Enhanced Respiratory Sound Classification Using Deep Learning and Multi-Channel Auscultation
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset of Multi-Channel Respiratory Sound
2.2. Proposed Multi-Channel Respiratory Sound Classification Based on Deep Learning
2.3. Evaluation Factors
3. Results
4. Discussion
- (1)
- The predictive classification rate and accuracy improved as the number of channels used to measure respiratory sounds increased. Multi-channel lung sounds contained more features for each respiratory sound, allowing the classifier to perform accurate classifications. This facilitates an accurate classification in cases with numerous external noise signals.
- (2)
- The differences in sensitivity and specificity decreased with multi-channel respiratory sound classification. This indicates that the prediction method is more reliable than single-channel respiratory sound classification and that multi-channel auscultation minimizes the loss of information and acquires more characteristic data on respiratory sounds than single-channel auscultation. This minimizes the dependence of prediction on the auscultation position and is meaningful as standardized respiratory sound classification data.
- (3)
- The F1-score was higher for multi-channel lung sound-based predictions than for other approaches, and each respiratory sound classification was independent of the position. This indicates that the multi-channel respiratory sound classification has higher accuracy and reproducibility, independent of specific locations. The feasibility of the multi-channel lung sound-based prediction method for predicting respiratory diseases in clinical practice was confirmed.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bohadana, A.; Izbicki, G.; Kraman, S.S. Fundamentals of lung auscultation. N. Engl. J. Med. 2014, 370, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, M.; Madabhavi, I.; Niranjan, N.; Dogra, M. Auscultation of the respiratory system. Ann. Thorac. Med. 2015, 10, 158–168. [Google Scholar] [CrossRef]
- Bishop, P.J. Evolution of the stethoscope. J. R. Sco. Med. 1980, 73, 448–456. [Google Scholar] [CrossRef]
- Roguin, A. Rene theophile hyacinthe laënnec (1781–1826): The man behind the stethoscope. Clin. Med. Res. 2006, 4, 230–235. [Google Scholar] [CrossRef]
- Cushman, W.C.; Cooper, K.M.; Horne, R.A.; Meydrech, E.F. Effect of back support and stethoscope head on seated blood pressure determinations. Am. J. Hypertens. 1990, 3, 240–241. [Google Scholar] [CrossRef]
- Mangione, S.; Nieman, L.Z. Pulmonary auscultatory skills during training in internal medicine and family practice. Am. J. Respir. Crit. Care. Med. 1999, 159, 1119–1124. [Google Scholar] [CrossRef]
- Ward, J.J.; Wattier, B.A. Technology for enhancing chest auscultation in clinical simulation. Respir. Care 2011, 56, 834–845. [Google Scholar] [CrossRef]
- Hafke-Dys, H.; Bręborowicz, A.; Kleka, P.; Kociński, J.; Biniakowski, A. The accuracy of lung auscultation in the practice of physicians and medical students. PLoS ONE 2019, 14, e0220606. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.L.H., Jr.; Sorensen, K. Chest auscultation in the diagnosis of pulmonary asbestosis. J. Occup. Med. 1973, 15, 272–276. [Google Scholar] [PubMed]
- Li, S.H.; Lin, B.S.; Tsai, C.H.; Yang, C.T.; Lin, B.S. Design of wearable breathing sound monitoring system for real-time wheeze detection. Sensors 2017, 17, 171. [Google Scholar] [CrossRef] [PubMed]
- Spyropoulos, B.; Tzavaras, A.; Afentoulidis, P.; Botsivaly, M. Supporting medical house-call by expanding bedside in-vitro point of care test-range and attaining respiratory sounds’ visualization. In Proceedings of the 2013 IEEE Point-of-Care Healthcare Technologies (PHT), Bangalore, India, 16–18 January 2013. [Google Scholar] [CrossRef]
- Hayber, S.E.; Tabaru, T.E.; Keser, S.; Saracoglu, O.G. A simple, high sensitive fiber optice microphone based on cellulose triacetate diaphragm. J. Lightwave Technol. 2018, 36, 5650–5655. [Google Scholar] [CrossRef]
- Kusainov, R.K.; Makukha, V.K. Evaluation of the applicability of MEMS microphone for auscultation. In Proceedings of the 2015 16th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, Erlagol, Russia, 29 June–3 July 2015. [Google Scholar] [CrossRef]
- Bogue, R.; Du, H. MEMS sensors: Past, present and future. Sens. Rev. 2007, 27, 7–13. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, Y.S.; Yeo, W.H. Advances in microsensors and wearable bioelectronics for digital stethoscopes in health monitoring and disease diagnosis. Adv. Healthc. Mater. 2021, 10, 2101400. [Google Scholar] [CrossRef]
- Sakai, T.; Kato, M.; Miyahara, S.; Kiyasu, S. Robust detection of adventitious lung sounds in electronic auscultation signals. In Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), Tokyo, Japan, 11–15 November 2013. [Google Scholar]
- Serbes, G.; Sakar, C.O.; Kahya, Y.P.; Aydin, N. Pulmonary crackle detection using time-frequency and time-scale analysis. Digit. Signal Process. 2013, 23, 1012–1021. [Google Scholar] [CrossRef]
- Ash, S.Y.; Harmouche, R.; Vallejo, D.L.L.; Villalba, J.A.; Ostridge, K.; Gunville, R.; Come, C.E.; Onieva, J.O.; Ross, J.C.; Hunninghake, G.M.; et al. Densitometric and local histogram based analysis of computed tomography images in patients with idiopathic pulmonary fibrosis. Respir. Res. 2017, 18, 45. [Google Scholar] [CrossRef]
- Naves, R.; Barbosa, B.H.G.; Ferreira, D.D. Classification of lung sounds using higher-order statistics: A divide-and-conquer approach. Comput. Methods Programs Biomed. 2016, 129, 12–20. [Google Scholar] [CrossRef]
- Pramono, R.X.A.; Bowyer, S.; Rodriguez-Villegas, E. Automatic adventitious respiratory sound analysis: A systematic review. PLoS ONE 2017, 12, e0177926. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, N.; Sahidullah, M.; Saha, G. Lung sound classification using cepstral-based statistical features. Comput. Biol. Med. 2016, 75, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.Y.; Liao, C.H.; Wu, Y.S.; Yuan, S.M.; Sun, C.T. Efficiently classifying lung sounds through depthwise separable CNN models with fused STFT and MFCC features. Diagnostics 2021, 11, 732. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Hyon, Y.; Lee, S.; Woo, S.D.; Ha, T.; Chung, C. The coming era of a new auscultation system for analyzing respiratory sounds. BMC Pulm. Med. 2022, 22, 119. [Google Scholar] [CrossRef]
- Kim, Y.; Hyon, Y.; Jung, S.S.; Lee, S.; Yoo, G.; Chung, C.; Ha, T. Respiratory sound classification for crackles, wheezes, and rhonchi in the clinical field using deep learning. Sci. Rep. 2011, 11, 17186. [Google Scholar] [CrossRef]
- Messner, E.; Fediuk, M.; Swatek, P.; Scheidl, S.; Smelle-Juttner, F.M.; Olschewski, H.; Pernkopf, F. Multi-channel lung sound classification with convolutional recurrent neural networks. Comput. Biol. Med. 2020, 122, 103831. [Google Scholar] [CrossRef]
- Murphy, R.L., Jr.; Del Bono, E.A.; Davidson, F. Validation of an automatic crackle (rale) counter. Am. Rev. Respir. Dis. 1989, 140, 1017–1020. [Google Scholar] [CrossRef]
- Murphy, R.L.H.; Vyshedskiy, A.; Power-Charnitsky, V.A.; Bana, D.S.; Marinelli, P.M.; Wong-Tse, A.; Paciej, R. Automated lung sound analysis in patients with pneumonia. Respir. Care 2004, 49, 1490–1497. [Google Scholar] [PubMed]
- Murphy, R. Computerized multichannel lung sound analysis. Development of acoustic instruments for diagnosis and management of medical conditions. IEEE Eng. Med. Biol. Mag. 2007, 26, 16–19. [Google Scholar] [CrossRef]
- Jayalakshmy, S.; Sudha, G.F. Conditional GAN based augmentation for predictive modeling of respiratory signals. Comput. Biol. Med. 2021, 138, 104930. [Google Scholar] [CrossRef] [PubMed]
- Rocha, B.M.; Filos, D.; Mendes, L.; Vogiatzis, I.; Perantoni, E.; Kaimakamis, E.; Natsiavas, P.; Oliveira, A.; Jacome, C.; Marques, A.; et al. A respiratory sound database for the development of automated classification. In ICBHI 2017: Precision Medicine Powered by pHealth and Connected Health; International Conference on Biomedical and Health Informatics; Springer: Singapore, 2018; Volume 66, pp. 33–37. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Ding, Q.; Sun, J.Q. Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation. J. Intell. Manuf. 2020, 31, 433–452. [Google Scholar] [CrossRef]
- Abeysinghe, A.; Tohmuang, S.; Davy, J.L.; Fard, M. Data augmentation on convolutional neural networks to classify mechanical noise. Appl. Acoust. 2023, 203, 109209. [Google Scholar] [CrossRef]
- Chu, H.C.; Zhang, Y.L.; Chiang, H.C. A CNN sound classification mechanism using data augmentation. Sensors 2023, 23, 6972. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2015. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Shrestha, A.; Mahmood, A. Review of deep learning algorithms and architectures. IEEE Access 2019, 7, 53040–53065. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; Han, J. On the variance of the adaptive learning rate and beyond. arXiv 2021. [Google Scholar] [CrossRef]
- Paul, C.; Bora, P. Detecting hate speech using deep learning techniques. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2021, 12, 619–623. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar] [CrossRef]
- Salamon, J.; Bello, J.P. Deep convolutional neural networks and data augmentation for environmental sound classification. IEEE Signal Process. Lett. 2017, 24, 279–283. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, S.; Song, M.; Parada-Cabaleiro, E.; Schuller, B.W. Adventitious respiratory classification using attentive residual neural networks. Proc. Interspeech 2020, 2020, 2912–2916. [Google Scholar] [CrossRef]
- Minami, K.; Lu, H.; Kim, H.; Mabu, S.; Hirano, Y.; Kido, S. Automatic classification of large-scale respiratory sound dataset based on convolutional neural network. In Proceedings of the 2019 19th International Conference on Control, Automation and Systems (ICCAS), Jeju, Republic of Korea, 15–18 October 2019. [Google Scholar] [CrossRef]
- Rocha, B.M.; Filos, D.; Mendes, L.; Serbes, G.; Ulukaya, S.; Kahya, Y.P.; Jakovljevic, N.; Turukalo, T.L.; Vogiatzis, I.M.; Perantoni, E.; et al. An open access databased for the evaluation of respiratory sounc classification algorithms. Physiol. Meas. 2019, 40, 035001. [Google Scholar] [CrossRef]
- Tainter, C.R.; Levine, A.R.; Quraishi, S.A.; Butterly, A.D.; Stahl, D.L.; Eikermann, M.; Kaafarani, H.M.; Lee, J. Noise levels in surgical ICUs are consistently above recommended standards. Crit. Care Med. 2016, 44, 147–152. [Google Scholar] [CrossRef]
- Vreman, J.; van Loon, L.M.; van den Biggelaar, W.; van der Hoeven, J.G.; Lemson, J.; van den Boogaard, M. Contribution of alarm noise to average sound pressure levels in the ICU: An observational cross-sectional study. Intensive Crit. Care Nurs. 2020, 61, 102901. [Google Scholar] [CrossRef]
- Dubey, H.; Gopal, V.; Cutler, R.; Aazami, A.; Matusevych, S.; Braun, S.; Eskimez, S.E.; Thakker, M.; Yoshioka, Y.; Gamper, H.; et al. Icassp 2022 deep noise suppression challenge. In Proceedings of the ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Chu, Y.; Liu, H. A robust dual-microphone generalized sidelobe canceller using a bone-conduction sensor for speech enhancement. Sensors 2021, 21, 1878. [Google Scholar] [CrossRef]
- Yang, C.; Dai, N.; Wang, Z.; Cai, S.; Wang, J.; Hu, N. Cardiopulmonary auscultation enhancement with a two-stage noise cancellation approach. Biomed. Signal Process. Control 2023, 79, 104175. [Google Scholar] [CrossRef]
Study | Method | Strengths | Limitations |
---|---|---|---|
[28] | Multi-channel lung sound analyzer with computerized acoustic processing | Enhanced detection of adventitious sounds (e.g., crackles) with quantitative analysis | Requires specialized multi-channel stethoscope hardware and controlled environment |
[23] | Deep learning classification using single-channel auscultation data (CNN-based) | Automated detection of crackles, wheezes, and rhonchi in clinical settings | Lacks spatial context and robustness to positional variation |
[25] | Convolutional Recurrent Neural Network (CRNN) using multi-channel data | Captures both spatial and temporal features with high classification accuracy | High computational cost and need for large-scale annotated data |
[29] | Conditional GAN-based data augmentation with ResNet-50 for classification | Overcomes class imbalance and enhances model generalization | Complex training pipeline and requires GAN tuning expertise |
Positions | Accuracy | Sensitivity | Specificity | Precision | F1-Score |
---|---|---|---|---|---|
BRUL-BLUL (2-ch.) | 0.85 ± 0.03 | 0.84 ± 0.02 | 0.91 ± 0.07 | 0.87 ± 0.05 | 0.85 ± 0.09 |
BRUL (single) | 0.79 ± 0.01 | 0.75 ± 0.09 | 0.88 ± 0.03 | 0.82 ± 0.02 | 0.77 ± 0.06 |
BLUL (single) | 0.82 ± 0.05 | 0.80 ± 0.12 | 0.89 ± 0.05 | 0.84 ± 0.07 | 0.81 ± 0.06 |
BRUL-BLLL (2-ch.) | 0.75 ± 0.08 | 0.72 ± 0.11 | 0.87 ± 0.03 | 0.77 ± 0.03 | 0.74 ± 0.05 |
BRUL (single) | 0.67 ± 0.06 | 0.60 ± 0.03 | 0.83 ± 0.12 | 0.66 ± 0.02 | 0.59 ± 0.10 |
BLLL (single) | 0.65 ± 0.05 | 0.58 ± 0.13 | 0.81 ± 0.13 | 0.64 ± 0.06 | 0.57 ± 0.03 |
BLUL-BLLL (2-ch.) | 0.76 ± 0.02 | 0.72 ± 0.10 | 0.87 ± 0.07 | 0.76 ± 0.03 | 0.73 ± 0.05 |
BLUL (single) | 0.63 ± 0.06 | 0.71 ± 0.09 | 0.80 ± 0.05 | 0.71 ± 0.04 | 0.68 ± 0.11 |
BLLL (single) | 0.70 ± 0.05 | 0.68 ± 0.12 | 0.85 ± 0.04 | 0.73 ± 0.01 | 0.70 ± 0.05 |
BRUL-BRLL (2-ch.) | 0.80 ± 0.01 | 0.81 ± 0.05 | 0.88 ± 0.03 | 0.87 ± 0.09 | 0.82 ± 0.08 |
BRUL (single) | 0.68 ± 0.02 | 0.77 ± 0.03 | 0.75 ± 0.03 | 0.75 ± 0.10 | 0.77 ± 0.05 |
BRLL (single) | 0.76 ± 0.06 | 0.75 ± 0.12 | 0.73 ± 0.02 | 0.75 ± 0.02 | 0.75 ± 0.06 |
BLUL-BRLL (2-ch.) | 0.73 ± 0.01 | 0.70 ± 0.08 | 0.75 ± 0.03 | 0.73 ± 0.06 | 0.71 ± 0.03 |
BLUL (single) | 0.68 ± 0.04 | 0.65 ± 0.02 | 0.70 ± 0.03 | 0.70 ± 0.05 | 0.65 ± 0.01 |
BRLL (single) | 0.68 ± 0.02 | 0.67 ± 0.05 | 0.60 ± 0.02 | 0.65 ± 0.05 | 0.60 ± 0.01 |
BLLL-BRLL (2-ch.) | 0.71 ± 0.02 | 0.73 ± 0.05 | 0.78 ± 0.03 | 0.71 ± 0.05 | 0.73 ± 0.08 |
BLLL (single) | 0.68 ± 0.01 | 0.75 ± 0.07 | 0.81 ± 0.02 | 0.60 ± 0.03 | 0.70 ± 0.04 |
BRLL (single) | 0.70 ± 0.04 | 0.76 ± 0.07 | 0.75 ± 0.05 | 0.68 ± 0.05 | 0.70 ± 0.07 |
Positions | Accuracy | Sensitivity | Specificity | Precision | F1-Score |
---|---|---|---|---|---|
BRUL-BLUL-BLLL (3-ch.) | 0.86 ± 0.09 | 0.87 ± 0.01 | 0.93 ± 0.01 | 0.87 ± 0.02 | 0.87 ± 0.02 |
BRUL-BLUL (2-ch.) | 0.76 ± 0.03 | 0.73 ± 0.06 | 0.88 ± 0.04 | 0.76 ± 0.02 | 0.74 ± 0.03 |
BRUL-BLUL (2-ch.) | 0.84 ± 0.02 | 0.84 ± 0.05 | 0.92 ± 0.02 | 0.83 ± 0.01 | 0.83 ± 0.03 |
BRUL-BLUL (2-ch.) | 0.79 ± 0.08 | 0.78 ± 0.02 | 0.89 ± 0.01 | 0.78 ± 0.03 | 0.78 ± 0.04 |
BRUL (single) | 0.68 ± 0.08 | 0.61 ± 0.11 | 0.83 ± 0.05 | 0.83 ± 0.04 | 0.59 ± 0.02 |
BLUL (single) | 0.70 ± 0.03 | 0.64 ± 0.06 | 0.84 ± 0.06 | 0.73 ± 0.06 | 0.63 ± 0.02 |
BLLL (single) | 0.70 ± 0.07 | 0.65 ± 0.06 | 0.85 ± 0.05 | 0.72 ± 0.01 | 0.66 ± 0.08 |
Positions | Accuracy | Sensitivity | Specificity | Precision | F1-Score |
---|---|---|---|---|---|
BRUL-BLUL-BLLL-BRLL (4-ch.) | 0.92 ± 0.02 | 0.93 ± 0.02 | 0.96 ± 0.05 | 0.92 ± 0.01 | 0.93 ± 0.03 |
BRUL-BLLL-BRLL (3-ch.) | 0.88 ± 0.04 | 0.89 ± 0.02 | 0.93 ± 0.06 | 0.88 ± 0.05 | 0.88 ± 0.02 |
BRUL-BLUL (2-ch.) | 0.83 ± 0.01 | 0.79 ± 0.06 | 0.91 ± 0.07 | 0.85 ± 0.03 | 0.81 ± 0.09 |
BRLL (single) | 0.79 ± 0.02 | 0.75 ± 0.10 | 0.88 ± 0.03 | 0.81 ± 0.02 | 0.77 ± 0.04 |
Model | Accuracy | Sensitivity | Specificity | Precision | F1-Score |
---|---|---|---|---|---|
CNN | 0.65 ± 0.05 | 0.58 ± 0.07 | 0.81 ± 0.03 | 0.64 ± 0.03 | 0.57 ± 0.05 |
CNN–LSTM | 0.76 ± 0.01 | 0.72 ± 0.04 | 0.87 ± 0.06 | 0.76 ± 0.02 | 0.73 ± 0.10 |
CNN with MFCC | 0.85 ± 0.06 | 0.84 ± 0.04 | 0.88 ± 0.11 | 0.85 ± 0.04 | 0.82 ± 0.10 |
CNN–LSTM with MFCC | 0.92 ± 0.02 | 0.93 ± 0.02 | 0.96 ± 0.05 | 0.92 ± 0.01 | 0.93 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Kim, K.B.; Leem, A.Y.; Kim, K.; Lee, S.H. Enhanced Respiratory Sound Classification Using Deep Learning and Multi-Channel Auscultation. J. Clin. Med. 2025, 14, 5437. https://doi.org/10.3390/jcm14155437
Kim Y, Kim KB, Leem AY, Kim K, Lee SH. Enhanced Respiratory Sound Classification Using Deep Learning and Multi-Channel Auscultation. Journal of Clinical Medicine. 2025; 14(15):5437. https://doi.org/10.3390/jcm14155437
Chicago/Turabian StyleKim, Yeonkyeong, Kyu Bom Kim, Ah Young Leem, Kyuseok Kim, and Su Hwan Lee. 2025. "Enhanced Respiratory Sound Classification Using Deep Learning and Multi-Channel Auscultation" Journal of Clinical Medicine 14, no. 15: 5437. https://doi.org/10.3390/jcm14155437
APA StyleKim, Y., Kim, K. B., Leem, A. Y., Kim, K., & Lee, S. H. (2025). Enhanced Respiratory Sound Classification Using Deep Learning and Multi-Channel Auscultation. Journal of Clinical Medicine, 14(15), 5437. https://doi.org/10.3390/jcm14155437