Why Should Return to Sport Be Delayed by up to Two Years After ACL Reconstruction? A Narrative Review of the Biological, Surgical and Rehabilitation Evidence
Abstract
1. Introduction
2. Biology
3. Surgery
4. Postoperative Recovery
4.1. Proprioception
4.2. Functional Recovery
4.3. Strength
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACL | anterior cruciate ligament |
ACLR | anterior cruciate ligament reconstruction |
RTP | return to play |
HT | hamstring tendon |
MRI | magnetic resonance imaging |
SNQ | signal-to-noise quotient |
RCT | randomized controlled trial |
LET | lateral extra-articular tenodesis |
LTS | lateral tibial plateau slope |
GBA | graft bending angle |
AMP | anteromedial portal |
OI | outside-in |
TT | transtibial |
ROM | range of motion |
QT | quadriceps tendon |
BPTB | bone–patellar tendon–bone |
ALL | anterolateral ligament |
TTDPM | threshold to detection of passive motion |
MU | motor unit |
ST | stability indicator |
WDI | weight distribution index |
AMI | arthrogenic muscle inhibition |
CAR | central activation ratio |
LSI | limb symmetry index |
References
- Graves, E.J.; Kozak, L.J. National hospital discharge survey: Annual summary, 1996. Vital Health Stat. 13 1999, i–iv, 1–46. [Google Scholar]
- Mall, N.A.; Chalmers, P.N.; Moric, M.; Tanaka, M.J.; Cole, B.J.; Bach, B.R.; Paletta, G.A., Jr. Incidence and Trends of Anterior Cruciate Ligament Reconstruction in the United States. Am. J. Sports Med. 2014, 42, 2363–2370. [Google Scholar] [CrossRef] [PubMed]
- Csintalan, R.P.; Inacio, M.C.S.; Funahashi, T.T. Incidence Rate of Anterior Cruciate Ligament Reconstructions. Perm. J. 2008, 12, 17–21. [Google Scholar] [CrossRef]
- Sanders, T.L.; Maradit Kremers, H.; Bryan, A.J.; Larson, D.R.; Dahm, D.L.; Levy, B.A.; Stuart, M.J.; Krych, A.J. Incidence of Anterior Cruciate Ligament Tears and Reconstruction: A 21-Year Population-Based Study. Am. J. Sports Med. 2016, 44, 1502–1507. [Google Scholar] [CrossRef]
- Gianotti, S.M.; Marshall, S.W.; Hume, P.A.; Bunt, L. Incidence of anterior cruciate ligament injury and other knee ligament injuries: A national population-based study. J. Sci. Med. Sport 2009, 12, 622–627. [Google Scholar] [CrossRef]
- Granan, L.P.; Forssblad, M.; Lind, M.; Engebretsen, L. The Scandinavian ACL registries 2004–2007: Baseline epidemiology. Acta Orthop. 2009, 80, 563–567. [Google Scholar] [CrossRef]
- Janssen, K.W.; Orchard, J.W.; Driscoll, T.R.; Van Mechelen, W. High incidence and costs for anterior cruciate ligament reconstructions performed in Australia from 2003–2004 to 2007–2008: Time for an anterior cruciate ligament register by Scandinavian model? Scand. J. Med. Sci. Sports 2012, 22, 495–501. [Google Scholar] [CrossRef]
- Nordenvall, R.; Bahmanyar, S.; Adami, J.; Stenros, C.; Wredmark, T.; Felländer-Tsai, L. A Population-Based Nationwide Study of Cruciate Ligament Injury in Sweden, 2001-2009: Incidence, Treatment, and Sex Differences. Am. J. Sports Med. 2012, 40, 1808–1813. [Google Scholar] [CrossRef]
- Nielsen, A.B.; Yde, J. Epidemiology of Acute Knee Injuries: A Prospective Hospital Investigation. J. Trauma Inj. Infect. Crit. Care 1991, 31, 1644–1648. [Google Scholar] [CrossRef]
- Schäfer, F.K.W.; Order, B.; Bolte, H.; Heller, M.; Brossmann, J. Sportverletzungen des Kniestreckapparates. Der Radiol. 2002, 42, 799–810. [Google Scholar]
- Steinbrück, K. Epidemiologie von Sportverletzungen—25-Jahres-Analyse einer sportorthopädisch-traumatologischen Ambulanz. Sport. Sportschaden 1999, 13, 38–52. [Google Scholar] [CrossRef]
- Boden, B.P.; Dean, G.S.; Feagin, J.A.; Garrett, W.E. Mechanisms of anterior cruciate ligament injury. Orthopedics 2000, 23, 573–578. [Google Scholar] [CrossRef]
- Arendt, E.; Dick, R. Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am. J. Sports Med. 1995, 23, 694–701. [Google Scholar] [CrossRef]
- Chappell, J.D.; Creighton, R.A.; Giuliani, C.; Yu, B.; Garrett, W.E. Kinematics and electromyography of landing preparation in vertical stop-jump: Risks for noncontact anterior cruciate ligament injury. Am. J. Sports Med. 2007, 35, 235–241. [Google Scholar] [CrossRef]
- Uhorchak, J.M.; Scoville, C.R.; Williams, G.N.; Arciero, R.A.; St Pierre, P.; Taylor, D.C. Risk factors associated with noncontact injury of the anterior cruciate ligament: A prospective four-year evaluation of 859 West Point cadets. Am. J. Sports Med. 2003, 31, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Hoetzel, J.; Preiss, A.; Heitmann, M.A.; Frosch, K.H. Knee injuries in children and adolescents. Eur. J. Trauma Emerg. Surg. 2014, 40, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Schub, D.; Saluan, P. Anterior Cruciate Ligament Injuries in the Young Athlete: Evaluation and Treatment. Sports Med. Arthrosc. Rev. 2011, 19, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Nebelung, W.; Wuschech, H. Thirty-five Years of Follow-up of Anterior Cruciate Ligament—Deficient Knees in High-Level Athletes. Arthroscopy 2005, 21, 696–702. [Google Scholar] [CrossRef]
- Lohmander, L.S.; Östenberg, A.; Englund, M.; Roos, H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 2004, 50, 3145–3152. [Google Scholar] [CrossRef]
- Dare, D.M.; Fabricant, P.D.; McCarthy, M.M.; Rebolledo, B.J.; Green, D.W.; Cordasco, F.A.; Jones, K.J. Increased Lateral Tibial Slope Is a Risk Factor for Pediatric Anterior Cruciate Ligament Injury: An MRI-Based Case-Control Study of 152 Patients. Am. J. Sports Med. 2015, 43, 1632–1639. [Google Scholar] [CrossRef]
- Pioger, C.; Saithna, A.; Kandhari, V.; Thaunat, M.; Vieira, T.D.; Freychet, B.; Franck, F.; Sonnery-Cottet, B. Risk Factors for Rapid Chondrolysis After Partial Lateral Meniscectomy: A Scoping Review of the Literature. Orthop. J. Sports Med. 2021, 9, 232596712098177. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, A.; Monaco, E.; Fabbri, M.; Maestri, B.; De Carli, A. Prevalence and Classification of Injuries of Anterolateral Complex in Acute Anterior Cruciate Ligament Tears. Arthroscopy 2017, 33, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Gracia, G.; Cavaignac, M.; Marot, V.; Mouarbes, D.; Laumonerie, P.; Cavaignac, E. Epidemiology of Combined Injuries of the Secondary Stabilizers in ACL-Deficient Knees: Medial Meniscal Ramp Lesion, Lateral Meniscus Root Tear, and ALL Tear: A Prospective Case Series of 602 Patients with ACL Tears from the SANTI Study Group. Am. J. Sports Med. 2022, 50, 1843–1849. [Google Scholar] [CrossRef]
- Sonnery-Cottet, B.; Praz, C.; Rosenstiel, N.; Blakeney, W.G.; Ouanezar, H.; Kandhari, V.; Vieira, T.D.; Saithna, A. Epidemiological Evaluation of Meniscal Ramp Lesions in 3214 Anterior Cruciate Ligament–Injured Knees from the SANTI Study Group Database: A Risk Factor Analysis and Study of Secondary Meniscectomy Rates Following 769 Ramp Repairs. Am. J. Sports Med. 2018, 46, 3189–3197. [Google Scholar] [CrossRef]
- Grassi, A.; Kim, C.; Muccioli, G.M.M.; Zaffagnini, S.; Amendola, A. What Is the Mid-term Failure Rate of Revision ACL Reconstruction? A Systematic Review. Clin. Orthop. Relat. Res. 2017, 475, 2484–2499. [Google Scholar] [CrossRef]
- Gao, H.; Hu, H.; Sheng, D.; Sun, L.; Chen, J.; Chen, T.; Chen, S. Risk Factors for Ipsilateral Versus Contralateral Reinjury After ACL Reconstruction in Athletes: A Systematic Review and Meta-analysis. Orthop. J. Sports Med. 2023, 11, 23259671231214298. [Google Scholar] [CrossRef]
- Barber-Westin, S.; Noyes, F.R. One in 5 Athletes Sustain Reinjury Upon Return to High-Risk Sports After ACL Reconstruction: A Systematic Review in 1239 Athletes Younger Than 20 Years. Sports Health 2020, 12, 587–597. [Google Scholar] [CrossRef]
- Webster, K.E.; Feller, J.A.; Leigh, W.B.; Richmond, A.K. Younger patients are at increased risk for graft rupture and contralateral injury after anterior cruciate ligament reconstruction. Am. J. Sports Med. 2014, 42, 641–647. [Google Scholar] [CrossRef] [PubMed]
- O’Dowd, D.P.; Stanley, J.; Rosenfeldt, M.P.; Walsh, S.; Twaddle, B.; De Ruiter, L.; Crua, E.; Monk, A.P.; Walsh, S. Reduction in re-rupture rates following implementation of return-to-sport testing after anterior cruciate ligament reconstruction in 313 patients with a mean follow-up of 50 months. J. ISAKOS 2024, 9, 264–271. [Google Scholar] [CrossRef]
- Webster, K.E.; Feller, J.A. Exploring the High Reinjury Rate in Younger Patients Undergoing Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2016, 44, 2827–2832. [Google Scholar] [CrossRef]
- Lind, M.; Menhert, F.; Pedersen, A.B. Incidence and outcome after revision anterior cruciate ligament reconstruction: Results from the Danish registry for knee ligament reconstructions. Am. J. Sports Med. 2012, 40, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
- Ardern, C.L.; Taylor, N.F.; Feller, J.A.; Whitehead, T.S.; Webster, K.E. Psychological responses matter in returning to preinjury level of sport after anterior cruciate ligament reconstruction surgery. Am. J. Sports Med. 2013, 41, 1549–1558. [Google Scholar] [CrossRef]
- Goetschius, J.; Hertel, J.; Saliba, S.A.; Brockmeier, S.F.; Hart, J.M. Gait Biomechanics in Anterior Cruciate Ligament-reconstructed Knees at Different Time Frames Postsurgery. Med. Sci. Sports Exerc. 2018, 50, 2209–2216. [Google Scholar] [CrossRef]
- Pauzenberger, L.; Syré, S.; Schurz, M. “Ligamentization” in Hamstring Tendon Grafts After Anterior Cruciate Ligament Reconstruction: A Systematic Review of the Literature and a Glimpse Into the Future. Arthroscopy 2013, 29, 1712–1721. [Google Scholar] [CrossRef]
- Siebold, R.; Dejour, D.; Zaffagnini, S. Anterior Cruciate Ligament Reconstruction: A Practical Surgical Guide; Springer ESSKA: Heidelberg, Germany, 2014. [Google Scholar]
- Hui, C.; Salmon, L.J.; Kok, A.; Maeno, S.; Linklater, J.; Pinczewski, L.A. Fifteen-Year Outcome of Endoscopic Anterior Cruciate Ligament Reconstruction with Patellar Tendon Autograft for “Isolated” Anterior Cruciate Ligament Tear. Am. J. Sports Med. 2011, 39, 89–98. [Google Scholar] [CrossRef]
- Zaffagnini, S.; De Pasquale, V.; Marchesini Reggiani, L.; Russo, A.; Agati, P.; Bacchelli, B.; Marcacci, M. Neoligamentization process of BTPB used for ACL graft: Histological evaluation from 6 months to 10 years. Knee 2007, 14, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Zaffagnini, S.; De Pasquale, V.; Marchesini Reggiani, L.; Russo, A.; Agati, P.; Bacchelli, B.; Marcacci, M. Electron microscopy of the remodelling process in hamstring tendon used as ACL graft. Knee Surg. Sports Traumatol. Arthrosc. 2010, 18, 1052–1058. [Google Scholar] [CrossRef]
- Ménétrey, J.; Duthon, V.B.; Laumonier, T.; Fritschy, D. “Biological failure” of the anterior cruciate ligament graft. Knee Surg. Sports Traumatol. Arthrosc. 2008, 16, 224–231. [Google Scholar] [CrossRef]
- Grassi, A.; Casali, M.; Macchiarola, L.; Lucidi, G.A.; Cucurnia, I.; Filardo, G.; Lopomo, N.F.; Zaffagnini, S. Hamstring grafts for anterior cruciate ligament reconstruction show better magnetic resonance features when tibial insertion is preserved. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Papachristou, G.; Nikolaou, V.; Efstathopoulos, N.; Sourlas, J.; Lazarettos, J.; Frangia, K.; Papalois, A. ACL reconstruction with semitendinosus tendon autograft without detachment of its tibial insertion: A histologic study in a rabbit model. Knee Surg. Sports Traumatol. Arthrosc. 2007, 15, 1175–1180. [Google Scholar] [CrossRef]
- Liu, S.; Sun, Y.; Wan, F.; Ding, Z.; Chen, S.; Chen, J. Advantages of an Attached Semitendinosus Tendon Graft in Anterior Cruciate Ligament Reconstruction in a Rabbit Model. Am. J. Sports Med. 2018, 46, 3227–3236. [Google Scholar] [CrossRef] [PubMed]
- Zaffagnini, S.; Golanò, P.; Farinas, O.; Depasquale, V.; Strocchi, R.; Cortecchia, S.; Marcacci, M.; Visani, A. Vascularity and neuroreceptors of the pes anserinus: Anatomic Study. Clin. Anat. 2003, 16, 19–24. [Google Scholar] [CrossRef]
- Bourke, H.E.; Salmon, L.J.; Waller, A.; Patterson, V.; Pinczewski, L.A. Survival of the Anterior Cruciate Ligament Graft and the Contralateral ACL at a Minimum of 15 Years. Am. J. Sports Med. 2012, 40, 1985–1992. [Google Scholar] [CrossRef]
- Van Eck, C.F.; Schkrohowsky, J.G.; Working, Z.M.; Irrgang, J.J.; Fu, F.H. Prospective Analysis of Failure Rate and Predictors of Failure After Anatomic Anterior Cruciate Ligament Reconstruction with Allograft. Am. J. Sports Med. 2012, 40, 800–807. [Google Scholar] [CrossRef]
- Panos, J.A.; Webster, K.E.; Hewett, T.E. Anterior cruciate ligament grafts display differential maturation patterns on magnetic resonance imaging following reconstruction: A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 2124–2138. [Google Scholar] [CrossRef]
- Van Dyck, P.; Zazulia, K.; Smekens, C.; Heusdens, C.H.W.; Janssens, T.; Sijbers, J. Assessment of Anterior Cruciate Ligament Graft Maturity with Conventional Magnetic Resonance Imaging: A Systematic Literature Review. Orthop. J. Sports Med. 2019, 7, 232596711984901. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Li, H.; Wu, Z.; Chen, S. MRI-based ACL graft maturity does not predict clinical and functional outcomes during the first year after ACL reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 3171–3178. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Li, H.; Wu, Z.Y.; Chen, J.W.; Chen, S.Y. MRI-based tendon bone healing is related to the clinical functional scores at the first year after anterior cruciate ligament reconstruction with hamstring tendon autograft. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 615–621. [Google Scholar] [CrossRef]
- Howell, S.M.; Clark, J.A.; Blasier, R.D. Serial magnetic resonance imaging of hamstring anterior cruciate ligament autografts during the first year of implantation: A preliminary study. Am. J. Sports Med. 1991, 19, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Howell, S.M.; Knox, K.E.; Farley, T.E.; Taylor, M.A. Revascularization of a Human Anterior Cruciate Ligament Graft During the First Two Years of Implantation. Am. J. Sports Med. 1995, 23, 42–49. [Google Scholar] [CrossRef]
- Weiler, A.; Peters, G.; Mäurer, J.; Unterhauser, F.N.; Südkamp, N.P. Biomechanical Properties and Vascularity of an Anterior Cruciate Ligament Graft can be Predicted by Contrast-Enhanced Magnetic Resonance Imaging: A Two-Year Study in Sheep. Am. J. Sports Med. 2001, 29, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Fleming, B.C.; Vajapeyam, S.; Connolly, S.A.; Magarian, E.M.; Murray, M.M. The use of magnetic resonance imaging to predict ACL graft structural properties. J. Biomech. 2011, 44, 2843–2846. [Google Scholar] [CrossRef] [PubMed]
- Biercevicz, A.M.; Murray, M.M.; Walsh, E.G.; Miranda, D.L.; Machan, J.T.; Fleming, B.C. T2 * MR relaxometry and ligament volume are associated with the structural properties of the healing ACL. J. Orthop. Res. 2014, 32, 492–499. [Google Scholar] [CrossRef]
- Covey, D.C.; Sandoval, K.E.; Riffenburgh, R.H. Contrast-Enhanced MRI Evaluation of Bone–Patellar Tendon–Bone and Hamstring ACL Autograft Healing in Humans: A Prospective Randomized Study. Orthop. J. Sports Med. 2018, 6, 232596711880029. [Google Scholar] [CrossRef]
- Vari, N.; Marot, V.; Cavaignac, M.; Vieira, T.D.; Bérard, É.; Cavaignac, E. Factors Affecting Graft Remodeling and Anterior Cruciate Ligament Reconstruction: MRI Study of 180 Knees. Am. J. Sports Med. 2023, 51, 2073–2078. [Google Scholar] [CrossRef]
- Zaffagnini, S.; Marcheggiani Muccioli, G.M.; Bonanzinga, T.; Nitri, M.; Grassi, A.; Marcacci, M. Anatomic double-bundle anterior cruciate ligament reconstruction leaving hamstrings tibial insertion intact: Technical note. Musculoskelet. Surg. 2013, 97, 39–43. [Google Scholar] [CrossRef]
- Bahlau, D.; Clavert, P.; Favreau, H.; Ollivier, M.; Lustig, S.; Bonnomet, F.; Ehlinger, A. Mechanical advantage of preserving the hamstring tibial insertion for anterior cruciate ligament reconstruction—A cadaver study. Orthop. Traumatol. Surg. Res. 2019, 105, 89–93. [Google Scholar] [CrossRef]
- Liu, S.; Li, H.; Tao, H.; Sun, Y.; Chen, S.; Chen, J. A Randomized Clinical Trial to Evaluate Attached Hamstring Anterior Cruciate Ligament Graft Maturity with Magnetic Resonance Imaging. Am. J. Sports Med. 2018, 46, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Cavaignac, E.; Mesnier, T.; Marot, V.; Fernandez, A.; Faruch, M.; Berard, E.; Sonnery-Cottet, B. Effect of Lateral Extra-articular Tenodesis on Anterior Cruciate Ligament Graft Incorporation. Orthop. J. Sports Med. 2020, 8, 232596712096009. [Google Scholar] [CrossRef]
- Buda, R.; Di Caprio, F.; Giuriati, L.; Luciani, D.; Busacca, M.; Giannini, S. Partial ACL tears augmented with distally inserted hamstring tendons and over-the-top fixation: An MRI evaluation. Knee 2008, 15, 111–116. [Google Scholar] [CrossRef]
- Ruffilli, A.; Pagliazzi, G.; Ferranti, E.; Busacca, M.; Capannelli, D.; Buda, R. Hamstring graft tibial insertion preservation versus detachment in anterior cruciate ligament reconstruction: A prospective randomized comparative study. Eur. J. Orthop. Surg. Traumatol. 2016, 26, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Marcacci, M.; Zaffagnini, S.; Giordano, G.; Iacono, F.; Lo Presti, M. Anterior Cruciate Ligament Reconstruction Associated with Extra-articular Tenodesis: A Prospective Clinical and Radiographic Evaluation with 10- to 13-Year Follow-up. Am. J. Sports Med. 2009, 37, 707–714. [Google Scholar] [CrossRef]
- Zaffagnini, S.; Marcacci, M.; Lo Presti, M.; Giordano, G.; Iacono, F.; Neri, M.P. Prospective and randomized evaluation of ACL reconstruction with three techniques: A clinical and radiographic evaluation at 5 years follow-up. Knee Surg. Sports Traumatol Arthrosc. 2006, 14, 1060–1069. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Chen, Q.; Hu, Y.; Sun, Y.; Chen, J. Maturity Progression of the Entire Anterior Cruciate Ligament Graft of Insertion-Preserved Hamstring Tendons by 5 Years: A Prospective Randomized Controlled Study Based on Magnetic Resonance Imaging Evaluation. Am. J. Sports Med. 2020, 48, 2970–2977. [Google Scholar] [CrossRef]
- Muramatsu, K.; Hachiya, Y.; Izawa, H. Serial Evaluation of Human Anterior Cruciate Ligament Grafts by Contrast-Enhanced Magnetic Resonance Imaging: Comparison of Allografts and Autografts. Arthroscopy 2008, 24, 1038–1044. [Google Scholar] [CrossRef]
- Tashiro, Y.; Gale, T.; Sundaram, V.; Nagai, K.; Irrgang, J.J.; Anderst, W.; Nakashima, Y.; Tashman, S.; Fu, F.H. The Graft Bending Angle Can Affect Early Graft Healing After Anterior Cruciate Ligament Reconstruction: In Vivo Analysis with 2 Years’ Follow-up. Am. J. Sports Med. 2017, 45, 1829–1836. [Google Scholar] [CrossRef]
- Okutan, A.E.; Kalkışım, M.; Gürün, E.; Ayas, M.S.; Aynacı, O. Tibial slope, remnant preservation, and graft size are the most important factors affecting graft healing after ACL reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 1584–1593. [Google Scholar] [CrossRef]
- Tonin, M.; Saciri, V.; Veselko, M.; Rotter, A. Progressive Loss of Knee Extension after Injury: Cyclops Syndrome due to a Lesion of the Anterior Cruciate Ligament. Am. J. Sports Med. 2001, 29, 545–549. [Google Scholar] [CrossRef]
- Delince, P. Different aspects of the cyclops lesion following anterior cruciate ligament reconstruction: A multifactorial etiopathogenesis. Arthroscopy 1998, 14, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Ouanezar, H.; Blakeney, W.G.; Fernandes, L.R.; Borade, A.; Latrobe, C.; Temponi, E.F.; Sonnery-Cottet, B. Clinical Outcomes of Single Anteromedial Bundle Biologic Augmentation Technique for Anterior Cruciate Ligament Reconstruction with Consideration of Tibial Remnant Size. Arthroscopy 2018, 34, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Bierke, S.; Häner, M.; Karpinski, K.; Hees, T.; Petersen, W. No increased rate of cyclops lesions and extension deficits after remnant-preserving ACL reconstruction using the sparing technique. J. Orthop. Surg. Res. 2022, 17, 463. [Google Scholar] [CrossRef]
- Kirizuki, S.; Matsumoto, T.; Ueha, T.; Uefuji, A.; Inokuchi, T.; Takayama, K.; Hashimoto, S.; Hayashi, S.; Matsushita, T.; Kuroda, R. The Influence of Ruptured Scar Pattern on the Healing Potential of Anterior Cruciate Ligament Remnant Cells. Am. J. Sports Med. 2018, 46, 1382–1388. [Google Scholar] [CrossRef]
- Löcherbach, C.; Zayni, R.; Chambat, P.; Sonnery-Cottet, B. Biologically enhanced ACL reconstruction. Orthop. Traumatol. Surg. Res. 2010, 96, 810–815. [Google Scholar] [CrossRef]
- Murray, M.M.; Martin, S.D.; Martin, T.L.; Spector, M. Histological Changes in the Human Anterior Cruciate Ligament After Rupture J. Bone Jt. Surg. Am. 2000, 82, 1387–1397. [Google Scholar] [CrossRef]
- Ng, G.Y.F.; Oakes, B.W.; McLean, L.D.; Deacon, O.W.; Lampard, D. The Long-Term Biomechanical and Viscoelastic Performance of Repairing Anterior Cruciate Ligament after Hemitransection Injury in a Goat Model. Am. J. Sports Med. 1996, 24, 109–117. [Google Scholar] [CrossRef]
- Sanders, T.L.; Kremers, H.M.; Bryan, A.J.; Kremers, W.K.; Stuart, M.J.; Krych, A.J. Procedural intervention for arthrofibrosis after ACL reconstruction: Trends over two decades. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 532–537. [Google Scholar] [CrossRef]
- Kim, B.H.; Kim, J.I.; Lee, O.; Lee, K.W.; Lee, M.C.; Han, H.S. Preservation of remnant with poor synovial coverage has no beneficial effect over remnant sacrifice in anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 2345–2352. [Google Scholar] [CrossRef] [PubMed]
- Bernhardson, A.S.; Aman, Z.S.; DePhillipo, N.N.; Dornan, G.J.; Storaci, H.W.; Brady, A.W.; Nakama, G.; LaPrade, R.F. Tibial Slope and Its Effect on Graft Force in Posterior Cruciate Ligament Reconstructions. Am. J. Sports Med. 2019, 47, 1168–1174. [Google Scholar] [CrossRef] [PubMed]
- Offerhaus, C.; Albers, M.; Nagai, K.; Arner, J.W.; Höher, J.; Musahl, V.; Fu, F.H. Individualized Anterior Cruciate Ligament Graft Matching: In Vivo Comparison of Cross-sectional Areas of Hamstring, Patellar, and Quadriceps Tendon Grafts and ACL Insertion Area. Am. J. Sports Med. 2018, 46, 2646–2652. [Google Scholar] [CrossRef]
- Orsi, A.D.; Canavan, P.K.; Vaziri, A.; Goebel, R.; Kapasi, O.A.; Nayeb-Hashemi, H. The effects of graft size and insertion site location during anterior cruciate ligament reconstruction on intercondylar notch impingement. Knee 2017, 24, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Oshima, T.; Putnis, S.; Grasso, S.; Klasan, A.; Parker, D.A. Graft Size and Orientation Within the Femoral Notch Affect Graft Healing at 1 Year After Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2020, 48, 99–108. [Google Scholar] [CrossRef]
- Fu, F.H. Pearls: Individualized Approach to ACL Reconstruction—One Size Does Not Fit All. Clin. Orthop. Relat. Res. 2020, 478, 1735–1737. [Google Scholar] [CrossRef]
- Fu, F.H.; Byrne, K.J.; Godshaw, B.M. Editorial Commentary: Remember the Risk Factors During Individualized, Anatomic, Value-Based Anterior Cruciate Ligament Reconstruction. Arthroscopy 2021, 37, 206–208. [Google Scholar] [CrossRef]
- Chen, L.; Wu, Y.; Lin, G.; Wei, P.; Ye, Z.; Wang, Y.; Rem, T. Graft bending angle affects allograft tendon maturity early after anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 3048–3054. [Google Scholar] [CrossRef] [PubMed]
- Ithurburn, M.P.; Altenburger, A.R.; Thomas, S.; Hewett, T.E.; Paterno, M.V.; Schmitt, L.C. Young athletes after ACL reconstruction with quadriceps strength asymmetry at the time of return-to-sport demonstrate decreased knee function 1 year later. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Everhart, J.S.; Best, T.M.; Flanigan, D.C. Psychological predictors of anterior cruciate ligament reconstruction outcomes: A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 752–762. [Google Scholar] [CrossRef]
- Bedi, A.; Maak, T.; Musahl, V.; Citak, M.; O’Loughlin, P.F.; Choi, D.; Pearle, A.D. Effect of Tibial Tunnel Position on Stability of the Knee After Anterior Cruciate Ligament Reconstruction: Is the Tibial Tunnel Position Most Important? Am. J. Sports Med. 2011, 39, 366–373. [Google Scholar] [CrossRef]
- Bedi, A.; Musahl, V.; Steuber, V.; Kendoff, D.; Choi, D.; Allen, A.A.; Pearle, A.D.; Altchek, D.W. Transtibial Versus Anteromedial Portal Reaming in Anterior Cruciate Ligament Reconstruction: An Anatomic and Biomechanical Evaluation of Surgical Technique. Arthroscopy 2011, 27, 380–390. [Google Scholar] [CrossRef]
- Chalmers, P.N.; Mall, N.A.; Cole, B.J.; Verma, N.N.; Bush-Joseph, C.A.; Bach, B.R. Anteromedial Versus Transtibial Tunnel Drilling in Anterior Cruciate Ligament Reconstructions: A Systematic Review. Arthroscopy 2013, 29, 1235–1242. [Google Scholar] [CrossRef] [PubMed]
- Duffee, A.; Magnussen, R.A.; Pedroza, A.D.; Flanigan, D.C.; MOON Group; Kaeding, C.C. Transtibial ACL Femoral Tunnel Preparation Increases Odds of Repeat Ipsilateral Knee Surgery. J. Bone Jt. Surg. Am. 2013, 95, 2035–2042. [Google Scholar] [CrossRef]
- Steiner, M.E.; Battaglia, T.C.; Heming, J.F.; Rand, J.D.; Festa, A.; Baria, M. Independent Drilling Outperforms Conventional Transtibial Drilling in Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2009, 37, 1912–1919. [Google Scholar] [CrossRef]
- Sadoghi, P.; Kröpfl, A.; Jansson, V.; Müller, P.E.; Pietschmann, M.F.; Fischmeister, M.F. Impact of Tibial and Femoral Tunnel Position on Clinical Results After Anterior Cruciate Ligament Reconstruction. Arthroscopy 2011, 27, 355–364. [Google Scholar] [CrossRef]
- Noh, J.H.; Roh, Y.H.; Yang, B.G.; Yi, S.R.; Lee, S.Y. Femoral Tunnel Position on Conventional Magnetic Resonance Imaging After Anterior Cruciate Ligament Reconstruction in Young Men: Transtibial Technique Versus Anteromedial Portal Technique. Arthroscopy 2013, 29, 882–890. [Google Scholar] [CrossRef]
- Kondo, E.; Merican, A.M.; Yasuda, K.; Amis, A.A. Biomechanical Comparison of Anatomic Double-Bundle, Anatomic Single-Bundle, and Nonanatomic Single-Bundle Anterior Cruciate Ligament Reconstructions. Am. J. Sports Med. 2011, 39, 279–288. [Google Scholar] [CrossRef]
- Bhatia, S.; Korth, K.; Van Thiel, G.S.; Frank, R.M.; Gupta, D.; Cole, B.J.; Bach, B.R., Jr.; Verma, N.N. Effect of tibial tunnel diameter on femoral tunnel placement in transtibial single bundle ACL reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 51–57. [Google Scholar] [CrossRef]
- Piasecki, D.P.; Bach, B.R.; Espinoza Orias, A.A.; Verma, N.N. Anterior Cruciate Ligament Reconstruction: Can Anatomic Femoral Placement Be Achieved with a Transtibial Technique? Am. J. Sports Med. 2011, 39, 1306–1315. [Google Scholar] [CrossRef] [PubMed]
- Plaweski, S.; Petek, D.; Saragaglia, D. Morphometric analysis and functional correlation of tibial and femoral footprints in anatomical and single bundle reconstructions of the anterior cruciate ligament of the knee. Orthop. Traumatol. Surg. Res. 2011, 97, S75–S79. [Google Scholar] [CrossRef] [PubMed]
- Gavriilidis, I.; Motsis, E.K.; Pakos, E.E.; Georgoulis, A.D.; Mitsionis, G.; Xenakis, T.A. Transtibial versus anteromedial portal of the femoral tunnel in ACL reconstruction: A cadaveric study. Knee 2008, 15, 364–367. [Google Scholar] [CrossRef]
- Lopez-Vidriero, E.; Hugh Johnson, D. Evolving Concepts in Tunnel Placement. Sports Med. Arthrosc. Rev. 2009, 17, 210–216. [Google Scholar] [CrossRef]
- Alentorn-Geli, E.; Lajara, F.; Samitier, G.; Cugat, R. The transtibial versus the anteromedial portal technique in the arthroscopic bone-patellar tendon-bone anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2010, 18, 1013–1037. [Google Scholar] [CrossRef] [PubMed]
- George, M.S. Femoral Tunnel Drilling from the Anteromedial Portal Using the Figure-4 Position in ACL Reconstruction. Orthopedics 2012, 35, 674–677. [Google Scholar] [CrossRef]
- Mardani-Kivi, M.; Madadi, F.; Keyhani, S.; Karimi-Mobarake, M.; Hashemi-Motlagh, K.; Saheb-Ekhtiari, K. Antero-medial portal vs. transtibial techniques for drilling femoral tunnel in ACL reconstruction using 4-strand hamstring tendon: A cross-sectional study with 1-year follow-up. Med. Sci. Monit. 2012, 18, CR674. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, S.; Li, R.; Liu, Y.; Cao, X. Comparison of two methods of femoral tunnel preparation in single-bundle anterior cruciate ligament reconstruction: A prospective randomized study. Acta Cir. Bras. 2012, 27, 572–576. [Google Scholar] [CrossRef]
- Franceschi, F.; Papalia, R.; Rizzello, G.; Del Buono, A.; Maffulli, N.; Denaro, V. Anteromedial Portal Versus Transtibial Drilling Techniques in Anterior Cruciate Ligament Reconstruction: Any Clinical Relevance? A Retrospective Comparative Study. Arthroscopy 2013, 29, 1330–1337. [Google Scholar] [CrossRef]
- Koutras, G.; Papadopoulos, P.; Terzidis, I.P.; Gigis, I.; Pappas, E. Short-term functional and clinical outcomes after ACL reconstruction with hamstrings autograft: Transtibial versus anteromedial portal technique. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 1904–1909. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.S.; Kim, C.W.; Kim, J.G.; Jin, S.Y. Clinical Results Comparing Transtibial Technique and Outside in Technique in Single Bundle Anterior Cruciate Ligament Reconstruction. Knee Surg. Relat. Res. 2013, 25, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Harner, C.D.; Honkamp, N.J.; Ranawat, A.S. Anteromedial Portal Technique for Creating the Anterior Cruciate Ligament Femoral Tunnel. Arthroscopy 2008, 24, 113–115. [Google Scholar] [CrossRef]
- Logan, J.S.; Elliot, R.R.; Wilson, A.J. TransLateral ACL reconstruction: A technique for anatomic anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 1289–1292. [Google Scholar] [CrossRef]
- Wang, H.; Fleischli, J.E.; Zheng, N. Transtibial Versus Anteromedial Portal Technique in Single-Bundle Anterior Cruciate Ligament Reconstruction: Outcomes of Knee Joint Kinematics During Walking. Am. J. Sports Med. 2013, 41, 1847–1856. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.H.; Spalding, T.; Robb, C. Medial portal technique for single-bundle anatomical Anterior Cruciate Ligament (ACL) reconstruction. Int. Orthop. 2013, 37, 253–269. [Google Scholar] [CrossRef]
- Lubowitz, J.H. Anteromedial Portal Technique for the Anterior Cruciate Ligament Femoral Socket: Pitfalls and Solutions. Arthroscopy 2009, 25, 95–101. [Google Scholar] [CrossRef]
- Nakamura, M.; Deie, M.; Shibuya, H.; Nakamae, A.; Adachi, N.; Aoyama, H.; Ochi, M. Potential Risks of Femoral Tunnel Drilling Through the Far Anteromedial Portal: A Cadaveric Study. Arthroscopy 2009, 25, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Rahr-Wagner, L.; Thillemann, T.M.; Pedersen, A.B.; Lind, M.C. Increased Risk of Revision After Anteromedial Compared with Transtibial Drilling of the Femoral Tunnel During Primary Anterior Cruciate Ligament Reconstruction: Results from the Danish Knee Ligament Reconstruction Register. Arthroscopy 2013, 29, 98–105. [Google Scholar] [CrossRef]
- Panni, A.S.; Milano, G.; Tartarone, M.; Demontis, A.; Fabbriciani, C. Clinical and radiographic results of ACL reconstruction: A 5- to 7-year follow-up study of outside-in versus inside-out reconstruction techniques. Knee Surg. Sports Traumatol. Arthrosc. 2001, 9, 77–85. [Google Scholar] [CrossRef]
- Gill, T.J.; Steadman, J.R. Anterior cruciate ligament reconstruction. Orthop. Clin. N. Am. 2002, 33, 727–735. [Google Scholar] [CrossRef]
- Segawa, H.; Koga, Y.; Omori, G.; Sakamoto, M.; Hara, T. Contact pressure in anterior cruciate ligament bone tunnels: Comparison of endoscopic and two-incision technique. Arthroscopy 2005, 21, 439–444. [Google Scholar] [CrossRef]
- Garofalo, R.; Mouhsine, E.; Chambat, P.; Siegrist, O. Anatomic anterior cruciate ligament reconstruction: The two-incision technique. Knee Surg. Sports Traumatol. Arthroc. 2006, 14, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.A.; Kim, J.M.; Lee, S.; Song, E.K.; Seon, J.K. No difference in graft healing or clinical outcome between trans-portal and outside-in techniques after anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 2338–2344. [Google Scholar] [CrossRef]
- CarlLee, T.; Ries, Z.; Duchman, K.; Gao, Y.; Wolf, B.; Amendola, A.; Hettrich, C.; Bollier, M. Outside-In vs. Anteromedial Portal Drilling During Primary ACL Reconstruction: Comparison at Two Years. Iowa Orthop. J. 2017, 37, 117–122. [Google Scholar]
- Nakayama, H.; Yamaguchi, M.; Yoshiya, S. Comparison of transportal inside-out and outside-in femoral drilling techniques in anatomic ACL reconstruction. Asia-Pac. J. Sports Med. Arthrosc. Rehabil. Technol. 2014, 1, 26–30. [Google Scholar] [CrossRef]
- Chang, M.J.; Chang, C.B.; Won, H.H.; Je, M.S.; Kim, T.K. Anteromedial Portal Versus Outside-In Technique for Creating Femoral Tunnels in Anatomic Anterior Cruciate Ligament Reconstructions. Arthroscopy 2013, 29, 1533–1539. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Leng, X.; Wang, J.; Cheng, J.; Hu, X.; Ao, Y. Quadriceps Tendon Autograft Versus Bone–Patellar Tendon–Bone and Hamstring Tendon Autografts for Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-analysis. Am. J. Sports Med. 2022, 50, 3425–3439. [Google Scholar] [CrossRef] [PubMed]
- Mouarbes, D.; Menetrey, J.; Marot, V.; Courtot, L.; Berard, E.; Cavaignac, E. Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-analysis of Outcomes for Quadriceps Tendon Autograft Versus Bone–Patellar Tendon–Bone and Hamstring-Tendon Autografts. Am. J. Sports Med. 2019, 47, 3531–3540. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Liu, X.; Chen, Z.; Yu, Y.; Peng, S.; Li, Q. A meta-analysis of bone–patellar tendon–bone autograft versus four-strand hamstring tendon autograft for anterior cruciate ligament reconstruction. Knee 2015, 22, 100–110. [Google Scholar] [CrossRef]
- Gupta, R.; Singh, S.; Kapoor, A.; Soni, A.; Mehta, R.; Kaur, R.; Masih, G.D. Comparison of “ligamentization” process between preserved insertion hamstring tendon autograft and bone-patellar tendon-bone autograft. J. Orthop. Sci. 2024, 29, 1020–1025. [Google Scholar] [CrossRef]
- Peltier, A.; Lording, T.; Maubisson, L.; Ballis, R.; Neyret, P.; Lustig, S. The role of the meniscotibial ligament in posteromedial rotational knee stability. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 2967–2973. [Google Scholar] [CrossRef]
- Stephen, J.M.; Halewood, C.; Kittl, C.; Bollen, S.R.; Williams, A.; Amis, A.A. Posteromedial Meniscocapsular Lesions Increase Tibiofemoral Joint Laxity with Anterior Cruciate Ligament Deficiency, and Their Repair Reduces Laxity. Am. J. Sports Med. 2016, 44, 400–408. [Google Scholar] [CrossRef]
- Jin Hwan, A.; Lee, Y.S.; Yoo, J.C.; Chang, M.J.; Koh, K.H.; Kim, M.H. Clinical and Second-Look Arthroscopic Evaluation of Repaired Medial Meniscus in Anterior Cruciate Ligament—Reconstructed Knees. Am. J. Sports Med. 2010, 38, 472–477. [Google Scholar] [CrossRef]
- Delaloye, J.R.; Hartog, C.; Blatter, S.; Schläppi, M.; Müller, D.; Denzler, D.; Murar, J.; Koch, P.P. Anterolateral Ligament Reconstruction and Modified Lemaire Lateral Extra-Articular Tenodesis Similarly Improve Knee Stability After Anterior Cruciate Ligament Reconstruction: A Biomechanical Study. Arthroscopy 2020, 36, 1942–1950. [Google Scholar] [CrossRef]
- Dai, W.; Leng, X.; Wang, J.; Hu, X.; Ao, Y. Second-Look Arthroscopic Evaluation of Healing Rates After Arthroscopic Repair of Meniscal Tears: A Systematic Review and Meta-analysis. Orthop. J. Sports Med. 2021, 9, 232596712110382. [Google Scholar] [CrossRef]
- Schwach, M.; Grange, S.; Klasan, A.; Putnis, S.; Philippot, R.; Neri, T. MRI Criteria for Healing at 1 Year After Repair of a Traumatic Meniscal Tear. Am. J. Sports Med. 2023, 51, 3693–3700. [Google Scholar] [CrossRef]
- Hagmeijer, M.H.; Kennedy, N.I.; Tagliero, A.J.; Levy, B.A.; Stuart, M.J.; Saris, D.B.F.; Dahm, D.L.; Krych, A.J. Long-term Results After Repair of Isolated Meniscal Tears Among Patients Aged 18 Years and Younger: An 18-Year Follow-up Study. Am. J. Sports Med. 2019, 47, 799–806. [Google Scholar] [CrossRef]
- Sonnery-Cottet, B.; Vieira, T.D.; Ouanezar, H. Anterolateral Ligament of the Knee: Diagnosis, Indications, Technique, Outcomes. Arthroscopy 2019, 35, 302–303. [Google Scholar] [CrossRef]
- Hewison, C.E.; Tran, M.N.; Kaniki, N.; Remtulla, A.; Bryant, D.; Getgood, A.M. Lateral Extra-articular Tenodesis Reduces Rotational Laxity When Combined with Anterior Cruciate Ligament Reconstruction: A Systematic Review of the Literature. Arthroscopy 2015, 31, 2022–2034. [Google Scholar] [CrossRef] [PubMed]
- Noyes, F.R.; Barber, S.D. The effect of an extra-articular procedure on allograft reconstructions for chronic ruptures of the anterior cruciate ligament. J. Bone Jt. Surg. Am. 1991, 73, 882–892. [Google Scholar] [CrossRef]
- Anderson, A.F.; Snyder, R.B.; Lipscomb, A.B. Anterior Cruciate Ligament Reconstruction: A Prospective Randomized Study of Three Surgical Methods. Am. J. Sports Med. 2001, 29, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Rezende, F.C.; De Moraes, V.Y.; Martimbianco, A.L.C.; Luzo, M.V.; Da Silveira Franciozi, C.E.; Belloti, J.C. Does Combined Intra- and Extraarticular ACL Reconstruction Improve Function and Stability? A Meta-analysis. Clin. Orthop. Relat. Res. 2015, 473, 2609–2618. [Google Scholar] [CrossRef]
- Song, G.; Hong, L.; Zhang, H.; Zhang, J.; Li, Y.; Feng, H. Clinical Outcomes of Combined Lateral Extra-articular Tenodesis and Intra-articular Anterior Cruciate Ligament Reconstruction in Addressing High-Grade Pivot-Shift Phenomenon. Arthroscopy 2016, 32, 898–905. [Google Scholar] [CrossRef]
- Devitt, B.M.; Bell, S.W.; Ardern, C.L.; Hartwig, T.; Porter, T.J.; Feller, J.A.; Webster, K.E. The Role of Lateral Extra-articular Tenodesis in Primary Anterior Cruciate Ligament Reconstruction: A Systematic Review with Meta-analysis and Best-Evidence Orthop. J. Sports Med. 2017, 5, 232596711773176. [Google Scholar] [CrossRef]
- Engebretsen, L.; Lew, W.D.; Lewis, J.L.; Hunter, R.E. The effect of an iliotibial tenodesis on intraarticular graft forces and knee joint motion. Am. J. Sports Med. 1990, 18, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Sonnery-Cottet, B.; Daggett, M.; Helito, C.P.; Fayard, J.M.; Thaunat, M. Combined Anterior Cruciate Ligament and Anterolateral Ligament Reconstruction. Arthrosc. Tech. 2016, 5, e1253–e1259. [Google Scholar] [CrossRef]
- Saithna, A.; Daggett, M.; Helito, C.P.; Monaco, E.; Franck, F.; Vieira, T.D.; Pioger, C.; Kim, J.G.; Sonnery-Cottet, B. Clinical Results of Combined ACL and Anterolateral Ligament Reconstruction: A Narrative Review from the SANTI Study Group. J. Knee Surg. 2021, 34, 962–970. [Google Scholar] [CrossRef]
- Nagelli, C.V.; Hewett, T.E. Should Return to Sport be Delayed Until 2 Years After Anterior Cruciate Ligament Reconstruction? Biological and Functional Considerations. Sports Med. 2017, 47, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Gokeler, A.; Benjaminse, A.; Hewett, T.E.; Lephart, S.M.; Engebretsen, L.; Ageberg, E.; Engelhardt, M.; Arnold, M.P.; Postema, K.; Otten, E.; et al. Proprioceptive deficits after ACL injury: Are they clinically relevant? Br. J. Sports Med. 2012, 46, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Fleming, J.D.; Ritzmann, R.; Centner, C. Effect of an Anterior Cruciate Ligament Rupture on Knee Proprioception Within 2 Years After Conservative and Operative Treatment: A Systematic Review with Meta-Analysis. Sports Med. 2022, 52, 1091–1102. [Google Scholar] [CrossRef]
- Suner Keklik, S.; Güzel, N.; Çobanoğlu, G.; Kafa, N.; Ataoğlu, M.B.; Öztemür, Z. Evaluation of proprioception in patients who underwent ACL reconstruction: Measurement in functional position. Turk. J. Med. Sci. 2021, 51, 2036–2042. [Google Scholar] [CrossRef]
- Roberts, D.; Fridén, T.; Stomberg, A.; Lindstrand, A.; Moritz, U. Bilateral proprioceptive defects in patients with a unilateral anterior cruciate ligament reconstruction: A comparison between patients and healthy individuals. J. Orthop. Res. 2000, 18, 565–571. [Google Scholar] [CrossRef]
- Zunzarren, G.; Garet, B.; Vinciguerra, B.; Murgier, J. Persistence of neuromuscular activation deficit in the lower limb at 3-years of follow-up after ACL reconstruction surgery. Knee 2023, 43, 97–105. [Google Scholar] [CrossRef] [PubMed]
- McPherson, A.L.; Schilaty, N.D.; Anderson, S.; Nagai, T.; Bates, N.A. Arthrogenic muscle inhibition after anterior cruciate ligament injury: Injured and uninjured limb recovery over time. Front. Sports Act. Living 2023, 5, 1143376. [Google Scholar] [CrossRef]
- Bartels, T.; Brehme, K.; Pyschik, M.; Pollak, R.; Schaffrath, N.; Schulze, S.; Delank, K.S.; Laudner, K.; Schwesig, R. Postural stability and regulation before and after anterior cruciate ligament reconstruction—A two years longitudinal study. Phys. Ther. Sport 2019, 38, 49–58. [Google Scholar] [CrossRef]
- Gokeler, A.; Benjaminse, A.; van Eck, C.F.; Webster, K.E.; Schot, L.; Otten, E. Return of normal gait as an outcome measurement in acl reconstructed patients. A systematic review. Int. J. Sports Phys. Ther. 2013, 8, 441–451. [Google Scholar]
- Mueske, N.M.; Patel, A.R.; Pace, J.L.; Zaslow, T.L.; VandenBerg, C.D.; Katzel, M.J.; Edison, B.R.; Wren, T.A.L. Improvements in landing biomechanics following anterior cruciate ligament reconstruction in adolescent athletes. Sports Biomech. 2020, 19, 738–749. [Google Scholar] [CrossRef]
- Hart, H.F.; Culvenor, A.G.; Collins, N.J.; Ackland, D.C.; Cowan, S.M.; Machotka, Z.; Crossley, K.M. Knee kinematics and joint moments during gait following anterior cruciate ligament reconstruction: A systematic review and meta-analysis. Br. J. Sports Med. 2016, 50, 597–612. [Google Scholar] [CrossRef]
- Kotsifaki, A.; Whiteley, R.; Van Rossom, S.; Korakakis, V.; Bahr, R.; Sideris, V.; Graham-Smith, P.; Jonkers, I. Single leg hop for distance symmetry masks lower limb biomechanics: Time to discuss hop distance as decision criterion for return to sport after ACL reconstruction? Br. J. Sports Med. 2022, 56, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Kotsifaki, R.; Sideris, V.; King, E.; Bahr, R.; Whiteley, R. Performance and symmetry measures during vertical jump testing at return to sport after ACL reconstruction. Br. J. Sports Med. 2023, 57, 1304–1310. [Google Scholar] [CrossRef]
- King, E.; Richter, C.; Franklyn-Miller, A.; Wadey, R.; Moran, R.; Strike, S. Back to Normal Symmetry? Biomechanical Variables Remain More Asymmetrical Than Normal During Jump and Change-of-Direction Testing 9 Months After Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2019, 47, 1175–1185. [Google Scholar] [CrossRef]
- Sharafoddin-Shirazi, F.; Letafatkar, A.; Hogg, J.; Saatchian, V. Biomechanical asymmetries persist after ACL reconstruction: Results of a 2-year study. J. Exp. Orthop. 2020, 7, 86. [Google Scholar] [CrossRef]
- Webster, K.E.; Ristanis, S.; Feller, J.A. A longitudinal investigation of landing biomechanics following anterior cruciate ligament reconstruction. Phys. Ther. Sport 2021, 50, 36–41. [Google Scholar] [CrossRef]
- Oberländer, K.D.; Brüggemann, G.P.; Höher, J.; Karamanidis, K. Altered landing mechanics in ACL-reconstructed patients. Med. Sci. Sports Exerc. 2013, 45, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Leppänen, M.; Pasanen, K.; Kujala, U.M.; Vasankari, T.; Kannus, P.; Äyrämö, S.; Krosshaug, T.; Bahr, R.; Avela, J.; Perttunen, J.; et al. Stiff Landings Are Associated with Increased ACL Injury Risk in Young Female Basketball and Floorball Players. Am. J. Sports Med. 2017, 45, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Webster, K.E.; Gonzalez-Adrio, R.; Feller, J.A. Dynamic joint loading following hamstring and patellar tendon anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2004, 12, 15–21. [Google Scholar] [CrossRef]
- Liebermann, D.G.; Markström, J.L.; Selling, J.; Häger, C.K. Spatiotemporal lower-limb asymmetries during stair descent in athletes following anterior cruciate ligament reconstruction. J. Electromyogr. Kinesiol. 2024, 75, 102868. [Google Scholar] [CrossRef]
- Markström, J.L.; Liebermann, D.G.; Schelin, L.; Häger, C.K. Atypical Lower Limb Mechanics During Weight Acceptance of Stair Descent at Different Time Frames After Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2022, 50, 2125–2133. [Google Scholar] [CrossRef]
- Erhart-Hledik, J.C.; Chu, C.R.; Asay, J.L.; Andriacchi, T.P. Longitudinal changes in knee gait mechanics between 2 and 8 years after anterior cruciate ligament reconstruction. J. Orthop. Res. 2018, 36, 1478–1486. [Google Scholar] [CrossRef]
- Lisee, C.; Lepley, A.S.; Birchmeier, T.; O’Hagan, K.; Kuenze, C. Quadriceps Strength and Volitional Activation After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-analysis. Sports Health 2019, 11, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Sonnery-Cottet, B.; Saithna, A.; Quelard, B.; Daggett, M.; Borade, A.; Ouanezar, H.; Thaunat, M.; Blakeney, W.G. Arthrogenic muscle inhibition after ACL reconstruction: A scoping review of the efficacy of interventions. Br. J. Sports Med. 2019, 53, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Harkey, M.S.; Gribble, P.A.; Pietrosimone, B.G. Disinhibitory interventions and voluntary quadriceps activation: A systematic review. J. Athl. Train. 2014, 49, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Xergia, S.A.; McClelland, J.A.; Kvist, J.; Vasiliadis, H.S.; Georgoulis, A.D. The influence of graft choice on isokinetic muscle strength 4-24 months after anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 768–780. [Google Scholar] [CrossRef]
- Aglietti, P.; Giron, F.; Buzzi, R.; Biddau, F.; Sasso, F. Anterior cruciate ligament reconstruction: Bone-patellar tendon-bone compared with double semitendinosus and gracilis tendon grafts. A prospective, randomized clinical trial. J. Bone Jt. Surg. Am. 2004, 86, 2143–2155. [Google Scholar] [CrossRef]
- Inagaki, Y.; Kondo, E.; Kitamura, N.; Onodera, J.; Yagi, T.; Tanaka, Y.; Yasuda, K. Prospective clinical comparisons of semitendinosus versus semitendinosus and gracilis tendon autografts for anatomic double-bundle anterior cruciate ligament reconstruction. J. Orthop. Sci. 2013, 18, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Chatzilamprinos, K.; Semaltianou, E.; Hatzimanouil, D.; Lytras, D.; Sykaras, E. Evaluation of Strength and Functional Ability of Soccer Players Two Years After Anterior Cruciate Ligament Reconstruction: A Cross-sectional Study. J. Musculoskelet. Neuronal. Interact. 2024, 24, 55–66. [Google Scholar] [PubMed]
- Brown, C.; Marinko, L.; LaValley, M.P.; Kumar, D. Quadriceps Strength After Anterior Cruciate Ligament Reconstruction Compared with Uninjured Matched Controls: A Systematic Review and Meta-analysis. Orthop. J. Sports Med. 2021, 9, 232596712199153. [Google Scholar] [CrossRef]
- Ageberg, E.; Roos, H.P.; Silbernagel, K.G.; Thomeé, R.; Roos, E.M. Knee extension and flexion muscle power after anterior cruciate ligament reconstruction with patellar tendon graft or hamstring tendons graft: A cross-sectional comparison 3 years post surgery. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Högberg, J.; Piussi, R.; Lövgren, J.; Wernbom, M.; Simonsson, R.; Samuelsson, K.; Hamrin Senorski, E. Restoring Knee Flexor Strength Symmetry Requires 2 Years After ACL Reconstruction, But Does It Matter for Second ACL Injuries? A Systematic Review and Meta-analysis. Sports Med. Open 2024, 10, 2. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasta, S.; Za, P.; Massazza, G.; Riba, U.; Scotto di Palumbo, A.; Samuelsson, K.; Horvath, A.; Giombini, A. Why Should Return to Sport Be Delayed by up to Two Years After ACL Reconstruction? A Narrative Review of the Biological, Surgical and Rehabilitation Evidence. J. Clin. Med. 2025, 14, 5699. https://doi.org/10.3390/jcm14165699
Vasta S, Za P, Massazza G, Riba U, Scotto di Palumbo A, Samuelsson K, Horvath A, Giombini A. Why Should Return to Sport Be Delayed by up to Two Years After ACL Reconstruction? A Narrative Review of the Biological, Surgical and Rehabilitation Evidence. Journal of Clinical Medicine. 2025; 14(16):5699. https://doi.org/10.3390/jcm14165699
Chicago/Turabian StyleVasta, Sebastiano, Pierangelo Za, Giuseppe Massazza, Ugo Riba, Alessandro Scotto di Palumbo, Kristian Samuelsson, Alexandra Horvath, and Arrigo Giombini. 2025. "Why Should Return to Sport Be Delayed by up to Two Years After ACL Reconstruction? A Narrative Review of the Biological, Surgical and Rehabilitation Evidence" Journal of Clinical Medicine 14, no. 16: 5699. https://doi.org/10.3390/jcm14165699
APA StyleVasta, S., Za, P., Massazza, G., Riba, U., Scotto di Palumbo, A., Samuelsson, K., Horvath, A., & Giombini, A. (2025). Why Should Return to Sport Be Delayed by up to Two Years After ACL Reconstruction? A Narrative Review of the Biological, Surgical and Rehabilitation Evidence. Journal of Clinical Medicine, 14(16), 5699. https://doi.org/10.3390/jcm14165699