, S.; Onyekwere, I.; Balaji, V.; Reisener, M.-J.; Chiapparelli, E.; Shue, J.; et al. Preoperative MRI-based vertebral bone quality (VBQ) score assessment in patients undergoing lumbar spinal fusion. Spine J. 2022, 22, 1301–1308. [Google Scholar] [CrossRef]
- Ehresman, J.; Pennington, Z.; Schilling, A.; Lubelski, D.; Ahmed, A.K.; Cottrill, E.; Khan, M.; Sciubba, D.M. Novel MRI-based score for assessment of bone density in operative spine patients. Spine J. 2020, 20, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Lu, X.; Gong, Z.; Liu, S.; Xu, G.; Wang, H.; Lu, F.; Xia, X.; Jiang, J.; Zhang, X.; et al. Evaluation of the modified MRI vertebral bone quality score for bone quality in lumbar degenerative disorders. Eur. Spine J. 2024, 33, 3230–3241. [Google Scholar] [CrossRef] [PubMed]
- Özmen, E.; Biçer, O.; Meriç, E.; Circi, E.; Barış, A.; Yüksel, S. Vertebral bone quality score for opportunistic osteoporosis screening: A correlation and optimal threshold analysis. Eur. Spine J. 2023, 32, 3906–3911. [Google Scholar] [CrossRef]
- Courtois, E.C.; Davidson, I.; Ohnmeiss, D.D.; Guyer, R.D. Evaluating alternatives to dual-energy x-ray absorptiometry for assessing bone quality in patients undergoing spine surgery. J. Neurosurg. Spine 2024, 40, 84–91. [Google Scholar] [CrossRef]
- Xu, T.-T.; Huang, X.-Y.; Jiang, Y.-W. Efficacy of two opportunistic methods for screening osteoporosis in lumbar spine surgery patients. Eur. Spine J. 2023, 32, 3912–3918. [Google Scholar] [CrossRef] [PubMed]
- Hiyama, A.; Sakai, D.; Katoh, H.; Sato, M.; Watanabe, M. Hounsfield Unit Values as an Adjunct Diagnostic Tool: Investigating Its Relationship with Bone Mineral Density and Vertebral Bone Quality in Lumbar Degenerative Disease Patients. World Neurosurg. 2024, 183, e722–e729. [Google Scholar] [CrossRef]
- Pennington, Z.; Mikula, A.L.; Lakomkin, N.; Martini, M.; Pinter, Z.W.; Shafi, M.; Hamouda, A.; Bydon, M.; Clarke, M.J.; Freedman, B.A.; et al. Bone Quality as Measured by Hounsfield Units More Accurately Predicts Proximal Junctional Kyphosis than Vertebral Bone Quality Following Long-Segment Thoracolumbar Fusion. World Neurosurg. 2024, 186, e584–e592. [Google Scholar] [CrossRef]
- Kadri, A.; Binkley, N.; Hernando, D.; Anderson, P.A. Opportunistic Use of Lumbar Magnetic Resonance Imaging for Osteoporosis Screening. Osteoporos. Int. 2022, 33, 861–869. [Google Scholar] [CrossRef]
- Chen, Z.; Lei, F.; Ye, F.; Yuan, H.; Li, S.; Feng, D. MRI-based vertebral bone quality score for the assessment of osteoporosis in patients undergoing surgery for lumbar degenerative diseases. J. Orthop. Surg. Res. 2023, 18, 257. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.Y.E.B.; Lyons, K.; Sarmiento, M.; Lafage, V.; Iyer, S. MRI-Based Score for Assessment of Bone Mineral Density in Operative Spine Patients. Spine 2023, 48, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Pu, M.; Zhong, W.; Heng, H.; Yu, J.; Wu, H.; Jin, Y.; Zhang, P.; Shen, Y. Vertebral bone quality score provides preoperative bone density assessment for patients undergoing lumbar spine surgery: A retrospective study. J. Neurosurg. Spine 2023, 38, 705–714. [Google Scholar] [CrossRef]
- Zheng, W.; Han, W.; Jin, S.; Zhu, M.; Huang, Z.; Qin, T.; Shi, M.; Gao, B.; Ye, W. Application of a Magnetic Resonance Imaging–Based Lumbar Vertebral Bone Quality Scoring System in Patients with Degenerative Lumbar Scoliosis. World Neurosurg. 2024, 185, e421–e430. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, J.-C.; Li, R.-Y.; Yin, Y.-J.; Chen, J.-T.; Zhu, Q.-A. Disc degeneration contributes to the denser bone in the subendplate but not in the vertebral body in patients with lumbar spinal stenosis or disc herniation. Spine J. 2023, 23, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhu, X.; Zhou, Q.; Pu, X.; Wang, B.; Lin, H.; Zhu, Z.; Qiu, Y.; Sun, X. Utility of MRI-based vertebral bone quality scores and CT-based Hounsfield unit values in vertebral bone mineral density assessment for patients with diffuse idiopathic skeletal hyperostosis. Osteoporos. Int. 2024, 35, 705–715. [Google Scholar] [CrossRef]
- Aynaszyan, S.; Devia, L.G.; Udoeyo, I.F.; Badve, S.A.; DelSole, E.M. Patient physiology influences the MRI-based vertebral bone quality score. Spine J. 2022, 22, 1866–1874. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.; Tong, T.; Miao, D.; Li, W.; Zhu, H.; Zheng, X.; Wang, L. Sex differences in the accuracy of vertebral bone quality score assessing bone density in patients undergoing lumbar spinal fusion. J. Neurosurg. Spine 2024, 40, 405–411. [Google Scholar] [CrossRef]
- Liu, D.; Kadri, A.; Hernando, D.; Binkley, N.; Anderson, P.A. MRI-based vertebral bone quality score: Relationship with age and reproducibility. Osteoporos. Int. 2023, 34, 2077–2086. [Google Scholar] [CrossRef]
- Soliman, M.A.; Aguirre, A.O.; Kuo, C.C.; Ruggiero, N.; Azmy, S.; Khan, A.; Ghannam, M.M.; Almeida, N.D.; Jowdy, P.K.; Mullin, J.P.; et al. Vertebral bone quality score independently predicts cage subsidence following transforaminal lumbar interbody fusion. Spine J. 2022, 22, 2017–2023. [Google Scholar] [CrossRef]
- Hu, Y.-H.; Yeh, Y.-C.; Niu, C.-C.; Hsieh, M.-K.; Tsai, T.-T.; Chen, W.-J.; Lai, P.-L. Novel MRI-based vertebral bone quality score as a predictor of cage subsidence following transforaminal lumbar interbody fusion. J. Neurosurg. Spine 2022, 37, 654–662. [Google Scholar] [CrossRef]
- Ai, Y.; Chen, Q.; Huang, Y.; Ding, H.; Wang, J.; Zhu, C.; Song, Y.; Feng, G.; Liu, L. MRI-based vertebral bone quality score for predicting cage subsidence by assessing bone mineral density following transforaminal lumbar interbody fusion: A retrospective analysis. Eur. Spine J. 2023, 32, 3167–3175. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Ai, Y.; Huang, Y.; Li, Q.; Wang, J.; Ding, H.; Zhu, C.; Feng, G.; Liu, L. MRI-based Endplate Bone Quality score independently predicts cage subsidence following transforaminal lumbar interbody fusion. Spine J. 2023, 23, 1652–1658. [Google Scholar] [CrossRef]
- Ai, Y.; Zhu, C.; Chen, Q.; Huang, Y.; Wang, J.; Ding, H.; Deng, W.; Song, Y.; Feng, G.; Liu, L. Comparison of predictive value for cage subsidence between MRI-based endplate bone quality and vertebral bone quality scores following transforaminal lumbar interbody fusion: A retrospective propensity-matched study. Spine J. 2024, 24, 1046–1055. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, Q.; Liu, L.; Feng, G. Vertebral bone quality score to predict cage subsidence following oblique lumbar interbody fusion. J. Orthop. Surg. Res. 2023, 18, 258. [Google Scholar] [CrossRef]
- Pu, X.; Wang, X.; Ran, L.; Xie, T.; Li, Z.; Yang, Z.; Lin, R.; Zeng, J. Comparison of predictive performance for cage subsidence between CT-based Hounsfield units and MRI-based vertebral bone quality score following oblique lumbar interbody fusion. Eur. Radiol. 2023, 33, 8637–8644. [Google Scholar] [CrossRef]
- Ran, L.; Xie, T.; Zhao, L.; Wang, C.; Luo, C.; Wu, D.; You, X.; Huang, S.; Zeng, J. MRI-based endplate bone quality score predicts cage subsidence following oblique lumbar interbody fusion. Spine J. 2024, 24, 1922–1928. [Google Scholar] [CrossRef]
- Zheng, X.; Tong, T.; Li, W.; Chen, J.; Zhu, H.; Wang, Y.; Wang, L. Predictive value of different site-specific MRI-based assessments of bone quality for cage subsidence among patients undergoing oblique lumbar interbody fusion. J. Neurosurg. Spine 2024, 41, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Lei, F.; Ye, F.; Zhang, H.; Yuan, H.; Li, S.; Feng, D. Prediction of Pedicle Screw Loosening Using an MRI-Based Vertebral Bone Quality Score in Patients with Lumbar Degenerative Disease. World Neurosurg. 2022, 171, e760–e767. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, J.; Yang, H.; Yang, X.; Wang, L.; Song, Y. S1 vertebral bone quality score independently predicts pedicle screw loosening following surgery in patients with adult degenerative scoliosis. Spine J. 2024, 24, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Ye, W.; Ge, X.; Wang, H.; Xiong, J.; Zhu, Y.; Wang, Z.; Wang, J.; Tang, P.; Liu, W.; et al. Assessing the utility of MRI-based vertebral bone quality (VBQ) for predicting lumbar pedicle screw loosening. Eur. Spine J. 2024, 33, 289–297. [Google Scholar] [CrossRef]
- Li, W.; Zhu, H.; Hua, Z.; Miao, D.; Wang, F.; Tong, T.; Wang, L. Vertebral Bone Quality Score as a Predictor of Pedicle Screw Loosening Following Surgery for Degenerative Lumbar Disease. Spine 2023, 48, 1635–1641. [Google Scholar] [CrossRef]
- Kuo, C.C.; Soliman, M.A.R.; Aguirre, A.O.; Ruggiero, N.; Kruk, M.; Khan, A.; Ghannam, M.M.; Almeida, N.D.; Jowdy, P.K.; Smolar, D.E.; et al. Vertebral Bone Quality Score Independently Predicts Proximal Junctional Kyphosis and/or Failure After Adult Spinal Deformity Surgery. Neurosurgery 2022, 92, 945–954. [Google Scholar] [CrossRef]
- Deng, W.; Zhou, Y.; Zhou, Q.; Yin, Y.; Song, Y.; Feng, G. Simplified S1 vertebral bone quality score independently predicts proximal junctional kyphosis after surgery for degenerative lumbar scoliosis. J. Orthop. Surg. Res. 2024, 19, 238. [Google Scholar] [CrossRef]
- Schilling, A.T.; Ehresman, J.; Pennington, Z.; Cottrill, E.; Feghali, J.; Ahmed, A.K.; Hersh, A.; Planchard, R.F.; Jin, Y.; Lubelski, D.; et al. Interrater and Intrarater Reliability of the Vertebral Bone Quality Score. World Neurosurg. 2021, 154, e277–e282. [Google Scholar] [CrossRef] [PubMed]
- Mierke, A.; Ramos, O.; Macneille, R.; Chung, J.H.; Wycliffe, N.; Cheng, W.; Danisa, O.A. Intra- and inter-observer reliability of the novel vertebral bone quality score. Eur. Spine J. 2022, 31, 843–850. [Google Scholar] [CrossRef]
- Lin, W.; He, C.; Xie, F.; Chen, T.; Zheng, G.; Yin, H.; Chen, H.; Wang, Z. Assessment of bone density using the 1.5 T or 3.0 T MRI-based vertebral bone quality score in older patients undergoing spine surgery: Does field strength matter? Spine J. 2023, 23, 1172–1181. [Google Scholar] [CrossRef] [PubMed]
- Roch, P.J.; Çelik, B.; Jäckle, K.; Reinhold, M.; Meier, M.-P.; Hawellek, T.; Kowallick, J.T.; Klockner, F.S.; Lehmann, W.; Weiser, L. Combination of vertebral bone quality scores from different magnetic resonance imaging sequences improves prognostic value for the estimation of osteoporosis. Spine J. 2023, 23, 305–311. [Google Scholar] [CrossRef]
- Kuo, C.C.; Soliman, M.A.R.; Baig, R.A.; Aguirre, A.O.; Ruggiero, N.; Donnelly, B.M.; Siddiqi, M.; Khan, A.; Quiceno, E.; Mullin, J.P.; et al. Vertebral Bone Quality Score as a Predictor of Adjacent Segment Disease After Lumbar Interbody Fusion. Neurosurgery 2024, 95, 284–296. [Google Scholar] [CrossRef]
- Ehresman, J.; Ahmed, A.K.; Lubelski, D.; Schilling, A.; Pennington, Z.; Cottrill, E.; McCracken, J.; Khan, M.; Witham, T.; Sciubba, D.M. Vertebral Bone Quality Score and Postoperative Lumbar Lordosis Associated with Need for Reoperation After Lumbar Fusion. World Neurosurg. 2020, 140, e247–e252. [Google Scholar] [CrossRef]
- Ramos, O.; Razzouk, J.B.; Beauchamp, E.; Mueller, B.; Shafa, E.; Mehbod, A.A.; Cheng, W.; Danisa, O.; Carlson, B.C. Adding Vertebral Bone Quality to the Fusion Risk Score: Does It Improve Predictions of Postoperative Complications? Spine 2024, 49, 916–922. [Google Scholar] [CrossRef]
- Hartin, N.L.; Mehbod, A.A.; Joglekar, S.B.; Transfeldt, E.E. Fusion Risk Score: Evaluating baseline risk in thoracic and lumbar fusion surgery. Spine 2013, 38, E1616–E1623. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, F.; Chen, J.; Zhu, H.; Tian, H.; Wang, L. MRI-based vertebral bone quality score is a comprehensive index reflecting the quality of bone and paravertebral muscle. Spine J. 2024, 24, 472–478. [Google Scholar] [CrossRef]
- Moser, M.; Sanchez, L.A.; Amini, D.A.; Oezel, L.; Salzmann, S.N.; Muellner, M.; Haffer, H.; Tan, E.T.; Shue, J.; Sama, A.A.; et al. Correlation between MRI-based spinal muscle parameters and the vertebral bone quality score in lumbar fusion patients. Brain Spine 2023, 3, 102684. [Google Scholar] [CrossRef]
- Ehresman, J.; Schilling, A.; Yang, X.; Pennington, Z.; Ahmed, A.K.; Cottrill, E.; Lubelski, D.; Khan, M.; Moseley, K.F.; Sciubba, D.M. Vertebral bone quality score predicts fragility fractures independently of bone mineral density. Spine J. 2021, 21, 20–27. [Google Scholar] [CrossRef]
- Yin, H.; Lin, W.; Xie, F.; He, C.; Chen, T.; Zheng, G.; Wang, Z. MRI-based Vertebral Bone Quality Score for Osteoporosis Screening Based on Different Osteoporotic Diagnostic Criteria Using DXA and QCT. Calcif. Tissue Int. 2023, 113, 383–392. [Google Scholar] [CrossRef]
- Li, R.; Yin, Y.; Ji, W.; Wu, X.; Jiang, H.; Chen, J.; Zhu, Q. MRI-based vertebral bone quality score effectively reflects bone quality in patients with osteoporotic vertebral compressive fractures. Eur. Spine J. 2022, 31, 1131–1137. [Google Scholar] [CrossRef]
- Li, W.; Zhu, H.; Liu, J.; Tian, H.; Li, J.; Wang, L. Characteristics of MRI-based vertebral bone quality scores in elderly patients with vertebral fragility fractures. Eur. Spine J. 2023, 32, 2588–2593. [Google Scholar] [CrossRef]
- Wang, S.; Hu, Y.; Liu, H.; Yang, K.; Zhang, X.; Qu, B.; Yang, H. Simplified S1 Vertebral Bone Quality Score in the Assessment of Patients with Vertebral Fragility Fractures. World Neurosurg. 2024, 185, e1004–e1012. [Google Scholar] [CrossRef]
- Yu, W.; Zhang, H.; Yao, Z.; Zhong, Y.; Jiang, X.; Cai, D. Lower ratio of adjacent to injured vertebral bone quality scores can predict augmented vertebrae recompression following percutaneous kyphoplasty for osteoporotic vertebral fractures with intravertebral clefts. Pain Pract. 2023, 23, 892–903. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhou, L.-P.; Zhang, X.-L.; Li, D.; Wang, J.-Q.; Jia, C.-Y.; Zhang, H.-Q.; Kang, L.; Zhang, R.-J.; Shen, C.-L. Which Indicator Among Lumbar Vertebral Hounsfield Unit, Vertebral Bone Quality, or Dual-Energy X-Ray Absorptiometry-Measured Bone Mineral Density Is More Efficacious in Predicting Thoracolumbar Fragility Fractures? Neurospine 2023, 20, 1193–1204. [Google Scholar] [CrossRef]
- Wang, L.; Deng, Q.; Wang, B.; Li, X.-B.; Sha, Z.-J.; Wang, Z.-R.; Huang, A.-B. Comparison of the predictive values of MRI-based vertebral bone quality scores for the determination of osteoporosis in different diseases. Eur. Spine J. 2024, 33, 1504–1510. [Google Scholar] [CrossRef]
- Pennington, Z.; Mikula, A.L.; Lakomkin, N.; Martini, M.; Clarke, M.J.; Sebastian, A.S.; Freedman, B.A.; Rose, P.S.; Karim, S.M.; Nassr, A.; et al. Comparison of Hounsfield units and vertebral bone quality score for the prediction of time to pathologic fracture in mobile spine metastases treated with radiotherapy. J. Neurosurg. Spine 2024, 40, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.A.R.; Aguirre, A.O.; Kuo, C.C.; Ruggiero, N.; Khan, A.; Ghannam, M.M.; Rho, K.; Jowdy, P.K.; Mullin, J.P.; Pollina, J. A Novel Cervical Vertebral Bone Quality Score Independently Predicts Cage Subsidence After Anterior Cervical Diskectomy and Fusion. Neurosurgery 2023, 92, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Razzouk, J.; Ramos, O.; Ouro-Rodrigues, E.; Samayoa, C.; Wycliffe, N.; Cheng, W.; Danisa, O. Comparison of cervical, thoracic, and lumbar vertebral bone quality scores for increased utility of bone mineral density screening. Eur. Spine J. 2023, 32, 20–26. [Google Scholar] [CrossRef]
- Kuo, C.C.; Soliman, M.A.; Aguirre, A.O.; Ruggiero, N.; Kruk, M.; Khan, A.; Hess, R.M.; Smolar, D.E.; Mullin, J.P.; Pollina, J. Strong Correlation Between the Vertebral Bone Quality Score and the Cervical-Vertebral Bone Quality Score in Spine Surgery Patients. World Neurosurg. 2023, 177, e1–e9. [Google Scholar] [CrossRef]
- Aguirre, A.O.; Soliman, M.A.; Kuo, C.C.; Ruggiero, N.; Im, J.; Khan, A.; Lim, J.; Nyabuto, E.; Smolar, D.E.; Mullin, J.P.; et al. Comparative Analysis of the 3 Cervical Vertebral Bone Quality (C-VBQ) Score Methodologies and Their Correlations to the Lumbar Vertebral Bone Quality (VBQ) Score. World Neurosurg. 2024, 183, e321–e327. [Google Scholar] [CrossRef] [PubMed]
- Oezel, L.; Okano, I.; Jones, C.; Salzmann, S.N.; Shue, J.; Amini, D.A.; Moser, M.; Chiapparelli, E.; Sama, A.A.; Carrino, J.A.; et al. MRI-based vertebral bone quality score compared to quantitative computed tomography bone mineral density in patients undergoing cervical spinal surgery. Eur. Spine J. 2023, 32, 1636–1643. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Chen, Q.; Huang, Y.; Song, Y.; Liu, L.; Feng, G. Different cervical vertebral bone quality scores for bone mineral density assessment for the patients with cervical degenerative disease undergoing ACCF/ACDF: Computed tomography and magnetic resonance imaging-based study. J. Orthop. Surg. Res. 2023, 18, 927. [Google Scholar] [CrossRef]
- Huang, W.; Gong, Z.; Zheng, C.; Chen, Y.; Ma, X.; Wang, H.; Jiang, J. Preoperative Assessment of Bone Density Using MRI-Based Vertebral Bone Quality Score Modified for Patients Undergoing Cervical Spine Surgery. Glob. Spine J. 2024, 14, 1238–1247. [Google Scholar] [CrossRef] [PubMed]
- Bernatz, J.T.; Pumford, A.B.; Goh, B.C.; Pinter, Z.W.; Mikula, A.L.; Michalopoulos, G.D.; Bydon, M.; Huddleston, P.; Nassr, A.N.; Freedman, B.A.; et al. MRI Vertebral Bone Quality Correlates With Interbody Cage Subsidence After Anterior Cervical Discectomy and Fusion. Clin. Spine Surg. Spine Publ. 2024, 37, 149–154. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, C.; Xia, Q.; Yang, H.; Liu, L.; Feng, G.; Song, Y. The Association between High Preoperative MRI-based Vertebral Bone Quality (VBQ) Score and Titanium Mesh Cage Subsidence after Anterior Cervical Corpectomy and Fusion. Orthop. Surg. 2023, 16, 303–311. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Li, Q.; Deng, Z.; Wang, L.; Song, Y. A novel MRI-based Cervical-Endplate Bone Quality score independently predicts cage subsidence after Anterior Cervical Discectomy and Fusion. Eur. Spine J. 2024, 33, 2277–2286. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Huang, Y.; Chen, Q.; Liu, L.; Song, Y.; Feng, G. Cervical Vertebral Bone Quality Score Independently Predicts Zero-Profile Cage Subsidence After Single-Level Anterior Cervical Discectomy and Fusion. World Neurosurg. 2024, 182, e377–e385. [Google Scholar] [CrossRef]
- Aguirre, A.O.; Soliman, M.A.R.; Kuo, C.C.; Ruggiero, N.; Im, J.; Chintaluru, Y.; Khan, A.M.A.; Khan, A.; Hess, R.M.; Rho, K.; et al. Cervical Vertebral Bone Quality Score Independently Predicts Distal Junctional Kyphosis After Posterior Cervical Fusion. Neurosurgery 2023, 94, 461–469. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Q.; Xu, J.; Ding, W.; Wang, H. Hounsfield Unit for Assessing Bone Mineral Density Distribution Within Cervical Vertebrae and Its Correlation With the Intervertebral Disc Degeneration. Front. Endocrinol. 2022, 13, 920167. [Google Scholar] [CrossRef]
- Patel, M.; Razzouk, J.; Shin, D.; Cabrera, A.J.; Nguyen, K.; Bouterse, A.; Mbumbgwa, P.; Brandt, Z.; Cheng, W.; Danisa, O.; et al. Association Between Vertebral Bone Quality Score and Dual-Energy X-ray Absorptiometry for the Assessment of Bone Mineral Density in Adolescent Patients. Cureus 2024, 16, e53402. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.-D.; Li, Y.; Tian, J.-Y.; Li, Y.; Liu, J.; Liu, Y.-S.; Cao, X.-W.; Liu, C. MRI-based vertebral bone quality score as a novel bone status marker of patients with adolescent idiopathic scoliosis. Sci. Rep. 2024, 14, 12518. [Google Scholar] [CrossRef] [PubMed]
- Ramos, O.; Razzouk, J.; Chung, J.H.; Cheng, W.K.; Danisa, O.A. Opportunistic assessment of bone density in patients with adolescent idiopathic scoliosis using MRI-based vertebral bone quality. J. Clin. Neurosci. 2022, 103, 41–43. [Google Scholar] [CrossRef] [PubMed]
Publication | Mean VBQ OP vs. No OP | Threshold Value | Sensitivity | Specificity | AUC |
---|---|---|---|---|---|
Ehresman et al., 2020 [19] | 3.31 vs. 2.74 | -- | -- | -- | 0.81 * |
Kadri et al., 2022 [26] | 3.67 vs. 2.79 | 2.95 | 91% | 60% | 0.806 * |
Salzmann et al., 2022 [18] | 2.6 vs. 2.2 | 2.388 | 74.3% | 57% | 0.7079 ** |
Chen et al., 2023 [27] | -- | 2.83 | 93% | 65.4% | 0.818 * |
Courtois et al., 2023 [22] | 2.78 vs. 2.55 | 2.50 | 54.7% | 51.4% | 0.557 * |
Huang et al., 2023 [16] | 3.80 vs. 2.85 | -- | -- | -- | -- |
Huang et al., 2023 [16] | S1 VBQ 3.79 vs. 2.69 | 2.93 | -- | -- | 0.82 * |
Kim et al., 2023 [28] | 2.7 vs. 2.2 | 2.6 | 58% | 90% | 0.754 *** |
Ozmen et al., 2023 [21] | 3.02 vs. 2.69 | 2.7 | 83.3% | 44.3% | 0.667 * |
Pu et al., 2023 [29] | 3.43 vs. 2.81 | 3.05 | 87.5% | 61.8% | 0.810 * |
Xu et al., 2023 [23] | 15.09 vs. 12.42 | 14.324 | 36.1% | 93.9% | 0.771 * |
Publication | Procedure | Mean VBQ Complication vs. No Complication | Threshold Value | Sensitivity | Specificity | AUC | Odds Ratio (OR) |
---|---|---|---|---|---|---|---|
Cage subsidence | |||||||
Soliman et al., 2022 [36] | TLIF | 2.9 vs. 2.5 | -- | -- | -- | -- | 1.5 |
Hu et al., 2022 [37] | TLIF | 3.79 vs. 2.96 | 3.28 | 85.6% | 78.6% | 0.856 | 14.615 |
Ai et al., 2023 [38] | TLIF | 3.7 vs. 3.1 | 3.5 | 87.5% | 74.5% | 0.825 | 2.690 |
Chen et al., 2023 [39] | TLIF | EBQ 5.0 vs. 4.3 | 4.73 | 76.2% | 83.2% | 0.820 | 1.02 |
Ai et al., 2024 [40] | TLIF | 3.7 vs. 3.1 | 3.4 | 84.6% | 69.2% | 0.799 | 4.557 |
AI et al., 2024 [40] | TLIF | EBQ 5.0 vs. 4.3 | 4.7 | 76.9% | 82.7% | 0.829 | 5.396 |
Huang et al., 2023 [41] | OLIF | 3.83 vs. 2.98 | 3.435 | 69.23% | 88.89% | 0.839 | 23.158 |
Pu et al., 2023 [42] | OLIF | Global VBQ 5.10 vs. 3.31 * | 4.10 | 73.3% | 83.8% | 0.814 | -- |
Pu et al., 2023 [42] | OLIF | Segmental VBQ 5.07 vs. 3.32 ** | 3.36 | 80.0 | 81.1% | 0.820 | -- |
Ran et al., 2024 [43] | OLIF | EBQ 3.48 vs. 2.31 | 2.318 | 93.1% | 55.9% | 0.811 | 6.204 |
Zheng et al., 2024 [44] | OLIF | 3.21 vs. 2.85 | -- | -- | -- | -- | -- |
Zheng et al., 2024 [44] | OLIF | EBQ 2.97 vs. 2.75 | -- | -- | -- | -- | -- |
Zheng et al., 2024 [44] | SA-OLIF | 3.14 vs. 2.82 | 2.84 | -- | -- | 0.684 | -- |
Zheng et al., 2024 [44] | SA-OLIF | EBQ 2.79 vs. 2.41 | 2.60 | 65.4% | 75.0% | 0.745 | 13.656 |
Zheng et al., 2024 [44] | OLIF-PF | 3.32 vs. 2.88 | 3.20 | -- | -- | 0.757 | -- |
Zheng et al., 2024 [44] | OLIF-PF | EBQ 3.20 vs. 3.02 | -- | -- | -- | -- | 1.721 |
Jones et al., 2022 [15] | LLIF | 2.67 vs. 2.39 | -- | -- | -- | -- | 1.79 |
Jones et al., 2022 [15] | LLIF | EBQ 5.09 vs. 4.31 | 5.1 | 40.0% | 84.5% | 0.61 | 0.80 |
Screw loosening | |||||||
Chen et al., 2022 [45] | PLIF | 3.1 vs. 2.8 | 2.87 | 76.9% | 64.8% | 0.744 | 1.02 |
Li et al., 2024 [46] | PLIF | S1 VBQ 3.31 vs. 3.01 | 3.175 | 76.0% | 83.3% | 0.746 | 5.778 |
Gao et al., 2024 [47] | Lumbar fusion | 3.61 vs. 2.86 | 3.055 | 81.8% | 71.3% | 0.774 | 3.555 |
Li et al., 2023 [48] | Lumbar fusion | 3.28 vs. 2.82 | 3.05 | 65.5% | 71.3% | 0.720 | 3.908 |
Proximal junctional kyphosis | |||||||
Kuo et al., 2023 [49] | Thoracolumbar fusion | 3.13 vs. 2.46 | 2.85 | 88.2% | 95.1% | 0.943 | 1.745 |
Deng et al., 2024 [50] | Thoracolumbar fusion | S1 VBQ 3.58 vs. 3.08 | 3.205 | 77.8% | 81.4% | 0.721 | 4.565 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gausper, A.; Gibbs, W.N.; Elder, B.D.; Scheer, J.K.; Perry, T.G.; Etigunta, S.K.; Liu, A.M.; Tuchman, A.; Walker, C.T. Magnetic Resonance Imaging-Based Assessment of Bone Quality Using Vertebral Bone Quality (VBQ) Scores in Spine Surgery—A Critical Assessment and Narrative Review. J. Clin. Med. 2025, 14, 6477. https://doi.org/10.3390/jcm14186477
Gausper A, Gibbs WN, Elder BD, Scheer JK, Perry TG, Etigunta SK, Liu AM, Tuchman A, Walker CT. Magnetic Resonance Imaging-Based Assessment of Bone Quality Using Vertebral Bone Quality (VBQ) Scores in Spine Surgery—A Critical Assessment and Narrative Review. Journal of Clinical Medicine. 2025; 14(18):6477. https://doi.org/10.3390/jcm14186477
Chicago/Turabian StyleGausper, Adeesya, Wende N. Gibbs, Benjamin D. Elder, Justin K. Scheer, Tiffany G. Perry, Suhas K. Etigunta, Andy M. Liu, Alexander Tuchman, and Corey T. Walker. 2025. "Magnetic Resonance Imaging-Based Assessment of Bone Quality Using Vertebral Bone Quality (VBQ) Scores in Spine Surgery—A Critical Assessment and Narrative Review" Journal of Clinical Medicine 14, no. 18: 6477. https://doi.org/10.3390/jcm14186477
APA StyleGausper, A., Gibbs, W. N., Elder, B. D., Scheer, J. K., Perry, T. G., Etigunta, S. K., Liu, A. M., Tuchman, A., & Walker, C. T. (2025). Magnetic Resonance Imaging-Based Assessment of Bone Quality Using Vertebral Bone Quality (VBQ) Scores in Spine Surgery—A Critical Assessment and Narrative Review. Journal of Clinical Medicine, 14(18), 6477. https://doi.org/10.3390/jcm14186477