The Effects of Active Methamphetamine Use Disorder and Regular Sports Activities on Brain Volume in Adolescents
Abstract
1. Introduction
2. Materials and Methods
2.1. Participant Selection
2.2. MRI Protocol
2.3. MR Data Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Thanos, P.K.; Kim, R.; Delis, F.; Ananth, M.; Chachati, G.; Rocco, M.J.; Masad, I.; Muniz, J.A.; Grant, S.C.; Gold, M.S.; et al. Chronic Methamphetamine Effects on Brain Structure and Function in Rats. PLoS ONE 2016, 11, e0155457. [Google Scholar] [CrossRef] [PubMed]
- United Nations Office on Drugs. World Drug Report 2024 (Set of 3 Booklets); Stylus Publishing, LLC.: Sterling, VA, USA, 2024. [Google Scholar]
- Orikabe, L.; Yamasue, H.; Inoue, H.; Takayanagi, Y.; Mozue, Y.; Sudo, Y.; Ishii, T.; Itokawa, M.; Suzuki, M.; Kurachi, M.; et al. Reduced amygdala and hippocampal volumes in patients with methamphetamine psychosis. Schizophr. Res. 2011, 132, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Roos, A.; Fouche, J.P.; du Toit, S.; du Plessis, S.; Stein, D.J.; Donald, K.A. Structural brain network development in children following prenatal methamphetamine exposure. J. Comp. Neurol. 2020, 528, 1856–1863. [Google Scholar] [CrossRef] [PubMed]
- AshaRani, P.V.; Hombali, A.; Seow, E.; Ong, W.J.; Tan, J.H.; Subramaniam, M. Non-pharmacological interventions for methamphetamine use disorder: A systematic review. Drug Alcohol. Depend. 2020, 212, 108060. [Google Scholar] [CrossRef] [PubMed]
- Liddell, B.J.; Williams, E.N. Cultural Differences in Interpersonal Emotion Regulation. Front. Psychol. 2019, 10, 999. [Google Scholar] [CrossRef] [PubMed]
- Rawson, R.A.; Chudzynski, J.; Mooney, L.; Gonzales, R.; Ang, A.; Dickerson, D.; Penate, J.; Salem, B.A.; Dolezal, B.; Cooper, C.B. Impact of an exercise intervention on methamphetamine use outcomes post-residential treatment care. Drug Alcohol. Depend. 2015, 156, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, M.H.; Greer, T.L.; Rethorst, C.D.; Carmody, T.; Grannemann, B.D.; Walker, R.; Warden, D.; Shores-Wilson, K.; Stoutenberg, M.; Oden, N.; et al. Randomized Controlled Trial Comparing Exercise to Health Education for Stimulant Use Disorder: Results From the CTN-0037 STimulant Reduction Intervention Using Dosed Exercise (STRIDE) Study. J. Clin. Psychiatry 2017, 78, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Ploughman, M. Exercise is brain food: The effects of physical activity on cognitive function. Dev. Neurorehabil. 2008, 11, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Mahalakshmi, B.; Maurya, N.; Lee, S.D.; Bharath Kumar, V. Possible Neuroprotective Mechanisms of Physical Exercise in Neurodegeneration. Int. J. Mol. Sci. 2020, 21, 5895. [Google Scholar] [CrossRef] [PubMed]
- Tari, A.R.; Walker, T.L.; Huuha, A.M.; Sando, S.B.; Wisloff, U. Neuroprotective mechanisms of exercise and the importance of fitness for healthy brain ageing. Lancet 2025, 405, 1093–1118. [Google Scholar] [CrossRef] [PubMed]
- Barnes, D.E.; Yaffe, K.; Satariano, W.A.; Tager, I.B. A longitudinal study of cardiorespiratory fitness and cognitive function in healthy older adults. J. Am. Geriatr. Soc. 2003, 51, 459–465. [Google Scholar] [CrossRef] [PubMed]
- van Boxtel, M.P.; Paas, F.G.; Houx, P.J.; Adam, J.J.; Teeken, J.C.; Jolles, J. Aerobic capacity and cognitive performance in a cross-sectional aging study. Med. Sci. Sports Exerc. 1997, 29, 1357–1365. [Google Scholar] [CrossRef] [PubMed]
- Guerin, A.A.; Bridson, T.; Plapp, H.M.; Bedi, G. A systematic review and meta-analysis of health, functional, and cognitive outcomes in young people who use methamphetamine. Neurosci. Biobehav. Rev. 2023, 153, 105380. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, H.; Güler, H. Can video-assisted and three-dimensional (3D) anatomy teaching be an alternative to traditional anatomy teaching? Randomized controlled trial on muscular system anatomy. Clin. Anat. 2024, 37, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Jernigan, T.L.; Gamst, A.C.; Archibald, S.L.; Fennema-Notestine, C.; Mindt, M.R.; Marcotte, T.D.; Heaton, R.K.; Ellis, R.J.; Grant, I. Effects of methamphetamine dependence and HIV infection on cerebral morphology. Am. J. Psychiatry 2005, 162, 1461–1472. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Cloak, C.; Patterson, K.; Grob, C.; Miller, E.N.; Ernst, T. Enlarged striatum in abstinent methamphetamine abusers: A possible compensatory response. Biol. Psychiatry 2005, 57, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Alicata, D.; Ernst, T.; Volkow, N. Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction 2007, 102 (Suppl. 1), 16–32. [Google Scholar] [CrossRef] [PubMed]
- Sowell, E.R.; Leow, A.D.; Bookheimer, S.Y.; Smith, L.M.; O’Connor, M.J.; Kan, E.; Rosso, C.; Houston, S.; Dinov, I.D.; Thompson, P.M. Differentiating prenatal exposure to methamphetamine and alcohol versus alcohol and not methamphetamine using tensor-based brain morphometry and discriminant analysis. J. Neurosci. Off. J. Soc. Neurosci. 2010, 30, 3876–3885. [Google Scholar] [CrossRef] [PubMed]
- Roos, A.; Jones, G.; Howells, F.M.; Stein, D.J.; Donald, K.A. Structural brain changes in prenatal methamphetamine-exposed children. Metab. Brain Dis. 2014, 29, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Warton, F.L.; Meintjes, E.M.; Warton, C.M.R.; Molteno, C.D.; Lindinger, N.M.; Carter, R.C.; Zollei, L.; Wintermark, P.; Jacobson, J.L.; van der Kouwe, A.; et al. Prenatal methamphetamine exposure is associated with reduced subcortical volumes in neonates. Neurotoxicol. Teratol. 2018, 65, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, S.; Raikes, A.; Smith, R.; Dailey, N.S.; Alkozei, A.; Vanuk, J.R.; Killgore, W.D.S. The Relationship Between General Intelligence and Cortical Structure in Healthy Individuals. Neuroscience 2018, 388, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Petzold, J.; Dean, A.C.; Pochon, J.B.; Ghahremani, D.G.; De La Garza, R., 2nd; London, E.D. Cortical thickness and related depressive symptoms in early abstinence from chronic methamphetamine use. Addict. Biol. 2022, 27, e13205. [Google Scholar] [CrossRef] [PubMed]
- Nakama, H.; Chang, L.; Fein, G.; Shimotsu, R.; Jiang, C.S.; Ernst, T. Methamphetamine users show greater than normal age-related cortical gray matter loss. Addiction 2011, 106, 1474–1483. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.M.; Hayashi, K.M.; Simon, S.L.; Geaga, J.A.; Hong, M.S.; Sui, Y.; Lee, J.Y.; Toga, A.W.; Ling, W.; London, E.D. Structural abnormalities in the brains of human subjects who use methamphetamine. J. Neurosci. Off. J. Soc. Neurosci. 2004, 24, 6028–6036. [Google Scholar] [CrossRef] [PubMed]
- Berman, S.; O’Neill, J.; Fears, S.; Bartzokis, G.; London, E.D. Abuse of amphetamines and structural abnormalities in the brain. Ann. N. Y. Acad. Sci. 2008, 1141, 195–220. [Google Scholar] [CrossRef] [PubMed]
- Nestor, L.J.; Ghahremani, D.G.; Monterosso, J.; London, E.D. Prefrontal hypoactivation during cognitive control in early abstinent methamphetamine-dependent subjects. Psychiatry Res. 2011, 194, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Weafer, J.; Van Hedger, K.; Keedy, S.K.; Nwaokolo, N.; de Wit, H. Methamphetamine acutely alters frontostriatal resting state functional connectivity in healthy young adults. Addict. Biol. 2020, 25, e12775. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.; Smith, R.; Misquitta, D. Neuroimaging and Violence. Psychiatr. Clin. N. Am. 2016, 39, 579–597. [Google Scholar] [CrossRef] [PubMed]
- Marshall, B.D.L.; Werb, D. Health outcomes associated with methamphetamine use among young people: A systematic review. Addiction 2010, 105, 991–1002. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zheng, Y.; Gao, D.; Hu, M.; Yuan, T. Effects of Exercise on Depression, Anxiety, Cognitive Control, Craving, Physical Fitness and Quality of Life in Methamphetamine-Dependent Patients. Front. Psychiatry 2019, 10, 999. [Google Scholar] [CrossRef] [PubMed]
- Morais, A.P.D.; Pita, I.R.; Fontes-Ribeiro, C.A.; Pereira, F.C. The neurobiological mechanisms of physical exercise in methamphetamine addiction. CNS Neurosci. Ther. 2018, 24, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lu, Y.; Jin, X.; Liu, J.; Finlayson, G.; Zhou, C. Effects of moderate- and high-intensity acute aerobic exercise on food reward and appetite in individuals with methamphetamine dependence. Physiol. Behav. 2019, 211, 112649. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.L.; Zhong, N.; Yang, Z.; Fan, X.D.; Zhuang, W.X.; Du, J.; Jiang, H.F.; Zhao, M. Gray matter volume showed dynamic alterations in methamphetamine users at 6 and 12 months abstinence: A longitudinal voxel-based morphometry study. Prog. Neuro-Psychoph 2018, 81, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; He, L.; Huang, S.; Fan, L.; Li, Y.; Li, P.; Zhang, J.; Liu, J.; Yang, R. Alteration of Brain Structure With Long-Term Abstinence of Methamphetamine by Voxel-Based Morphometry. Front. Psychiatry 2018, 9, 722. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.Y.; Jiang, P.; Gao, Y.X.; Sun, J.Y.; Zhou, X.B.; Zhang, L.Q.; Qiu, H.; Li, H.L.; Cao, L.X.; Liu, J.; et al. Brain morphometric abnormalities and their associations with affective symptoms in males with methamphetamine use disorder during abstinence. Front. Psychiatry 2022, 13, 1003889. [Google Scholar] [CrossRef]
Participant ID | Sex | Age (Years) | Years of Sport Participation | Weekly Running Frequency | Weekly Running Distance | Single Training Session Duration | Years of Substance Use | Daily Substance Use Frequency | Weekly Substance Use Frequency (Days) | Average Dose per Use (mg) | Total Daily Dose (Average mg) |
---|---|---|---|---|---|---|---|---|---|---|---|
A1 | F | 13 | 2 | 3 | 25–35 km | 60–75 min | N/A | N/A | N/A | N/A | N/A |
A2 | F | 12 | 1 | 3 | 25–35 km | 60–75 min | N/A | N/A | N/A | N/A | N/A |
A3 | M | 16 | 3 | 3 | 25–35 km | 60–75 min | N/A | N/A | N/A | N/A | N/A |
A4 | M | 13 | 2 | 3 | 25–35 km | 60–75 min | N/A | N/A | N/A | N/A | N/A |
A5 | F | 16 | 2 | 3 | 25–35 km | 60–75 min | N/A | N/A | N/A | N/A | N/A |
A6 | F | 13 | 1 | 3 | 25–35 km | 60–75 min | N/A | N/A | N/A | N/A | N/A |
A7 | F | 13 | 1 | 3 | 25–35 km | 60–75 min | N/A | N/A | N/A | N/A | N/A |
A8 | M | 13 | 1 | 3 | 25–35 km | 60–75 min | N/A | N/A | N/A | N/A | N/A |
A9 | F | 13 | 2 | 3 | 25–35 km | 60–75 min | N/A | N/A | N/A | N/A | N/A |
MUD1 | M | 17 | N/A | N/A | N/A | N/A | 4 | 3 | 4 | 150 | 450 |
MUD2 | M | 17 | N/A | N/A | N/A | N/A | 3 | 2 | 5 | 150 | 300 |
MUD3 | M | 16 | N/A | N/A | N/A | N/A | 4 | 3 | 5 | 150 | 450 |
MUD4 | M | 17 | N/A | N/A | N/A | N/A | 5 | 3 | 6 | 150 | 450 |
MUD5 | M | 17 | N/A | N/A | N/A | N/A | 4 | 2 | 3 | 150 | 300 |
MUD6 | M | 17 | N/A | N/A | N/A | N/A | 5 | 3 | 5 | 150 | 450 |
MUD7 | M | 16 | N/A | N/A | N/A | N/A | 3 | 2 | 5 | 150 | 300 |
MUD8 | M | 16 | N/A | N/A | N/A | N/A | 3 | 2 | 4 | 150 | 300 |
MUD9 | M | 16 | N/A | N/A | N/A | N/A | 3 | 3 | 4 | 150 | 450 |
MUD10 | F | 17 | N/A | N/A | N/A | N/A | 3 | 2 | 4 | 150 | 300 |
Intracranial Structure (mm3) | Control (Mean ± Std) | MUD (Mean ± Std) | Athlete (Mean ± Std) | Sig. (p) | (ηp2) | Observed Power |
---|---|---|---|---|---|---|
White matter | 494.87 ± 30.97 | 518.73 ± 53.41 | 455.26 ± 49.04 | 0.051 | 0.266 | 0.638 |
Gray matter | 776.20 ± 72.27 | 759.72 ± 58.96 | 757.11 ± 89.57 | 0.506 | 0.088 | 0.197 |
Total brain volume | 1271.07 ± 88.91 | 1278.45 ± 109.72 | 1212.37 ± 134.77 | 0.428 | 0.103 | 0.230 |
Intracranial cavity | 1422.54 ± 96.97 | 1435.26 ± 132.41 | 1331.70 ± 145.33 | 0.221 | 0.159 | 0.362 |
Cerebrum T | 1123.76 ± 78.95 | 1128.37 ± 105.54 | 1072.80 ± 121.81 | 0.504 | 0.088 | 0.198 |
Frontal lobe T | 212.55 ± 18.77 | 199.85 ± 21.32 | 206.87 ± 28.38 | 0.219 | 0.159 | 0.364 |
Temporal lobe T | 127.43 ± 12.09 | 125.10 ± 11.43 | 122.99 ± 15.86 | 0.639 | 0.064 | 0.151 |
Parietal lobe T | 113.82 ± 12.19 | 112.31 ± 8.80 | 114.23 ± 13.96 | 0.974 | 0.009 | 0.061 |
Occipital lobe T | 80.05 ± 10.06 | 79.44 ± 10.46 | 79.49 ± 11.40 | 0.515 | 0.086 | 0.194 |
Limbic cortex T | 45.55 ± 4.37 | 45.88 ± 4.76 | 45.00 ± 6.27 | 0.720 | 0.051 | 0.127 |
Insular cortex T | 34.24 ± 3.95 | 32.38 ± 3.11 | 32.43 ± 5.81 | 0.440 | 0.101 | 0.225 |
Brain Structure | Control (Mean ± Std) | MUD (Mean ± Std) | Athlete (Mean ± Std) | Sig. (p) | (ηp2) | Observed Power |
---|---|---|---|---|---|---|
White matter | 39.00 ± 2.07 | 40.52 ± 1.12 | 37.58 ± 1.27 b | 0.001 | 0.460 | 0.960 |
Gray matter | 60.99 ± 2.07 | 59.47 ± 1.12 | 62.41 ± 1.27 b | 0.001 | 0.460 | 0.960 |
Cortical grey matter | 48.21 ± 1.58 | 46.24 ± 1.25 a | 49.60 ± 1.55 b | <0.001 | 0.527 | 0.991 |
Cerebrum WM T | 36.50 ± 2.00 | 37.98 ± 1.14 | 35.14 ± 1.14 b | 0.001 | 0.458 | 0.959 |
Cerebrum WM R | 18.28 ± 1.01 | 19.06 ± 0.60 | 17.65 ± 0.61 b | 0.002 | 0.447 | 0.950 |
Cerebrum WM L | 18.22 ± 0.99 | 18.91 ± 0.54 | 17.48 ± 0.59 b | 0.001 | 0.454 | 0.956 |
Cerebrum GM T | 51.90 ± 1.54 | 50.22 ± 1.11 a,c | 53.32 ± 1.51 | <0.001 | 0.516 | 0.987 |
Cerebrum GM R | 26.05 ± 0.78 | 25.22 ± 0.59 c | 26.77 ± 0.82 | <0.001 | 0.476 | 0.971 |
Cerebrum GM L | 25.85 ± 0.76 | 24.99 ± 0.53 a,c | 26.54 ± 0.79 | <0.001 | 0.511 | 0.989 |
Frontal lobe T | 16.70 ± 0.59 | 15.62 ± 0.85 a,c | 17.03 ± 0.98 | 0.001 | 0.460 | 0.961 |
Frontal lobe L | 8.27 ± 0.32 | 7.73 ± 0.44 a,c | 8.42 ± 0.53 | 0.003 | 0.424 | 0.930 |
Triangular inf. frontal gyrus R | 0.32 ± 0.03 | 0.27 ± 0.04 a,c | 0.29 ± 0.02 | 0.015 | 0.336 | 0.797 |
Insular cortex R | 1.33 ± 0.10 | 1.25 ± 0.07 c | 1.38 ± 0.05 | 0.024 | 0.309 | 0.739 |
Insular cortex L | 1.35 ± 0.07 | 1.27 ± 0.05 a,c | 1.38 ± 0.08 | 0.009 | 0.365 | 0.849 |
Anterior insula L | 0.38 ± 0.02 | 0.37 ± 0.02 c | 0.40 ± 0.02 | 0.011 | 0.355 | 0.832 |
Central operculum T | 0.71 ± 0.05 | 0.67 ± 0.03 c | 0.75 ± 0.03 | 0.006 | 0.382 | 0.877 |
Central operculum R | 0.35 ± 0.02 | 0.33 ± 0.03 c | 0.37 ± 0.02 | 0.017 | 0.328 | 0.781 |
Frontal operculum T | 0.38 ± 0.03 | 0.34 ± 0.02 c | 0.39 ± 0.02 | 0.006 | 0.384 | 0.879 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yiğit, H.; Güler, H.; Temircan, Z.; Gökoğlu, A.; Ökçesiz, İ.; Artar, M.; Dönmez, H.; Unur, E.; Yılmaz, H. The Effects of Active Methamphetamine Use Disorder and Regular Sports Activities on Brain Volume in Adolescents. J. Clin. Med. 2025, 14, 5212. https://doi.org/10.3390/jcm14155212
Yiğit H, Güler H, Temircan Z, Gökoğlu A, Ökçesiz İ, Artar M, Dönmez H, Unur E, Yılmaz H. The Effects of Active Methamphetamine Use Disorder and Regular Sports Activities on Brain Volume in Adolescents. Journal of Clinical Medicine. 2025; 14(15):5212. https://doi.org/10.3390/jcm14155212
Chicago/Turabian StyleYiğit, Hüseyin, Hatice Güler, Zekeriya Temircan, Abdulkerim Gökoğlu, İzzet Ökçesiz, Müge Artar, Halil Dönmez, Erdoğan Unur, and Halil Yılmaz. 2025. "The Effects of Active Methamphetamine Use Disorder and Regular Sports Activities on Brain Volume in Adolescents" Journal of Clinical Medicine 14, no. 15: 5212. https://doi.org/10.3390/jcm14155212
APA StyleYiğit, H., Güler, H., Temircan, Z., Gökoğlu, A., Ökçesiz, İ., Artar, M., Dönmez, H., Unur, E., & Yılmaz, H. (2025). The Effects of Active Methamphetamine Use Disorder and Regular Sports Activities on Brain Volume in Adolescents. Journal of Clinical Medicine, 14(15), 5212. https://doi.org/10.3390/jcm14155212