A Critical Appraisal of Off-Label Use and Repurposing of Statins for Non-Cardiovascular Indications: A Systematic Mini-Update and Regulatory Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Eligibility Criteria
Data Extraction
2.2. Hungarian Off-Label Use Data
3. Results
3.1. Statin Repurposing in Oncology: Clinical Trials, Mechanisms, and Translational Insights
3.2. Statins in Infectious Diseases: Antifungal and Antiviral Potential
3.3. National Experience with Off-Label Statin Use in Hungary
4. Discussion
4.1. Synthesis of Current Evidence
4.2. Mechanistic Foundations and Pleiotropic Effects
4.3. Statin Repurposing in Pregnancy: Emerging Therapeutic Opportunities
4.4. Quality Assessment and Evidence Limitations
4.5. Evidence Level Assessment and Clinical Applicability
4.5.1. Evidence Level Classification
4.5.2. Clinical Applicability Assessment
4.6. Regulatory and Clinical Translation Challenges
4.7. Emerging Clinical Evidence and Ongoing Trials
4.8. Safety Considerations and Risk–Benefit Assessment
5. Conclusions
- No completed randomized controlled trials support routine off-label statin use.
- Observational studies suggest potential benefits in specific cancer types, but are subject to significant confounding.
- Mechanistic studies provide valuable insights, but require clinical validation.
- Regulatory frameworks vary widely, necessitating careful adherence to local guidelines.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AIDS | Acquired Immunodeficiency Syndrome |
BBB | Blood–Brain Barrier |
CA 19-9 | Carbohydrate Antigen 19-9 |
CCL | Chemokine Ligand |
CI | Confidence Interval |
COVID-19 | Coronavirus Disease 2019 |
CRC | Colorectal Cancer |
DCR | Disease Control Rate |
DDD | Defined Daily Dose |
DENV | Dengue Virus |
EMA | European Medicines Agency |
FDA | Food and Drug Administration |
GBM | Glioblastoma Multiforme |
HDAC | Histone Deacetylase |
HR | Hazard Ratio |
HMGCR | 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase |
IC50 | Half Maximal Inhibitory Concentration |
IFN-γ | Interferon Gamma |
IL | Interleukin |
mCRC | Metastatic Colorectal Cancer |
mPDAC | Metastatic Pancreatic Ductal Adenocarcinoma |
mTOR | Mammalian Target of Rapamycin |
NFκB NNGYK | Nuclear Factor Kappa B National Institute of Public Health and Pharmacy |
NS5 | Nonstructural Protein 5 |
ORR | Objective Response Rate |
OS | Overall Survival |
PAXG | Nab-paclitaxel, Gemcitabine, Capecitabine, Cisplatin |
PCa | Prostate Cancer |
PFS | Progression-Free Survival |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
RCC | Renal Cell Carcinoma |
SASP | Senescence-Associated Secretory Phenotype |
SCLC | Small-Cell Lung Cancer |
SREBP2 | Sterol Regulatory Element-Binding Protein 2 |
TNF-α | Tumor Necrosis Factor Alpha |
VPA | Valproic Acid |
YAP | Yes-Associated Protein |
References
- Ramkumar, S.; Raghunath, A.; Raghunath, S. Statin Therapy: Review of Safety and Potential Side Effects. Acta Cardiol. Sin. 2016, 32, 631–639. [Google Scholar] [CrossRef]
- Kavalipati, N.; Shah, J.; Ramakrishan, A.; Vasnawala, H. Pleiotropic effects of statins. Indian. J. Endocrinol. Metab. 2015, 19, 554–562. [Google Scholar] [CrossRef]
- Rothgeb, A.; Beckett, R.D.; Daoud, N. Off-label use information in electronic drug information resources. J. Med. Libr. Assoc. 2022, 110, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Wittich, C.M.; Burkle, C.M.; Lanier, W.L. Ten common questions (and their answers) about off-label drug use. Mayo Clin. Proc. 2012, 87, 982–990. [Google Scholar] [CrossRef]
- Bodie, A. Off-Label Use of Prescription Drugs; Congress.Gov: Washington, DC, USA, 2021.
- Classroom, E.O. Off-Label Use: Legal Framework in Europe EUPATI Open Classroom. Available online: https://learning.eupati.eu/mod/book/view.php?id=913&chapterid=896 (accessed on 26 June 2025).
- Masons, P. Italy Loosens Restrictions on Use of ‘Off Label’ Drugs but Legality of Changes Questioned. 2014. Available online: https://www.pinsentmasons.com/out-law/news/italy-loosens-restrictions-on-use-of-off-label-drugs-but-legality-of-changes-questioned (accessed on 26 June 2025).
- Poór, R. Authorization procedures for off-label treatments worldwide and in Hungary (Off-label kezelések Engedélyeztetési eljárása a világban és hazánkban). In Proceedings of the Conference of Off-Label Treatments in Healthcare (Off-Label Kezelések a Gyógyításban c. Konferencia), Budapest, Hungary, 29 October 2009. [Google Scholar]
- Sciences, I.E.L. New French Rules On Off-Label Use; Covington 2015. Available online: https://www.insideeulifesciences.com/2015/01/21/new-french-rules-on-off-label-use/ (accessed on 26 June 2025).
- Seidenschnur, K.E.K.; Dressler, C.; Weller, K.; Nast, A.; Werner, R.N. Off-label prescriptions and decisions on reimbursement requests in Germany—A retrospective analysis. J. Dtsch. Dermatol. Ges. 2017, 15, 1103–1109. [Google Scholar] [CrossRef]
- Si, W.; Ma, P. Judicial and legislative practice and related suggestions on off-label drug use in China. BMC Health Serv. Res. 2023, 23, 312. [Google Scholar] [CrossRef]
- Assembly, H.N. Törvényaz Emberi Alkalmazásra Kerülő GyógyszerekrőL éS Egyéb, a Gyógyszerpiacot Szabályozó Törvények Módosításáról; Magyar Közlöny: Budapest, Hungary, 2005. [Google Scholar]
- NNGYK Indikáción túli Gyógyszerrendelés Engedélyezése. Available online: https://ogyei.gov.hu/indikacion_tuli_gyogyszerrendeles/ (accessed on 9 February 2025).
- van Dijk, L.; Weda, M.; Hoebert, J.; Vervloet, M.; Puigmartiv, C.M.; Damen, N.; Marchange, S.; Langedijk, J.; Lisman, J. Study on Off-Label Use of Medicinal Products in the European Union; National Institute of Public Health and the Environment: Bilthoven, The Netherlands, 2017; Available online: https://www.nivel.nl/sites/default/files/bestanden/Report_OFF_LABEL_Nivel-RIVM-EPHA.pdf (accessed on 26 June 2025).
- Soares JÚNior, W.d.C. Off-Label Use of Medicines: A Comparative Study on the Regulation of Medicinal Products in Selected European Union Member States. Eur. J. Risk Regul. 2022, 13, 311–332. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Budillon, A.; Leone, A.; Passaro, E.; Silvestro, L.; Foschini, F.; Iannelli, F.; Roca, M.S.; Macchini, M.; Bruzzese, F.; Garcia Bermejo, M.L.; et al. Randomized phase 2 study of valproic acid combined with simvastatin and gemcitabine/nab-paclitaxel-based regimens in untreated metastatic pancreatic adenocarcinoma patients: The VESPA trial study protocol. BMC Cancer 2024, 24, 1167. [Google Scholar] [CrossRef] [PubMed]
- Gaber, D.M.; Ibrahim, S.S.; Awaad, A.K.; Shahine, Y.M.; Elmallah, S.; Barakat, H.S.; Khamis, N.I. A drug repurposing approach of Atorvastatin calcium for its antiproliferative activity for effective treatment of breast cancer: In vitro and in vivo assessment. Int. J. Pharm. X 2024, 7, 100249. [Google Scholar] [CrossRef]
- Irie, N.; Mizoguchi, K.; Warita, T.; Nakano, M.; Sasaki, K.; Tashiro, J.; Osaki, T.; Ishikawa, T.; Oltvai, Z.N.; Warita, K. Repurposing of the Cardiovascular Drug Statin for the Treatment of Cancers: Efficacy of Statin-Dipyridamole Combination Treatment in Melanoma Cell Lines. Biomedicines 2024, 12, 698. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Takeda, T.; Kunitomi, H.; Chiwaki, F.; Komatsu, M.; Nagai, S.; Nogami, Y.; Tsuji, K.; Masuda, K.; Ogiwara, H.; et al. Response Predictive Markers and Synergistic Agents for Drug Repositioning of Statins in Ovarian Cancer. Pharmaceuticals 2022, 15, 124. [Google Scholar] [CrossRef]
- Juneja, M.; Kobelt, D.; Walther, W.; Voss, C.; Smith, J.; Specker, E.; Neuenschwander, M.; Gohlke, B.O.; Dahlmann, M.; Radetzki, S.; et al. Statin and rottlerin small-molecule inhibitors restrict colon cancer progression and metastasis via MACC1. PLoS Biol. 2017, 15, e2000784. [Google Scholar] [CrossRef]
- Ribeiro, N.D.; Costa, M.C.; Magalhaes, T.F.F.; Carneiro, H.C.S.; Oliveira, L.V.; Fontes, A.C.L.; Santos, J.R.A.; Ferreira, G.F.; Araujo, G.R.D.; Alves, V.; et al. Atorvastatin as a promising anticryptococcal agent. Int. J. Antimicrob. Agents 2017, 49, 695–702. [Google Scholar] [CrossRef]
- Palacios-Rápalo, S.N.; Farfan-Morales, C.N.; Cordero-Rivera, C.D.; De Jesús-González, L.A.; Reyes-Ruiz, J.M.; Meraz-Ríos, M.A.; Del Ángel, R.M. An ivermectin—Atorvastatin combination impairs nuclear transport inhibiting dengue infection in vitro and in vivo. iScience 2023, 26, 108294. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Fayos, A.C.; G-García, M.E.; Pérez-Gómez, J.M.; Montero-Hidalgo, A.J.; Martín-Colom, J.; Doval-Rosa, C.; Blanco-Acevedo, C.; Torres, E.; Toledano-Delgado, Á.; Sánchez-Sánchez, R.; et al. Metformin and simvastatin exert additive antitumour effects in glioblastoma via senescence-state: Clinical and translational evidence. eBioMedicine 2023, 90, 104484. [Google Scholar] [CrossRef]
- Duarte, R.R.R.; Copertino, D.C.; Iñiguez, L.P.; Marston, J.L.; Bram, Y.; Han, Y.L.; Schwartz, R.E.; Chen, S.B.; Nixon, D.F.; Powell, T.R. Identifying FDA-approved drugs with multimodal properties against COVID-19 using a data-driven approach and a lung organoid model of SARS-CoV-2 entry. Mol. Med. 2021, 27, 105. [Google Scholar] [CrossRef]
- Chen, Y.A.; Lin, Y.J.; Lin, C.L.; Lin, H.J.; Wu, H.S.; Hsu, H.Y.; Sun, Y.C.; Wu, H.Y.; Lai, C.H.; Kao, C.H. Simvastatin Therapy for Drug Repositioning to Reduce the Risk of Prostate Cancer Mortality in Patients With Hyperlipidemia. Front. Pharmacol. 2018, 9, 225. [Google Scholar] [CrossRef]
- Hagiwaraa, N.; Watanabe, M.; Iizuka-Ohashi, M.; Yokota, I.; Toriyama, S.; Sukeno, M.; Tomosugi, M.; Sowa, Y.; Hongo, F.; Mikami, K.; et al. Mevalonate pathway blockage enhances the efficacy of mTOR inhibitors with the activation of retinoblastoma protein in renal cell carcinoma. Cancer Lett. 2018, 431, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Lohinai, Z.; Dome, P.; Szilagyi, Z.; Ostoros, G.; Moldvay, J.; Hegedus, B.; Dome, B.; Weiss, G.J. From Bench to Bedside: Attempt to Evaluate Repositioning of Drugs in the Treatment of Metastatic Small Cell Lung Cancer (SCLC). PLoS ONE 2016, 11, e0144797. [Google Scholar] [CrossRef] [PubMed]
- Nemzeti Népegészségügyi és Gyógyszerészeti Központ. Off_Label_2009_2025_Majus_WEBRE. 2025. Available online: https://ogyei.gov.hu/egyeb_nyilvantartasok_listak (accessed on 26 June 2025).
- Miyazawa, Y.; Sekine, Y.; Kato, H.; Furuya, Y.; Koike, H.; Suzuki, K. Simvastatin Up-Regulates Annexin A10 That Can Inhibit the Proliferation, Migration, and Invasion in Androgen-Independent Human Prostate Cancer Cells. Prostate 2017, 77, 337–349. [Google Scholar] [CrossRef]
- Karlic, H.; Haider, F.; Thaler, R.; Spitzer, S.; Klaushofer, K.; Varga, F. Statin and Bisphosphonate Induce Starvation in Fast-Growing Cancer Cell Lines. Int. J. Mol. Sci. 2017, 18, 1982. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, L.; Gong, Z.; Shen, L.; Kao, C.; Hock, J.M.; Sun, L.; Li, X. Lovastatin enhances adenovirus-mediated TRAIL induced apoptosis by depleting cholesterol of lipid rafts and affecting CAR and death receptor expression of prostate cancer cells. Oncotarget 2015, 6, 3055–3070. [Google Scholar] [CrossRef]
- Masko, E.M.; Alfaqih, M.A.; Solomon, K.R.; Barry, W.T.; Newgard, C.B.; Muehlbauer, M.J.; Valilis, N.A.; Phillips, T.E.; Poulton, S.H.; Freedland, A.R.; et al. Evidence for Feedback Regulation Following Cholesterol Lowering Therapy in a Prostate Cancer Xenograft Model. Prostate 2017, 77, 446–457. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, G.; Delakas, D.; Nakopoulou, L.; Kassimatis, T. Statins and prostate cancer: Molecular and clinical aspects. Eur. J. Cancer 2011, 47, 819–830. [Google Scholar] [CrossRef]
- Sodero, A.O.; Barrantes, F.J. Pleiotropic effects of statins on brain cells. Biochim. Biophys. Acta (BBA)-Biomembr. 2020, 1862, 183340. [Google Scholar] [CrossRef]
- Vuu, Y.M.; Kadar Shahib, A.; Rastegar, M. The Potential Therapeutic Application of Simvastatin for Brain Complications and Mechanisms of Action. Pharmaceuticals 2023, 16, 914. [Google Scholar] [CrossRef]
- Viegas, C.; Patrício, A.B.; Prata, J.M.; Nadhman, A.; Chintamaneni, P.K.; Fonte, P. Solid Lipid Nanoparticles vs. Nanostructured Lipid Carriers: A Comparative Review. Pharmaceutics 2023, 15, 1593. [Google Scholar] [CrossRef]
- Tripathi, S.; Gupta, E.; Galande, S. Statins as anti-tumor agents: A paradigm for repurposed drugs. Cancer Rep. 2024, 7, e2078. [Google Scholar] [CrossRef] [PubMed]
- Abuhelwa, A.Y.; Almansour, S.A.; Brown, J.R.; Al-Shamsi, H.O.; Abuhelwa, Z.; Kharaba, Z.; Bustanji, Y.; Semreen, M.H.; Ali, S.M.; Alhuraiji, A.; et al. Statin use and survival in SLL/CLL treated with ibrutinib: Pooled analysis of four randomized controlled trials. Blood Adv. 2025, 9, 3566–3575. [Google Scholar] [CrossRef]
- Liao, J.K.; Laufs, U. Pleiotropic effects of statins. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 89–118. [Google Scholar] [CrossRef]
- Juarez, D.; Fruman, D.A. Targeting the Mevalonate Pathway in Cancer. Trends Cancer 2021, 7, 525–540. [Google Scholar] [CrossRef]
- Bocan, T.M. Pleiotropic effects of HMG-CoA reductase inhibitors. Curr. Opin. Investig. Drugs 2002, 3, 1312–1317. [Google Scholar]
- Del Rio Hernandez, C.E.; Campbell, L.J.; Atkinson, P.H.; Munkacsi, A.B. Network Analysis Reveals the Molecular Bases of Statin Pleiotropy That Vary with Genetic Background. Microbiol. Spectr. 2023, 11, e0414822. [Google Scholar] [CrossRef]
- Chen, C.; Wu, H.; Kong, D.; Xu, Y.; Zhang, Z.; Chen, F.; Zou, L.; Li, Z.; Shui, J.; Luo, H.; et al. Transcriptome sequencing analysis reveals unique and shared antitumor effects of three statins in pancreatic cancer. Oncol. Rep. 2020, 44, 2569–2580. [Google Scholar] [CrossRef]
- Gbelcová, H.; Rimpelová, S.; Ruml, T.; Fenclová, M.; Kosek, V.; Hajšlová, J.; Strnad, H.; Kolář, M.; Vítek, L. Variability in statin-induced changes in gene expression profiles of pancreatic cancer. Sci. Rep. 2017, 7, 44219. [Google Scholar] [CrossRef]
- Thankan, R.S.; Thomas, E.; Weldemariam, M.M.; Purushottamachar, P.; Huang, W.; Kane, M.A.; Zhang, Y.; Ambulos, N.; Wang, B.D.; Weber, D.; et al. Thermal proteome profiling and proteome analysis using high-definition mass spectrometry demonstrate modulation of cholesterol biosynthesis by next-generation galeterone analog VNPP433-3β in castration-resistant prostate cancer. Mol. Oncol. 2025, early view. [Google Scholar] [CrossRef]
- Morofuji, Y.; Nakagawa, S.; Ujifuku, K.; Fujimoto, T.; Otsuka, K.; Niwa, M.; Tsutsumi, K. Beyond Lipid-Lowering: Effects of Statins on Cardiovascular and Cerebrovascular Diseases and Cancer. Pharmaceuticals 2022, 15, 151. [Google Scholar] [CrossRef]
- Tamayo-Trujillo, R.; Guevara-Ramírez, P.; Cadena-Ullauri, S.; Ruiz Pozo, V.A.; Paz-Cruz, E.; Zambrano, A.K. Statins and their impact on epigenetic regulation: Insights into disease. Front. Pharmacol. 2025, 16, 1621163. [Google Scholar] [CrossRef]
- Buccioli, G.; Testa, C.; Jacchetti, E.; Pinoli, P.; Carelli, S.; Ceri, S.; Raimondi, M.T. The molecular basis of the anticancer effect of statins. Sci. Rep. 2024, 14, 20298. [Google Scholar] [CrossRef]
- Sabeel, S.; Motaung, B.; Nguyen, K.A.; Ozturk, M.; Mukasa, S.L.; Wolmarans, K.; Blom, D.J.; Sliwa, K.; Nepolo, E.; Günther, G.; et al. Impact of statins as immune-modulatory agents on inflammatory markers in adults with chronic diseases: A systematic review and meta-analysis. PLoS ONE 2025, 20, e0323749. [Google Scholar] [CrossRef]
- Smith, D.D.; Costantine, M.M. The role of statins in the prevention of preeclampsia. Am. J. Obstet. Gynecol. 2022, 226, S1171–S1181. [Google Scholar] [CrossRef]
- Ahmed, A.; Williams, D.J.; Cheed, V.; Middleton, L.J.; Ahmad, S.; Wang, K.; Vince, A.T.; Hewett, P.; Spencer, K.; Khan, K.S.; et al. Pravastatin for early-onset pre-eclampsia: A randomised, blinded, placebo-controlled trial. Bjog 2020, 127, 478–488. [Google Scholar] [CrossRef]
- Lefkou, E.; Mamopoulos, A.; Dagklis, T.; Vosnakis, C.; Rousso, D.; Girardi, G. Pravastatin improves pregnancy outcomes in obstetric antiphospholipid syndrome refractory to antithrombotic therapy. J. Clin. Investig. 2016, 126, 2933–2940. [Google Scholar] [CrossRef]
- Seyhan, A.A. Lost in translation: The valley of death across preclinical and clinical divide—Identification of problems and overcoming obstacles. Transl. Med. Commun. 2019, 4, 18. [Google Scholar] [CrossRef]
- Assimon, M.M. Confounding in Observational Studies Evaluating the Safety and Effectiveness of Medical Treatments. Kidney360 2021, 2, 1156–1159. [Google Scholar] [CrossRef]
- Braga, P.G.S.; Vieira, J.D.S.; Gurgel, A.R.B.; Brum, P.C. β-blockers and statins: Exploring the potential off-label applications in breast, colorectal, prostate, and lung cancers. Front. Pharmacol. 2024, 15, 1423502. [Google Scholar] [CrossRef]
- Scott, O.W.; Tin Tin, S.; Cavadino, A.; Elwood, J.M. Statin use and breast cancer-specific mortality and recurrence: A systematic review and meta-analysis including the role of immortal time bias and tumour characteristics. Br. J. Cancer 2025. [Google Scholar] [CrossRef]
- Guo, H.; Malone, K.E.; Heckbert, S.R.; Li, C.I. Statin use after cancer diagnosis and survival among patients with cancer. Cancer Causes Control 2025, 36, 443–455. [Google Scholar] [CrossRef]
- Saranraj, K.; Kiran, P.U. Drug repurposing: Clinical practices and regulatory pathways. Perspect. Clin. Res. 2025, 16, 61–68. [Google Scholar] [CrossRef]
- Spin, E.L.; Mantel-Teeuwisse, A.K.; Pasmooij, A.M.G. International regulatory and publicly-funded initiatives to advance drug repurposing. Front. Med. 2024, 11, 1387517. [Google Scholar] [CrossRef]
- Krishnamurthy, N.; Grimshaw, A.A.; Axson, S.A.; Choe, S.H.; Miller, J.E. Drug repurposing: A systematic review on root causes, barriers and facilitators. BMC Health Serv. Res. 2022, 22, 970. [Google Scholar] [CrossRef]
- Borgquist, S.; Jensen, M.B.; Bendorff, C.L.; Christiansen, P.; Offersen, B.V.; Kodahl, A.R.; Ewertz, M.; Jensen, A.B.; Ahern, T.P.; Cronin-Fenton, D.; et al. Statin Therapy in Early Breast Cancer: The MASTER Trial; A Randomized Phase III, Placebo-Controlled Comparison of Standard (Neo)Adjuvant Therapy Plus Atorvastatin versus Standard (Neo)Adjuvant Therapy Plus Placebo. Clin. Epidemiol. 2025, 17, 409–419. [Google Scholar] [CrossRef]
- FDA. FDA Drug Safety Communication: Important Safety Label Changes to Cholesterol-Lowering Statin Drugs; FDA: Silver Spring, MD, USA, 2016. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-important-safety-label-changes-cholesterol-lowering-statin-drugs (accessed on 25 June 2025).
- Martins-Filho, P.R.; Barreto-Filho, J.A.S.; Sousa, A.C.S. Effects of statins on clinical outcomes in hospitalized patients with COVID-19. Eur. J. Intern. Med. 2022, 104, 113–115. [Google Scholar] [CrossRef] [PubMed]
Region | Regulatory Authority | Off-Label Approval Mechanism |
---|---|---|
USA | U.S. Food and Drug Administration (FDA) | Physician’s discretion; no promotion allowed; informed consent advised [5] |
Europe | European Medicines Agency (EMA) | Member states regulated under Directive 2001/83/EC; no EU-wide process [6] |
Germany | Federal Institute for Drugs and Medical Devices (BfArM) | Case-by-case basis with patient consent; insurer review possible [10] |
Italy | Italian Medicines Agency (AIFA) | AIFA-approved list under Law 648/1996; also compassionate use [7] |
Hungary | National Institute for Public Health and Pharmacy (NNGYK) | Named-patient request system via NNGYK when no therapeutic alternatives exist [13] |
France | Agence Nationale de Sécurité du Médicament (ANSM) | RTU framework; aligned with Public Health Code and 2021 reforms [9] |
China | National Medical Products Administration (NMPA) | Permitted under 2022 Physicians Law; justification and patient consent required [11] |
Section A: Theoretical Evidence (Study Protocols) | |||||||
---|---|---|---|---|---|---|---|
Author (Year) | Indication | Category | Study Design | Statin Type | Outcome/Effect | Notes/Role | Patient Number |
Budillon et al. NCT05711095 (2024) [17] | Metastatic pancreatic cancer | Oncology | Phase II RCT protocol | Simvastatin | Hypothesized improvement in PFS (protocol study—no results reported) | Protocol study demonstrating research interest in statin repurposing | 240 planned (study ongoing) |
Section B1: Preclinical evidence: In Vitro Studies | |||||||
Gaber et al. (2024) [18] | Breast cancer | Oncology | In vitro + in vivo (mice) | Atorvastatin | ↑ apoptosis, tumor inhibition | Drug delivery-enhanced model | No human patients (in vitro only) |
Irie et al. (2024) [19] | Melanoma | Oncology | In vitro (human/canine) | Atorvastatin | ↑ cytotoxicity with dipyridamole | Supports drug combination approach | No human patients (cell lines only) |
Kobayashi et al. (2022) [20] | Ovarian cancer | Oncology | In vitro + patient-derived samples | Simvastatin | Biomarkers identified for statin responders | Precision oncology repositioning | Clinical sample analysis, N = unknown |
Section B2: Preclinical evidence: Animal Model Studies | |||||||
Author (Year) | Indication | Category | Study Design | Statin Type | Outcome/Effect | Notes/Role | Patient Number |
Juneja et al. (2017) [21] | Colorectal cancer | Oncology | In vitro + mouse xenograft | Lovastatin | ↓ metastasis via MACC1 inhibition | Metastasis suppression model | No human patients (murine models) |
Ribeiro et al. (2017) [22] | Cryptococcosis | Infectious disease | In vitro + in vivo (mice) | Atorvastatin | ↑ survival + ↓ fungal burden with fluconazole | First in vivo antifungal repositioning data | Mice model, N = 6 per group |
Palacios-Rápalo et al. (2023) [23] | Dengue virus infection | Infectious disease | In vitro + in vivo (mice) | Atorvastatin | ↓ DENV replication with ivermectin combo | Novel antiviral mechanism | Mouse model studies |
Section B3: Preclinical evidence: Mixed Preclinical/Clinical Studies | |||||||
Author (Year) | Indication | Category | Study Design | Statin Type | Outcome/Effect | Notes/Role | Patient Number |
Fuentes-Fayos et al. (2023) [24] | Glioblastoma | Oncology | In vitro + in vivo + human cohort | Simvastatin | Senescence, ↓ proliferation | Translational study with multi-level evidence | Small clinical subgroup (preclinical focus) |
Duarte et al. (2021) [25] | COVID-19 | Infectious disease | Organoids + transcriptomics | Atorvastatin | ↓ viral entry; ↑ immune modulation | Target for pandemic preparedness | No human patients (organoid model) |
Section C: Clinical Evidence (Observational Studies) | |||||||
Author (Year) | Indication | Category | Study Design | Statin Type | Outcome/Effect | Notes/Role | Patient Number |
Chen et al. (2018) [26] | Prostate cancer | Oncology | Retrospective cohort | Simvastatin, Lovastatin | ↓ mortality (HR = 0.63 with high DDD) | Large-scale population data | 22,110 |
Hagiwara et al. (2018) [27] | Renal cell carcinoma | Oncology | Retrospective + mechanistic validation | Simvastatin | ↑ efficacy of mTOR inhibitors | Clinically relevant with mechanistic link | Retrospective cohort, N = 45 |
Lohinai et al. (2016) [28] | Small-cell lung cancer | Oncology | Retrospective (Hungarian) | Multiple statins | ↑ survival with statin use | Direct Hungarian evidence | 876 |
Year | Patient Demographics | Indication | Statin Type and Dose | Proposed Dosage and Expected Duration of Therapy | Approval Conditions |
---|---|---|---|---|---|
2012 | Female child, 4 years old | Hypercholesterinaemia | Simvastatin, 10 mg | 5 mg daily, increased to a maximum of 20 mg/day, continuous use | Expert opinion; post-treatment evaluation report |
2017 | Male infant, 1.5 months old | Smith–Lemli–Opitz syndrome | Simvastatin, 10 mg | 0.5 mg/kg/day, continuous use | Literature support; 3-month reporting |
2021 | Male, 64 years old | Actinic porokeratosis | Simvastatin, 40 mg | Topical ointment applied twice daily, for 3 months | Clinical/safety monitoring; report submission |
2024 | Male, 49 years | Superficial disseminated porokeratosis | Simvastatin, 40 mg | Simvastatin: 2% topical cream, once daily, continuously or in cycles depending on status | Post-treatment evaluation report |
2025 | Female, 55 years | Actinic porokeratosis | Simvastatin, 40 mg | Apply thinly twice daily on affected area—topical application (external use) | Post-treatment evaluation report |
Author (Year) | Indication | Study Design | Statin | Treatment Approach | Key Effect | Relevance | Strength | Weakness | Applicability |
---|---|---|---|---|---|---|---|---|---|
Budillon et al. (2024) [17] | Metastatic pancreatic adenocarcinoma | Prospective clinical trial protocol (Phase II RCT) | Simvastatin (20 mg/day) | Combination with VPA + chemo | Hypothesized ↑ PFS; planned translational biomarker endpoints | Clinical/translational | Randomized design; translational endpoints; known safety profiles | Protocol only—no outcome data yet; limited to PDAC | Potential adjunct to first-line chemotherapy |
Chen et al. (2018) [26] | Prostate cancer | Retrospective cohort study (national database) | Simvastatin, Lovastatin | Monotherapy | ↓ Prostate cancer mortality (HR 0.63 for >180 DDD/year) | Clinical epidemiologic | Large sample; clear dose–response; robust adjustment for confounders | Observational; residual confounding; Taiwan-only population | Potential chemopreventive use in hormone-driven cancers |
Fuentes-Fayos et al. (2023) [24] | Glioblastoma multiforme | Retrospective cohort + in vitro + in vivo xenografts | Simvastatin | Combination with Metformin, adjunctive | Synergistic with metformin: ↑ apoptosis, senescence, ↑ OS in cohort | Translational | Multi-tiered (human, cell, animal); mechanistic depth | Retrospective design; small clinical subgroup; intratumoral dosing | Adjunctive strategy with metformin in GBM therapy |
Gaber et al. (2024) [18] | Breast cancer | In vitro (MCF-7 cells) + in vivo (Ehrlich mice) | Atorvastatin (SLN, Lf-SLN) | Formulation | ↑ tumor cell apoptosis; ↓ tumor volume (SLN > free drug) | Translational/mechanistic | Novel targeted delivery; multiple efficacy measures | Preclinical only; IP delivery; single-tumor model; no PK data | Basis for nanoparticle-enhanced statin therapy in BC |
Hagiwaraa et al. (2018) [27] | Renal cell carcinoma | Retrospective (everolimus users) + in vitro + xenograft | Simvastatin | Combination with Everolimus | ↑ PFS (7.5 vs. 3.2 months); ↑ mTOR-inhibitor efficacy | Translational | Real-world + mechanistic concordance; Rb activation elucidated | Retrospective; potential bias among statin users; single center | Rationale for statin + mTOR inhibitor combination in RCC |
Juneja et al. (2017) [21] | Colorectal cancer | In vitro + in vivo mouse xenograft (MACC1+) | Lovastatin | Monotherapy, preclinical | ↓ Metastasis via MACC1 downregulation | Mechanistic/translational | Clear target (MACC1); robust functional assays | Preclinical; limited to MACC1-driven tumors; IP dosing | Prototype for targeting metastasis-associated pathways |
Irie et al. (2024) [19] | Melanoma | In vitro (human and canine cell lines) | Atorvastatin | Combination with Dipyridamole | Synergistic growth inhibition with dipyridamole | Mechanistic | Demonstrates feedback blockade; cross-species consistency | No in vivo validation; high in vitro doses; safety unknown | Suggested combination therapy strategy for melanoma |
Kobayashi et al. (2022) [20] | Ovarian cancer | In vitro + ex vivo drug response in patient tissue | Simvastatin | Biomarker-guided | Biomarker-guided sensitivity; synergy with paclitaxel/panobinostat | Translational/mechanistic | Integrated biomarker discovery + synergy testing | Preclinical/ex vivo only; requires clinical validation | Precision medicine statin regimens in ovarian cancer |
Lohinai et al. (2016) [28] | Metastatic small-cell lung cancer (SCLC) | Retrospective clinical cohort (Hungarian SCLC data) | Various (atorva/simva) | Monotherapy, observational | ↑ OS (8.4 vs. 6.1 months) in statin users | Clinical | Large real-world cohort; multivariate adjustment | Retrospective; selection bias; lack of dose/duration details | Low-cost adjunct in SCLC—warrants prospective study |
Author (Year) | Indication | Study Design | Statin | Treatment Approach | Key Effect | Relevance | Strength | Weakness | Applicability |
---|---|---|---|---|---|---|---|---|---|
Ribeiro et al. (2017) [22] | Cryptococcal infection | In vitro + in vivo (murine model) | Atorvastatin | Monotherapy + fluconazole | ↓ fungal burden in lungs; synergy with fluconazole | Translational | Dual model; synergistic antifungal effect; dose-effective | Lack of clinical data; unclear PK translatability; no detailed mechanistic confirmation | Promising adjunct therapy for fungal infections; needs clinical validation |
Duarte et al. (2021) [25] | SARS-CoV-2 infection | In silico + in vitro (lung organoids) | Atorvastatin | Organoid model | ↓ viral entry via lipid raft modulation; no cytotoxicity | Translational | Human lung organoids; multimodal design (computational + lab) | No in vivo or clinical validation; pseudotyped virus used; no pharmacokinetic assessment | Basis for antiviral trials in early COVID-19 intervention |
Palacios-Rápalo et al. (2023) [23] | Dengue virus (DENV) infection | In vitro (Huh-7 cells) + in vivo (AG129 mice) | Atorvastatin | Monotherapy + ivermectin | ↓ viral replication, cytokines, mortality; ↑ effect with ivermectin combination | Translational | Demonstrated statins alone and in combo; mechanistic insight into nuclear transport disruption | Immunodeficient model; no PK or human data; NS3 nuclear transport not evaluated in vivo | Foundation for combination therapy trials in viral infections |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Artner, A.; Diler, I.; Hankó, B.; Sebők, S.; Zelkó, R. A Critical Appraisal of Off-Label Use and Repurposing of Statins for Non-Cardiovascular Indications: A Systematic Mini-Update and Regulatory Analysis. J. Clin. Med. 2025, 14, 5436. https://doi.org/10.3390/jcm14155436
Artner A, Diler I, Hankó B, Sebők S, Zelkó R. A Critical Appraisal of Off-Label Use and Repurposing of Statins for Non-Cardiovascular Indications: A Systematic Mini-Update and Regulatory Analysis. Journal of Clinical Medicine. 2025; 14(15):5436. https://doi.org/10.3390/jcm14155436
Chicago/Turabian StyleArtner, Anna, Irem Diler, Balázs Hankó, Szilvia Sebők, and Romána Zelkó. 2025. "A Critical Appraisal of Off-Label Use and Repurposing of Statins for Non-Cardiovascular Indications: A Systematic Mini-Update and Regulatory Analysis" Journal of Clinical Medicine 14, no. 15: 5436. https://doi.org/10.3390/jcm14155436
APA StyleArtner, A., Diler, I., Hankó, B., Sebők, S., & Zelkó, R. (2025). A Critical Appraisal of Off-Label Use and Repurposing of Statins for Non-Cardiovascular Indications: A Systematic Mini-Update and Regulatory Analysis. Journal of Clinical Medicine, 14(15), 5436. https://doi.org/10.3390/jcm14155436