Anifrolumab for Nonsystemic Cutaneous Lupus Erythematosus: Clinical Experience, Immunologic Insights, and Review of the Literature
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients, Enrollment Criteria, and Study Protocol
2.2. Clinical Definitions, Laboratory Data, and Outcomes
2.3. Immunologic Analysis
2.4. Data Collection
2.5. Statistical Analysis
2.6. Literature Review
2.7. Ethical Considerations
3. Results
3.1. Baseline Features at Anifrolumab Initiation
- CCLE (n = 10; 66.7%), including DLE (n = 9; 60%), lupus panniculitis (n = 1; 6.7%), and chronic hypertrophic lupus (n = 1; 6.7%)
- SCLE (n = 5; 33.3%)
- Other CLE variants (n = 2; 13.3%), including chilblain lupus (n = 1; 6.7%) and lupus tumidus (n = 1; 6.7%)
3.2. Anifrolumab Effectiveness
3.3. Safety
3.4. Immunologic Analysis
3.5. Findings from the Literature Review
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviatures
References
- Fijalkowska, A.; Kadziela, M.; Zebrowska, A. The spectrum of cutaneous manifestations in lupus erythematosus: A comprehensive review. J. Clin. Med. 2024, 13, 2419. [Google Scholar] [CrossRef] [PubMed]
- Gilliam, J.N.; Sontheimer, R.D. Distinctive cutaneous subsets in the spectrum of lupus erythematosus. J. Am. Acad. Dermatol. 1981, 4, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Lukhele, S.; Boukhaled, G.M.; Brooks, D.G. Type I interferon signaling, regulation and gene stimulation in chronic virus infection. Semin. Immunol. 2019, 43, 101277. [Google Scholar] [CrossRef] [PubMed]
- Braunstein, I.; Klein, R.; Okawa, J.; Werth, V.P. The interferon-regulated gene signature is elevated in subacute cutaneous lupus erythematosus and discoid lupus erythematosus and correlates with the cutaneous lupus area and severity index score. Br. J. Dermatol. 2012, 166, 971–975. [Google Scholar] [CrossRef]
- Morand, E.F.; Abreu, G.; Furie, R.A.; Golder, V.; Tummala, R. Lupus low disease activity state attainment in the phase 3 TULIP trials of anifrolumab in active systemic lupus erythematosus. Ann. Rheum. Dis. 2023, 82, 639–645. [Google Scholar] [CrossRef]
- Morand, E.F.; Furie, R.; Tanaka, Y.; Bruce, I.N.; Askanase, A.D.; Richez, C.; Bae, S.-C.; Brohawn, P.Z.; Pineda, L.; Berglind, A.; et al. Trial of anifrolumab in active systemic lupus erythematosus. N. Engl. J. Med. 2020, 382, 211–221. [Google Scholar] [CrossRef]
- Carter, L.M.; Wigston, Z.; Laws, P.; Vital, E.M. Rapid efficacy of anifrolumab across multiple subtypes of recalcitrant cutaneous lupus erythematosus parallels changes in discrete subsets of blood transcriptomic and cellular biomarkers. Br. J. Dermatol. 2023, 189, 210–218. [Google Scholar] [CrossRef]
- Aringer, M.; Costenbader, K.; Daikh, D.; Brinks, R.; Mosca, M.; Ramsey-Goldman, R.; Smolen, J.D.; Wofsy, D.; Boumpas, D.T.; Kamen, D.L.; et al. 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol. 2019, 71, 1400–1412. [Google Scholar] [CrossRef]
- Prieto-Peña, D.; Bernabeu, P.; Vela, P.; Narváez, J.; Fernández-López, J.C.; Freire-González, M.; González-Álvarez, B.; Solans-Laqué, R.; Callejas Rubio, J.L.; Ortego, N.; et al. Tocilizumab in refractory Caucasian Takayasu’s arteritis: A multicenter study of 54 patients and literature review. Ther. Adv. Musculoskelet. Dis. 2021, 13, 1759720X211020917. [Google Scholar] [CrossRef]
- Fernández-Díaz, C.; Atienza-Mateo, B.; Castañeda, S.; Melero-Gonzalez, R.B.; Ortiz-SanJuan, F.; Loricera, J.; Casafont-Solé, I.; Rodríguez-García, S.; Aguilera-Cros, C.; Villa-Blanco, I.; et al. Abatacept in monotherapy vs combined in interstitial lung disease of rheumatoid arthritis: Multicentre study of 263 Caucasian patients. Rheumatology 2021, 61, 299–308. [Google Scholar] [CrossRef]
- Atienza-Mateo, B.; Martín-Varillas, J.L.; Graña, J.; Espinosa, G.; Moriano, C.; Pérez-Sandoval, T.; García-Armario, M.D.; Castellví, I.; Román-Ivorra, J.A.; Olivé, A.; et al. Apremilast in refractory orogenital ulcers and other manifestations of Behçet’s disease: A national multicentre study of 51 cases in clinical practice. Clin. Exp. Rheumatol. 2020, 38, S69–S75. [Google Scholar]
- Calderón-Goercke, M.; Castañeda, S.; Aldasoro, V.; Villa, I.; Prieto-Peña, D.; Atienza-Mateo, B.; Patiño, E.; Moriano, C.; Romero-Yuste, S.; Narváez, J.; et al. Tocilizumab in giant cell arteritis: Differences between the GiACTA trial and a multicentre series of patients from clinical practice. Clin. Exp. Rheumatol. 2020, 38, S112–S119. [Google Scholar]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Ann. Intern. Med. 2007, 147, 573–577. [Google Scholar] [CrossRef]
- Sontheimer, R.D. Subacute cutaneous lupus erythematosus: 25-year evolution of a prototypic subset (subphenotype) of lupus erythematosus defined by characteristic cutaneous, pathological, immunological and genetic findings. Autoimmun. Rev. 2005, 4, 253–263. [Google Scholar] [CrossRef]
- Elman, S.A.; Joyce, C.; Braudis, K.; Chong, B.F.; Fernandez, A.P.; Furukawa, F.; Hasegawa, M.; Kim, H.J.; Li, S.J.; Lian, C.G.; et al. Creation and validation of classification criteria for discoid lupus erythematosus. JAMA Dermatol. 2020, 156, 901–906. [Google Scholar] [CrossRef]
- Hedrich, C.M.; Fiebig, B.; Hauck, F.H.; Sallmann, S.; Hahn, G.; Pfeiffer, C.; Heubner, G.; Lee-Kirsch, M.A.; Gahr, M. Chilblain lupus erythematosus—A review of literature. Clin. Rheumatol. 2008, 27, 949–954. [Google Scholar] [CrossRef]
- Filotico, R.; Mastrandrea, V. Cutaneous lupus erythematosus: Clinic-pathologic correlation. G. Ital. Dermatol. Venereol. 2018, 153, 216–229. [Google Scholar] [CrossRef]
- Albrecht, J.; Taylor, L.; Berlin, J.A.; Dulay, S.; Ang, G.; Fakharzadeh, S.; Kantor, J.; Kim, E.; Militello, G.; McGinnis, K.; et al. The CLASI (Cutaneous Lupus Erythematosus Disease Area and Severity Index): An outcome instrument for cutaneous lupus erythematosus. J. Invest. Dermatol. 2005, 125, 889–894. [Google Scholar] [CrossRef]
- Álvarez-Rodríguez, L.; Martínez-Taboada, V.; Calvo-Alén, J.; Beares, I.; Villa, I.; López-Hoyos, M. Altered Th17/Treg Ratio in peripheral blood of systemic lupus erythematosus but not primary antiphospholipid syndrome. Front. Immunol. 2019, 10, 391. [Google Scholar] [CrossRef]
- Fernández-Cabero, J.J.; Lasa-Teja, C.; San Segundo, D.; Comins-Boo, A.; Irure-Ventura, J.; Walias Rivera, D.; Martín-Varillas, J.L.; Mata, C.; Santos, M.; Aurrecoechea; et al. Changes in NK cells and exhausted Th cell phenotype in RA patients treated with Janus kinase inhibitors: Implications for adverse effects. Int. J. Mol. Sci. 2025, 26, 5160. [Google Scholar] [CrossRef]
- Luo, Q.; Kong, Y.; Fu, B.; Li, X.; Huang, Q.; Huang, Z.; Li, J. Increased TIM-3+PD-1+ NK cells are associated with the disease activity and severity of systemic lupus erythematosus. Clin. Exp. Med. 2021, 22, 47–56. [Google Scholar] [CrossRef]
- Luo, Q.; Li, X.; Fu, B.; Zhang, L.; Deng, Z.; Qing, C.; Su, R.; Xu, J.; Guo, Y.; Huang, Z.; et al. Decreased expression of TIGIT in NK cells correlates negatively with disease activity in systemic lupus erythematosus. Int. J. Clin. Exp. Pathol. 2018, 11, 2408–2418. [Google Scholar]
- Han, S.; Ferrer, J.; Bittar, M.; Jones, A. Alopecia secondary to severe discoid lupus responding to anifrolumab. Int. J. Women’s Dermatol. 2023, 9, e098. [Google Scholar] [CrossRef] [PubMed]
- Aljohani, R. Anifrolumab for refractory discoid lupus: Two case reports of successful outcomes in Saudi Arabia. Medicine 2025, 104, e42518. [Google Scholar] [CrossRef] [PubMed]
- Hojjatie, R.A.; Flickinger, B.; Stuart, L.N.; Caudell, M.D. Hypertrophic lupus erythematosus hypertrophic lichen planus overlap responding to acitretin and anifrolumab. JAAD Case Rep. 2025, 59, 69–71. [Google Scholar] [CrossRef] [PubMed]
- Trentin, F.; Tani, C.; Elefante, E.; Stagnaro, C.; Zucchi, D.; Mosca, M. Treatment with anifrolumab for discoid lupus erythematosus. JAMA Dermatol. 2023, 159, 224–226. [Google Scholar] [CrossRef]
- Hernández-Salas, E.; Horcajada-Reales, C.; Palomar-Prieto, C.; Fernández-de la Fuente, L.; Herrero-Ruiz, S.; Martínez-Lawers Dolz, A.; Romero-Maté, A. Anifrolumab for treatment of cutaneous lupus erythematosus: A 10-case series. Clin. Exp. Dermatol. 2025, llaf272. [Google Scholar] [CrossRef]
- Garbarino, M.C.; Bosch, X.; Corbella, L.; Ayguasanosa, M.; Giavedoni, P.; Araujo Loperana, O.; Espinosa, G.; Rodriguez Pintó, I.; Cervera Segura, R.; Gómez-Puerta, J.A.; et al. Anifrolumab in cutaneous and systemic lupus erythematosus: A real-life experience. Ann. Rheum. Dis. 2025, 84, 2234–2235. [Google Scholar] [CrossRef]
- Siegel, C.H.; Sammaritano, L.R. Systemic lupus erythematosus. A review. JAMA 2024, 331, 1480–1491. [Google Scholar] [CrossRef]
- Gergianaki, I.; Bortoluzzi, A.; Bertsias, G. Update on the epidemiology, risk factors, and disease outcomes of systemic lupus erythematosus. Best Pract. Res. Clin. Rheumatol. 2018, 32, 188–205. [Google Scholar] [CrossRef]
- Wenzel, J. Cutaneous lupus erythematosus: New insights into pathogenesis and therapeutic strategies. Nat. Rev. Rheumatol. 2019, 15, 519–532. [Google Scholar] [CrossRef]
- Chen, J.; Baig, E.; Fish, E.N. Diversity and relatedness among the type I interferons. J. Interferon Cytokine Res. 2004, 24, 87–98. [Google Scholar] [CrossRef] [PubMed]
- de Padilla, C.M.L.; Niewold, T.B. The type I interferons: Basic concepts and clinical relevance in immune-mediated inflammatory diseases. Gene 2016, 576, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Psarras, A.; Wittmann, M.; Vital, E.M. Emerging concepts of type I interferons in SLE pathogenesis and therapy. Nat. Rev. Rheumatol. 2022, 18, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Billi, A.C.; Ma, F.; Plazyo, O.; Gharaee-Kermani, M.; Wasikowski, R.; Hile, G.A.; Xing, X.; Yee, C.M.; Rizvi, S.M.; Maz, M.P.; et al. Nonlesional lupus skin contributes to inflammatory education of myeloid cells and primes for cutaneous inflammation. Sci. Transl. Med. 2022, 14, eabn2263. [Google Scholar] [CrossRef]
- Sarkar, M.K.; Hile, G.A.; Tsoi, L.C.; Xing, X.; Liu, J.; Liang, Y.; Berthier, C.C.; Swindell, W.R.; Patrick, M.T.; Shao, S.; et al. Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Ann. Rheum. Dis. 2018, 77, 1653–1664. [Google Scholar] [CrossRef]
- Ramaswamy, M.; Tummala, R.; Streicher, K.; Nogueira da Costa, A.; Brohawn, P.Z. The pathogenesis, molecular mechanisms, and therapeutic potential of the interferon pathway in systemic lupus erythematosus and other autoimmune diseases. Int. J. Mol. Sci. 2021, 22, 11286. [Google Scholar] [CrossRef]
- Riggs, J.M.; Hanna, R.N.; Rajan, B.; Zerrouki, K.; Karnell, J.L.; Sagar, D.; Vainshtein, I.; Farmer, E.; Rosenthal, K.; Morehouse, C.; et al. Characterisation of anifrolumab, a fully human anti-interferon receptor antagonist antibody for the treatment of systemic lupus erythematosus. Lupus Sci. Med. 2018, 5, e000261. [Google Scholar] [CrossRef]
- Tanaka, Y.; Tummala, R. Anifrolumab, a monoclonal antibody to the type I interferon receptor subunit 1, for the treatment of systemic lupus erythematosus: An overview from clinical trials. Mod. Rheumatol. 2021, 31, 1–12. [Google Scholar] [CrossRef]
- Furie, R.A.; Morand, E.F.; Bruce, I.N.; Manzi, S.; Kalunian, K.C.; Vital, E.M.; Lawrence Ford, T.; Gupta, R.; Hiepe, F.; Santiago, M.; et al. Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus (TULIP-1): A randomized, controlled, phase 3 trial. Lancet Rheumatol. 2019, 1, e208–e219. [Google Scholar] [CrossRef]
- Furie, R.; Khamastha, M.; Merrill, J.T.; Werth, V.P.; Kalunian, K.; Brohawn, P.; Illei, G.G.; Drappa, J.; Wang, L.; Yoo, S.; et al. Anifrolumab, an anti-interferon-α receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. Arthritis Rheumatol. 2017, 69, 376–386. [Google Scholar] [CrossRef]
- Morand, E.F.; Furie, R.A.; Bruce, I.N.; Vital, E.M.; Dall’Era, M.; Maho, E.; Pineda, L.; Tummala, R. Efficacy of anifrolumab across organ domains in patients with moderate-to-severe systemic lupus erythematosus: A post-hoc analysis of pooled data from the TULIP-1 and TULIP-2 trials. Lancet Rheumatol. 2022, 4, e282–e292. [Google Scholar] [CrossRef] [PubMed]
- Bruce, I.N.; van Vollenhoven, R.F.; Psachoulia, K.; Lindholm, C.; Maho, E.; Tummala, R. Time to onset of clinical response to anifrolumab in patients with SLE: Pooled data from the phase III TULIP-1 and TULIP-2 trials. Lupus Sci. Med. 2023, 10, e000761. [Google Scholar] [CrossRef] [PubMed]
- Viedma-Martinez, M.; Gallo-Pineda, G.; Jimenez-Gallo, D.; Linares-Barrios, M. Real-world experience with anifrolumab in cutaneous lupus erythematosus: Data from a Spanish tertiary referral center. Actas Dermo-Sifiliogr. 2025, 116, T790–T795. [Google Scholar] [CrossRef] [PubMed]
- Shaw, K.S.; Rajeh, A.; Le, T.; Kahn, P.J.; Oza, V.S.; Arkin, L.M.; Vleugels, R.A. Anifrolumab for adolescent discoid lupus erythematosus. JAMA Netw. Open 2023, 6, e2338200. [Google Scholar] [CrossRef]
- Shaw, K.; Sanchez-Melendez, S.; Taylor, D.; Barker, J.; LaChance, A.; Shahriari, N.; Vleugels, R.A. Assessment of clinical response to anifrolumab in patients with refractory discoid lupus erythematosus. JAMA Dermatol. 2023, 159, 560–563. [Google Scholar] [CrossRef]
- Shaw, K.; Taylor, D.; Sanchez-Melendez, S.; Barker, J.; Lonowski, S.; Shahriari, N.; Porter, H.J.; Morley, K.; LaChance, A.; Vleugels, R.A. Improvement in mucosal discoid lupus erythematosus with anifrolumab. Clin. Exp. Dermatol. 2023, 48, 1165–1167. [Google Scholar] [CrossRef]
- Azuma, N.; Natsuaki, M.; Hashimoto, N.; Abe, T.; Ueda, S.; Ohno, Y.; Jinnin, M.; Matsui, K. Efficacy of anifrolumab in long-term intractable alopecia due to discoid lupus erythematosus. Mod. Rheumatol. Case Rep. 2024, 8, 267–271. [Google Scholar] [CrossRef]
- Karagenova, R.; Vodusek, Z.; Krimins, R.; Krieger, A.; Timlin, H. Treatment with voclosporin and anifrolumab in a patient with lupus nephritis and refractory discoid lupus erythematosus: A case report and literature review. Cureus 2024, 16, e55321. [Google Scholar] [CrossRef]
- Shmizu, M.; Kaneko, S.; Shimbo, A.; Hatano, M.; Miyaoka, F.; Irabu, H.; Akutsu, Y.; Hayashi, Y.; Akamine, K.; Mori, M. Anifrolumab for refractory cutaneous lupus lesions in pediatric systemic lupus erythematosus. Lupus 2025, 34, 533–536. [Google Scholar] [CrossRef]
- Ocon, A.; Avalos Sugastti, E.; Duffy, N. Impressive resolution of refractory hypertrophic discoid lupus erythematosus with anifrolumab. BMJ Case Rep. 2024, 17, e258487. [Google Scholar] [CrossRef]
- Hulin, M.; Le Seac’h, A.; Jaume, L.; Seneschal, J.; Boniface, K.; Barbaud, A.; Mathian, A.; Amoura, Z.; Chasset, F. Progressive repigmentation of hypopigmented lesions in discoid lupus erythematosus with anifrolumab: A report of two cases. Lupus 2025, 34, 761–763. [Google Scholar] [CrossRef]
Pt | Age/Sex | CLE Type | Prior Systemic Therapies | Concomitant Treatment | CLASI-A Baseline | CLASI-A Final (mo) | % Δ CLASI-A | CLASI-D Baseline | CLASI-D Final (mo) | % Δ CLASI-D | AEs |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 61/M | DLE | HCQ 400 mg/day, enpatoran according to clinical trial protocol | None | 9 | 0 [6] | 100% ↓ | 14 | 14 [6] | 0% | None |
2 | 44/M | DLE | HCQ 400 mg/day | HCQ 400 mg/day | 33 | 7 [6] | 78.8% ↓ | 25 | 23 [6] | 8% ↓ | None |
3 | 65/F | DLE | Oral GC 10 mg/day, HCQ 200 mg/day, MTX 10 mg weekly | Oral GC 5 mg/day | 22 | 10 [4] | 54.5% ↓ | 2 | 2 [4] | 0% | None |
4 | 56/F | DLE | HCQ 400 mg/day, MTX 15 mg weekly, AZA 100 mg/day, BEL 200 mg weekly, RTX 1 g × 2 | HCQ 400 mg/day, AZA 100 mg/day | 20 | 1 [14] | 95% ↓ | 8 | 2 [14] | 75% ↓ | None |
5 | 29/F | DLE | HCQ 400 mg/day, CQ 250 mg/day, mepacrine 100 mg/day, MTX 20 mg weekly, thalidomide 100 mg/day, apremilast 50 mg/day, BEL 200 mg weekly, RTX 1 g × 2 | HCQ 400 mg/day, MTX 20 mg weekly | 16 | 1 [14] | 93.7% ↓ | 10 | 6 [14] | 40% ↓ | None |
6 | 46/F | SCLE | HCQ 400 mg/day | HCQ 400 mg/day | 10 | 1 [3] | 90% ↓ | 4 | 4 [3] | 0% | None |
7 | 49/F | DLE | Oral GC 30 mg/day, HCQ 400 mg/day, CQ 250 mg/day, MTX 20 mg/day, AZA 150 mg/day, MMF 2 g/day | HCQ 400 mg/day, MMF 2 g/day | 17 | 1 [3] | 94.1% ↓ | 9 | 7 [3] | 22.2% ↓ | None |
8 | 57/F | SCLE | Oral GC 30 mg/day, HCQ 400 mg/day, MTX 15 mg weekly | HCQ 400 mg/day, MTX 15 mg weekly | 15 | 0 [3] | 100% ↓ | 5 | 4 [3] | 20% ↓ | None |
9 | 65/F | DLE | Oral GC 30 mg/day, HCQ 400 mg/day, CQ 250 mg/day, MTX 15 mg weekly | HCQ 400 mg/day | 12 | 1 [6] | 91.7% ↓ | 1 | 1 [6] | 0% | None |
10 | 70/F | SCLE | Oral GC 60 mg/day, HCQ 600 mg/day, MTX 10 mg weekly | Oral GC 5 mg/day, HCQ 400 mg/day | 31 | 4 [5] | 87.1% ↓ | 8 | 4 [5] | 50% ↓ | None |
11 | 52/F | SCLE + chilblain | Oral GC 20 mg/day, HCQ 400 mg/day, MTX 15 mg weekly, AZA 150 mg/day, MMF 2 g/day | Oral GC 5 mg/day | 8 | 0 [11] | 100% ↓ | 0 | 0 [11] | – | None |
12 | 39/F | DLE + panniculitis | Oral GC 30 mg/day, HCQ 400 mg/day, CQ 155 mg/day, MTX 15 mg weekly, MMF 1 g/day | None | 3 | 0 [9] | 100% ↓ | 3 | 0 [9] | 100% ↓ | Bacterial cellulitis |
13 | 35/M | DLE | Oral GC 30 mg/day, HCQ 400 mg/day | Oral GC 30 mg/day, HCQ 400 mg/day | 27 | 0 [4] | 100% ↓ | 20 | 20 [4] | 0% | None |
14 | 57/M | SCLE + hypertrophic DLE | Oral GC 30 mg/day, HCQ 400 mg/day, MTX 17.5 ng weekly, apremilast 60 mg/day | Acitretin 25 mg/day | 27 | No data | – | 3 | No data | – | Septic shock, herpetic keratitis |
15 | 56/F | Lupus tumidus | Oral GC 30 mg/day, HCQ 400 mg/day, mepacrine 100 mg/day, MTX 15 mg weekly, MMF 2 g/day | None | 6 | 0 [1] | 100% ↓ | 0 | 0 [1] | – | Worsening of asthenia |
Study (Ref.) | CLE Subtype(s) | Prior Treatments | Time to Response | CLASI-A Improvement | Adverse Events | Follow-up Duration |
---|---|---|---|---|---|---|
Han et al. [23] | DLE with alopecia | Topical steroids, tacrolimus ointment, HCQ, AZA, prednisone | 1 month | Yes (significant) | None | 7 months |
Aljohani [24] | DLE with alopecia | Topical and intralesional steroids, HCQ, MTX, AZA, belimumab, steroids | After 1st dose | CLASI-A ↓ from 18 to 3 | None | 6 months |
Hojjatie et al. [25] | Hypertrophic CLE/LP overlap | HCQ, MTX, MMF, acitretin, belimumab, rituximab, abatacept | 2 months | Yes (dramatic) | None | Not reported |
Trentin et al. [26] | DLE | Antimalarials, topical steroids, docetaxel, doxorubicin hydrochloride, cyclophosphamide, conventional immunosuppressants, Janus kinase inhibitors | 1 month | Yes | None | 12 months |
Hernández-Salas et al. [27] | DLE, SCLE | Steroids, HCQ, MTX, mepacrine, acitretin, thalidomide, dimethyl fumarate, laser, AZA, | 1 month | Yes | 2 patients (28.6%) | 1–17 months |
Garbarino et al. [28] | SCLE, chilblain lupus, panniculitis | Steroids, antimalarials, MTX, AZA, MMF, belimumab | 1 month | Yes | No data | No data |
Present Series | SCLE, CCLE, lupus tumidus, chilblain lupus | HCQ, MTX, MMF, AZA, steroids, others | As early as 1st dose | CLASI-A ↓ from 16 to 1 | 3 patients (20%) | Mean 6.1 ± 4.1 months |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loricera, J.; Bejerano, C.; Estébanez, A.; García, I.; Mohammad, N.; Sanmartín, M.; González-Fernández, M.; Amaro, I.F.; González-López, M.A.; García-Contreras, M.V.; et al. Anifrolumab for Nonsystemic Cutaneous Lupus Erythematosus: Clinical Experience, Immunologic Insights, and Review of the Literature. J. Clin. Med. 2025, 14, 5683. https://doi.org/10.3390/jcm14165683
Loricera J, Bejerano C, Estébanez A, García I, Mohammad N, Sanmartín M, González-Fernández M, Amaro IF, González-López MA, García-Contreras MV, et al. Anifrolumab for Nonsystemic Cutaneous Lupus Erythematosus: Clinical Experience, Immunologic Insights, and Review of the Literature. Journal of Clinical Medicine. 2025; 14(16):5683. https://doi.org/10.3390/jcm14165683
Chicago/Turabian StyleLoricera, Javier, Carmen Bejerano, Andrea Estébanez, Irene García, Nasser Mohammad, Mireia Sanmartín, Marta González-Fernández, Iván Ferraz Amaro, Marcos A. González-López, Mayra V. García-Contreras, and et al. 2025. "Anifrolumab for Nonsystemic Cutaneous Lupus Erythematosus: Clinical Experience, Immunologic Insights, and Review of the Literature" Journal of Clinical Medicine 14, no. 16: 5683. https://doi.org/10.3390/jcm14165683
APA StyleLoricera, J., Bejerano, C., Estébanez, A., García, I., Mohammad, N., Sanmartín, M., González-Fernández, M., Amaro, I. F., González-López, M. A., García-Contreras, M. V., López-Hoyos, M., & Blanco, R. (2025). Anifrolumab for Nonsystemic Cutaneous Lupus Erythematosus: Clinical Experience, Immunologic Insights, and Review of the Literature. Journal of Clinical Medicine, 14(16), 5683. https://doi.org/10.3390/jcm14165683