Are Dietary and Serum Advanced Glycation End Products (AGEs) Potential Contributors to Inflammation in Women with Polycystic Ovary Syndrome?
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Anthropometric Measurements
2.3. Dietary Assessment
2.4. Dietary AGE Intake
2.5. Laboratory Investigations
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PCOS | Polycystic ovary syndrome |
AGEs | Advanced glycation end products |
dAGEs | Dietary advanced glycation end products |
CML | Carboxymethyl lysine |
CEL | Carboxyethyl lysine |
MG-H1 | Methylglyoxal-derived hydroimidazolone-1 |
ELISA | Enzyme-linked immunosorbent assay |
sRAGE | Soluble receptor for advanced glycation end products |
MGO | Methylglyoxal |
SHBG | Sex hormone-binding globulin |
FAI | Free androgen index |
HOMA-IR | Homeostatic Model Assessment of Insulin Resistance |
BMI | Body mass index |
TNF-α | Tumor necrosis factor-α |
hs-CRP | High-sensitivity C-reactive protein |
ROC | Receiver operating characteristic |
AUC | Area under the curve |
kU | kilo-Unit |
References
- Salari, N.; Nankali, A.; Ghanbari, A.; Jafarpour, S.; Ghasemi, H.; Dokaneheifard, S.; Mohammadi, M. Global prevalence of polycystic ovary syndrome in women worldwide: A comprehensive systematic review and meta-analysis. Arch. Gynecol. Obstet. 2024, 310, 1303–1314. [Google Scholar] [CrossRef]
- Mouanness, M.; Merhi, Z. Impact of dietary advanced glycation end products on female reproduction: Review of potential mechanistic pathways. Nutrients 2022, 14, 966. [Google Scholar] [CrossRef]
- Safiri, S.; Noori, M.; Nejadghaderi, S.A.; Karamzad, N.; Carson-Chahhoud, K.; Sullman, M.J.; Collins, G.S.; Kolahi, A.-A.; Avery, J. Prevalence, incidence and years lived with disability due to polycystic ovary syndrome in 204 countries and territories, 1990–2019. Hum. Reprod. 2022, 37, 1919–1931. [Google Scholar] [CrossRef]
- Çelik, E.; Akdevelioğlu, Y. Dietary advanced glycation end products (AGE) and female infertility. Curr. Perspect. Health Sci. 2023, 4, 104–122. [Google Scholar]
- Emami, N.; Alizadeh, A.; Maleki-Hajiagha, A.; Dizavi, A.; Vesali, S.; Moini, A. Serum and follicular fluid levels of soluble receptor for advanced glycation end-products in women with and without polycystic ovary syndrome. J. Ovarian Res. 2023, 16, 127. [Google Scholar] [CrossRef] [PubMed]
- Twarda-Clapa, A.; Olczak, A.; Białkowska, A.M.; Koziołkiewicz, M. Advanced glycation end-products (AGEs): Formation, chemistry, classification, receptors, and diseases related to AGEs. Cells 2022, 11, 1312. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Chen, S.; Shi, Y.; Wang, P.; Wu, Y.; Li, G. Dietary advanced glycation end products (dAGEs): An insight between modern diet and health. Food Chem. 2023, 415, 135735. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Fu, L. Dietary advanced glycation end-products: Perspectives linking food processing with health implications. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2559–2587. [Google Scholar] [CrossRef]
- Bahreiny, S.S.; Ahangarpour, A.; Aghaei, M. Circulating levels of advanced glycation end products in females with polycystic ovary syndrome: A meta-analysis. Reprod. Dev. Med. 2024, 8, 93–100. [Google Scholar] [CrossRef]
- Azhary, J.M.; Harada, M.; Kunitomi, C.; Kusamoto, A.; Takahashi, N.; Nose, E.; Oi, N.; Wada-Hiraike, O.; Urata, Y.; Hirata, T. Androgens increase accumulation of advanced glycation end products in granulosa cells by activating ER stress in PCOS. Endocrinology 2020, 161, bqaa015. [Google Scholar] [CrossRef]
- Akhtar, Y.; Malik, S.; Bhutta, M.; Almanan, S.M.A.; Solehria, T.B.; Malik, M.K. A Systematic Review on the Role of Advanced Glycation End-products (AGEs) in the Development of PCOS. J. Liaquat Univ. Med. Health Sci. 2024, 23, 279–286. [Google Scholar]
- Zhu, J.-l.; Cai, Y.-q.; Long, S.-l.; Chen, Z.; Mo, Z.-c. The role of advanced glycation end products in human infertility. Life Sci. 2020, 255, 117830. [Google Scholar] [CrossRef]
- Khalid, M.; Petroianu, G.; Adem, A. Advanced glycation end products and diabetes mellitus: Mechanisms and perspectives. Biomolecules 2022, 12, 542. [Google Scholar] [CrossRef]
- Pekcan, G. Beslenme durumunun saptanmasi. Diyet. El Kitabi. 2008, 726, 67–141. [Google Scholar]
- Rakıcıoğlu, N.; Tek Acar, N.; Ayaz, A.; Pekcan, G. Photograph Catalog of Food and Dishes: Porsition Sizes and Amounts; Hazırlık Ofset Publishing: Ankara, Turkey, 2015. [Google Scholar]
- Ebispro for Windows, Stuttgart, Germany. Turkish Version (BeBiS 9); Pasifik Elektirik Elektronik Ltd. Şti.: Istanbul, Türkiye, 2021; Available online: www.bebis.com.tr (accessed on 10 August 2025).
- Uribarri, J.; Woodruff, S.; Goodman, S.; Cai, W.; Chen, X.; Pyzik, R.; Yong, A.; Striker, G.E.; Vlassara, H. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J. Am. Diet. Assoc. 2010, 110, 911–916. E912. [Google Scholar] [CrossRef]
- Scheijen, J.L.; Clevers, E.; Engelen, L.; Dagnelie, P.C.; Brouns, F.; Stehouwer, C.D.; Schalkwijk, C.G. Analysis of advanced glycation endproducts in selected food items by ultra-performance liquid chromatography tandem mass spectrometry: Presentation of a dietary AGE database. Food Chem. 2016, 190, 1145–1150. [Google Scholar] [CrossRef]
- Al Kindi, M.K.; Al Essry, F.S.; Al Essry, F.S.; Mula-Abed, W.A. Validity of serum testosterone, free androgen index, and calculated free testosterone in women with suspected hyperandrogenism. Oman Med. J. 2012, 27, 471–474. [Google Scholar] [CrossRef]
- Rossner, S.M.; Neovius, M.; Mattsson, A.; Marcus, C.; Norgren, S. HOMA-IR and QUICKI: Decide on a general standard instead of making further comparisons. Acta Paediatr. 2010, 99, 1735–1740. [Google Scholar] [CrossRef] [PubMed]
- Thornton, K.; Merhi, Z.; Jindal, S.; Goldsammler, M.; Charron, M.J.; Buyuk, E. Dietary Advanced Glycation End Products (AGEs) could alter ovarian function in mice. Mol. Cell. Endocrinol. 2020, 510, 110826. [Google Scholar] [CrossRef] [PubMed]
- Nowotny, K.; Schröter, D.; Schreiner, M.; Grune, T. Dietary advanced glycation end products and their relevance for human health. Ageing Res. Rev. 2018, 47, 55–66. [Google Scholar] [CrossRef]
- Tong, Y.W.; Ko, J.K.Y.; Lam, K.S.L.; Tam, S.; Lee, V.C.Y.; Ho, P.C.; Ng, E.H.Y.; Li, R.H.W. Advanced glycation end-products and its soluble receptor are not independent predictors of incident dysglycaemia or metabolic syndrome in women with polycystic ovary syndrome: A prospective observational study. Reprod. Biol. Endocrinol. 2023, 21, 41. [Google Scholar] [CrossRef]
- Tantalaki, E.; Piperi, C.; Livadas, S.; Kollias, A.; Adamopoulos, C.; Koulouri, A.; Christakou, C.; Diamanti-Kandarakis, E. Impact of dietary modification of advanced glycation end products (AGEs) on the hormonal and metabolic profile of women with polycystic ovary syndrome (PCOS). Hormones 2014, 13, 65–73. [Google Scholar] [CrossRef]
- Ozdemir, M.; Mumusoglu, S.; Bilgic, P. Comparison of Metabolic and Hormonal Profiles between Low-Advanced Glycation End Products (AGEs) and Standard AGEs-Containing Weight-Loss Diets in Overweight Phenotype-A PCOS Patients: A Randomized Clinical Trial. Reprod. Sci. 2025, 32, 1190–1201. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Katsikis, I.; Piperi, C.; Kandaraki, E.; Piouka, A.; Papavassiliou, A.G.; Panidis, D. Increased serum advanced glycation end-products is a distinct finding in lean women with polycystic ovary syndrome (PCOS). Clin. Endocrinol. 2008, 69, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Mouanness, M.; Nava, H.; Dagher, C.; Merhi, Z. Contribution of advanced glycation end products to PCOS key elements: A narrative review. Nutrients 2022, 14, 3578. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.L.; de Oliveira, M.G.; Mónica, F.Z.; Antunes, E. Methylglyoxal and advanced glycation end products (AGEs): Targets for the prevention and treatment of diabetes-associated bladder dysfunction? Biomedicines 2024, 12, 939. [Google Scholar] [CrossRef] [PubMed]
- Vıcıl, S.; Ulutaş, E. Metilglioksal ve İleri Glikasyon Son Ürünleri. Bozok Vet. Sci. 2020, 1, 74–79. [Google Scholar]
- Song, J.; Feng, D.; Na, Z.; Yang, H.; Peng, Y.; Li, P.; Shi, B.; Li, D. Fructose-Mediated Elevation of Serum Methylglyoxal Levels is Associated with Inflammation and Insulin Resistance in Polycystic Ovary Syndrome. SSRN Electron. J. 2022. Available online: https://ssrn.com/abstract=4165608 (accessed on 15 August 2025). [CrossRef]
- Bhat, L.R.; Vedantham, S.; Krishnan, U.M.; Rayappan, J.B.B. Methylglyoxal–an emerging biomarker for diabetes mellitus diagnosis and its detection methods. Biosens. Bioelectron. 2019, 133, 107–124. [Google Scholar] [CrossRef]
- Reyaz, A.; Alam, S.; Chandra, K.; Kohli, S.; Agarwal, S. Methylglyoxal and soluble RAGE in type 2 diabetes mellitus: Association with oxidative stress. J. Diabetes Metab. Disord. 2020, 19, 515–521. [Google Scholar] [CrossRef]
- Sutkowska, E.; Fecka, I.; Marciniak, D.; Bednarska, K.; Sutkowska, M.; Hap, K. Analysis of Methylglyoxal Concentration in a Group of Patients with Newly Diagnosed Prediabetes. Biomedicines 2023, 11, 2968. [Google Scholar] [CrossRef] [PubMed]
- Steenbeke, M.; De Bruyne, S.; De Buyzere, M.; Lapauw, B.; Speeckaert, R.; Petrovic, M.; Delanghe, J.R.; Speeckaert, M.M. The role of soluble receptor for advanced glycation end-products (sRAGE) in the general population and patients with diabetes mellitus with a focus on renal function and overall outcome. Crit. Rev. Clin. Lab. Sci. 2021, 58, 113–130. [Google Scholar] [CrossRef]
- Cepas, V.; Collino, M.; Mayo, J.C.; Sainz, R.M. Redox signaling and advanced glycation endproducts (AGEs) in diet-related diseases. Antioxidants 2020, 9, 142. [Google Scholar] [CrossRef]
- Erusalimsky, J.D. The use of the soluble receptor for advanced glycation-end products (sRAGE) as a potential biomarker of disease risk and adverse outcomes. Redox Biol. 2021, 42, 101958. [Google Scholar] [CrossRef]
- Emami, N.; Moini, A.; Vesali, S. Relation of follicular fluid soluble receptor for advanced glycation end-products concentration and anti mullerian hormone in polycystic ovary syndrome and non-PCOS women referring to in vitro fertilization center: Case-control study. Int. J. Fertil. Steril. 2025, 19, 29. [Google Scholar]
- Garg, D.; Grazi, R.; Lambert-Messerlian, G.M.; Merhi, Z. Correlation between follicular fluid levels of sRAGE and vitamin D in women with PCOS. J. Assist. Reprod. Genet. 2017, 34, 1507–1513. [Google Scholar] [CrossRef]
- Wang, B.; Li, J.; Yang, Q.; Zhang, F.; Hao, M.; Guo, Y. Decreased levels of sRAGE in follicular fluid from patients with PCOS. Reproduction 2017, 153, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Huang, R.; Sun, Y.; Yue, J.; Zheng, J.; Wang, L.; Tao, T.; Ma, J.; Li, S.; Liu, W. An inverse association between serum soluble receptor of advanced glycation end products and hyperandrogenism and potential implication in polycystic ovary syndrome patients. Reprod. Biol. Endocrinol. 2017, 15, 9. [Google Scholar] [CrossRef]
- Merhi, Z.; Kandaraki, E.A.; Diamanti-Kandarakis, E. Implications and future perspectives of AGEs in PCOS pathophysiology. Trends Endocrinol. Metab. 2019, 30, 150–162. [Google Scholar] [CrossRef]
- Piperi, C.; Papageorgiou, E.; Kandaraki, E.; Koutsilieris, M.; Diamanti-Kandarakis, E. Advanced glycation end-products inhibit insulin signaling in human granulosa cells. Endocr. Abstr. 2013, 32, 411. [Google Scholar] [CrossRef]
- González, F.; Rote, N.S.; Minium, J.; Kirwan, J.P. Reactive oxygen species-induced oxidative stress in the development of insulin resistance and hyperandrogenism in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2006, 91, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Diamanti-Kandarakis, E.; Piperi, C.; Patsouris, E.; Korkolopoulou, P.; Panidis, D.; Pawelczyk, L.; Papavassiliou, A.G.; Duleba, A.J. Immunohistochemical localization of advanced glycation end-products (AGEs) and their receptor (RAGE) in polycystic and normal ovaries. Histochem. Cell Biol. 2007, 127, 581–589. [Google Scholar] [CrossRef]
- Prasad, K. Is there any evidence that AGE/sRAGE is a universal biomarker/risk marker for diseases? Mol. Cell. Biochem. 2019, 451, 139–144. [Google Scholar] [CrossRef]
- Kajikawa, M.; Nakashima, A.; Fujimura, N.; Maruhashi, T.; Iwamoto, Y.; Iwamoto, A.; Matsumoto, T.; Oda, N.; Hidaka, T.; Kihara, Y. Ratio of serum levels of AGEs to soluble form of RAGE is a predictor of endothelial function. Diabetes Care 2015, 38, 119–125. [Google Scholar] [CrossRef]
- Prasad, K. AGE–RAGE stress and coronary artery disease. Int. J. Angiol. 2021, 30, 4–14. [Google Scholar] [CrossRef]
- Ebert, H.; Lacruz, M.E.; Kluttig, A.; Simm, A.; Greiser, K.H.; Tiller, D.; Kartschmit, N.; Mikolajczyk, R. Association between advanced glycation end products, their soluble receptor, and mortality in the general population: Results from the CARLA study. Exp. Gerontol. 2020, 131, 110815. [Google Scholar] [CrossRef]
- Sabbatinelli, J.; Castiglione, S.; Macrì, F.; Giuliani, A.; Ramini, D.; Vinci, M.C.; Tortato, E.; Bonfigli, A.R.; Olivieri, F.; Raucci, A. Circulating levels of AGEs and soluble RAGE isoforms are associated with all-cause mortality and development of cardiovascular complications in type 2 diabetes: A retrospective cohort study. Cardiovasc. Diabetol. 2022, 21, 95. [Google Scholar] [CrossRef]
- Khattak, M.; Usman, R.; Sultana, N.; Khattak, A. Comparison of free androgen index in polycystic ovary syndrome and non-polycystic ovary syndrome infertile patients. J. Ayub Med. Coll. Abbottabad 2021, 33, 577–581. [Google Scholar] [PubMed]
- Qu, X.; Donnelly, R. Sex hormone-binding globulin (SHBG) as an early biomarker and therapeutic target in polycystic ovary syndrome. Int. J. Mol. Sci. 2020, 21, 8191. [Google Scholar] [CrossRef] [PubMed]
- Merhi, Z.; Fadiel, A.; Buyuk, E.; Naftolin, F.; Cipolla, M. Vitamin D attenuates the adverse effect of advanced glycation end products on human granulosa cells: Implications for women with PCOS. Fertil. Steril. 2015, 104, e106. [Google Scholar] [CrossRef]
- Tatone, C.; Di Emidio, G.; Placidi, M.; Rossi, G.; Ruggieri, S.; Taccaliti, C.; D’Alfonso, A.; Amicarelli, F.; Guido, M. AGEs-related dysfunctions in PCOS: Evidence from animal and clinical research. J. Endocrinol. 2021, 251, R1–R9. [Google Scholar] [CrossRef] [PubMed]
- Diamanti-Kandarakis, E.; Chatzigeorgiou, A.; Papageorgiou, E.; Koundouras, D.; Koutsilieris, M. Advanced glycation end-products and insulin signaling in granulosa cells. Exp. Biol. Med. 2016, 241, 1438–1445. [Google Scholar] [CrossRef] [PubMed]
- Portero-Otin, M.; de la Maza, M.P.; Uribarri, J. Dietary advanced glycation end products: Their role in the insulin resistance of aging. Cells 2023, 12, 1684. [Google Scholar] [CrossRef]
- Hofmann, S.M.; Dong, H.-J.; Li, Z.; Cai, W.; Altomonte, J.; Thung, S.N.; Zeng, F.; Fisher, E.A.; Vlassara, H. Improved insulin sensitivity is associated with restricted intake of dietary glycoxidation products in the db/db mouse. Diabetes 2002, 51, 2082–2089. [Google Scholar] [CrossRef] [PubMed]
Variable | Control (n = 44) | PCOS (n = 43) | p |
---|---|---|---|
Age (years) • | 22.00 (19.00–29.00) | 23.00 (19.00–31.00) | 0.134 |
BMI (kg/m2) • | 26.40 (21.00–39.60) | 26.40 (19.30–42.90) | 0.750 |
Waist-to-hip ratio † | 0.83 ± 0.06 | 0.88 ± 0.10 | 0.009 * |
Dietary AGEs (kU/day) † | 11,740.28 ± 2940.61 | 13,191.05 ± 3360.12 | 0.035 * |
Dietary CML mg/day • | 2.64 (1.31–9.66) | 2.63 (1.26–5.81) | 0.375 |
Dietary CEL mg/day • | 2.74 (1.15–5.96) | 2.20 (1.24–6.05) | 0.366 |
Dietary MG-H1 mg/day • | 21.91 (10.22–45.31) | 20.12 (10.54–46.09) | 0.647 |
Variable | Control (n = 44) | PCOS (n = 43) | p |
---|---|---|---|
Serum CML (ng/mL) • | 457.80 (20.00–1916.50) | 558.50 (227.10–2096.50) | 0.045 * |
Serum sRAGE (ng/mL) • | 3.70 (1.93–15.07) | 3.21 (0.05–13.78) | 0.063 |
Serum CML/sRAGE ratio • | 129.79 (10.36–643.12) | 155.81 (16.48–7422.00) | 0.002 * |
Serum MGO (ng/mL) • | 31.66 (11.18–145.46) | 39.46 (13.29–156.02) | 0.200 |
hs-CRP (ng/mL) • | 5.62 (0.50–27.23) | 6.34 (1.72–36.73) | 0.368 |
TNF-α (ng/L) • | 126.80 (55.10–660.20) | 152.80 (71.80–702.10) | 0.086 |
Fasting insulin (mIU/L) • | 9.46 (4.01–22.72) | 9.81 (6.41–48.28) | 0.083 |
HOMA-IR • | 1.82 (0.79–4.71) | 1.86 (1.26–8.58) | 0.145 |
SHBG (nmol/L) • | 80.55 (32.20–118.10) | 32.67 (18.76–81.86) | <0.001 * |
Total testosterone (nmoL/L) • | 28.18 (13.79–32.74) | 59.42 (38.51–89.26) | <0.001 * |
FAI • | 1.28 (0.69–3.20) | 5.56 (2.14–15.12) | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yurt, M.; Gökmen-Özel, H. Are Dietary and Serum Advanced Glycation End Products (AGEs) Potential Contributors to Inflammation in Women with Polycystic Ovary Syndrome? J. Clin. Med. 2025, 14, 5803. https://doi.org/10.3390/jcm14165803
Yurt M, Gökmen-Özel H. Are Dietary and Serum Advanced Glycation End Products (AGEs) Potential Contributors to Inflammation in Women with Polycystic Ovary Syndrome? Journal of Clinical Medicine. 2025; 14(16):5803. https://doi.org/10.3390/jcm14165803
Chicago/Turabian StyleYurt, Merve, and Hülya Gökmen-Özel. 2025. "Are Dietary and Serum Advanced Glycation End Products (AGEs) Potential Contributors to Inflammation in Women with Polycystic Ovary Syndrome?" Journal of Clinical Medicine 14, no. 16: 5803. https://doi.org/10.3390/jcm14165803
APA StyleYurt, M., & Gökmen-Özel, H. (2025). Are Dietary and Serum Advanced Glycation End Products (AGEs) Potential Contributors to Inflammation in Women with Polycystic Ovary Syndrome? Journal of Clinical Medicine, 14(16), 5803. https://doi.org/10.3390/jcm14165803