Global Cognition and Inhibition as Predictors of Dynamic Balance in Aging Populations: A Cross-Sectional Study
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Measurements
2.3. Cognitive Tests
2.3.1. Deary–Liewald Reaction Time Task (DLRT)
2.3.2. Stroop Color–Word Test
2.3.3. N-Back Test
2.3.4. Balance Tests
2.4. Data Management and Analysis
3. Results
3.1. Participants
3.2. Association Between Demographic Information and Cognitive and Dynamic Balance Measures
3.3. Association Among Cognitive and Dynamic Balance Measures
3.4. Cognitive Domains Predicting Dynamic Balance Beyond the Effect of Age and Education
3.5. Cognitive Domains Predicting TUG Versus YBT
3.5.1. Model 1: Inhibition (Stroop Test)
3.5.2. Model 2: Global Cognition (MMSE)
3.5.3. Model 3: Working Memory (N-back)
3.5.4. Model 4: Processing Speed (Deary–Liewald Reaction Time Test)
4. Discussion
5. Clinical Implications
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Falls. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/falls (accessed on 24 June 2025).
- Thomas, E.; Battaglia, G.; Patti, A.; Brusa, J.; Leonardi, V.; Palma, A.; Bellafiore, M. Physical activity programs for balance and fall prevention in elderly: A systematic review. Medicine 2019, 98, e16218. [Google Scholar] [CrossRef]
- Chantanachai, T.; Sturnieks, D.L.; Lord, S.R.; Payne, N.; Webster, L.; Taylor, M.E. Risk factors for falls in older people with cognitive impairment living in the community: Systematic review and meta-analysis. Ageing Res. Rev. 2021, 71, 101452. [Google Scholar] [CrossRef]
- Chantanachai, T.; Taylor, M.E.; Lord, S.R.; Menant, J.; Delbaere, K.; Sachdev, P.S.; Kochan, N.A.; Brodaty, H.; Sturnieks, D.L. Risk factors for falls in community-dwelling older people with mild cognitive impairment: A prospective one-year study. PeerJ 2022, 10, e13484. [Google Scholar] [CrossRef]
- Bednarczuk, G.; Rutkowska, I. Factors of balance determining the risk of falls in physically active women aged over 50 years. PeerJ 2022, 10, e12952. [Google Scholar] [CrossRef]
- Nashner, L.M. Practical biomechanics and physiology of balance. In Balance Function Assessment and Management; Plural Publishing, Inc.: San Diego, CA, USA, 2014; p. 431. [Google Scholar]
- Muir-Hunter, S.W.; Clark, J.; McLean, S.; Pedlow, S.; Van Hemmen, A.; Odasso, M.M.; Overend, T. Identifying balance and fall risk in community-dwelling older women: The effect of executive function on postural control. Physiother. Can. 2014, 66, 179–186. [Google Scholar] [CrossRef]
- Divandari, N.; Bird, M.-L.; Vakili, M.; Jaberzadeh, S. The Association Between Cognitive Domains and Postural Balance among Healthy Older Adults: A Systematic Review of Literature and Meta-Analysis. Curr. Neurol. Neurosci. Rep. 2023, 23, 681–693. [Google Scholar] [CrossRef]
- Szczepańska-Gieracha, J.; Cieślik, B.; Chamela-Bilińska, D.; Kuczyński, M. Postural stability of elderly people with cognitive impairments. Am. J. Alzheimers Dis. Other Dement. 2015, 31, 241–246. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, H.; Du, C. Association of physical fitness with cognitive function in the community-dwelling older adults. BMC Geriatr. 2022, 22, 868. [Google Scholar] [CrossRef]
- Eikelboom, W.S.; Bertens, D.; Kessels, R.P.C. Cognitive Rehabilitation in Normal Aging and Individuals with Subjective Cognitive Decline. In Cognitive Rehabilitation and Neuroimaging; DeLuca, J., Chiaravalloti, N.D., Weber, E., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Li, K.Z.H.; Bherer, L.; Mirelman, A.; Maidan, I.; Hausdorff, J.M. Cognitive involvement in balance, gait and dual-tasking in aging: A focused review from a neuroscience of aging perspective. Front. Neurol. 2018, 9, 913. [Google Scholar] [CrossRef]
- Seidler, R.D.; Bernard, J.A.; Burutolu, T.B.; Fling, B.W.; Gordon, M.T.; Gwin, J.T.; Kwak, Y.; Lipps, D.B. Motor control and aging: Links to age-related brain structural, functional, and biochemical effects. Neurosci. Biobehav. Rev. 2010, 34, 721–733. [Google Scholar] [CrossRef]
- Ödemişlioğlu-Aydın, E.A.; Aksoy, S. Evaluation of balance and executive function relationships in older individuals. Aging Clin. Exp. Res. 2023, 35, 2555–2562. [Google Scholar] [CrossRef]
- Schmid, D.G. Prospects of cognitive-motor entrainment: An interdisciplinary review. Front. Cogn. 2024, 3, 1354116. [Google Scholar] [CrossRef]
- Divandari, N.; Bird, M.; Vakili, M.; Jaberzadeh, S. The association between dynamic balance and executive function: Which dynamic balance test has the strongest association with executive function? Curr. Neurol. Neurosci. Rep. 2024, 24, 151–161. [Google Scholar] [CrossRef]
- Park, K.-N.; Yang, M.; Yoo, T.-G.; Kim, S.-H. One-Leg Standing and Y-Balance Test Performance in Elderly Fallers and Nonfallers. Top. Geriatr. Rehabil. 2020, 36, 92–96. [Google Scholar] [CrossRef]
- Oberlin, L.E.; Wan, L.; Kang, C.; Lin, C.Y.; Wojtalewicz, A.; Rogers, C.; Kramer, A.F. Cardiorespiratory fitness is associated with cognitive function in late adulthood: Baseline findings from the IGNITE study. Br. J. Sports Med. 2025, 59, 167–176. [Google Scholar] [CrossRef]
- Nagaratnam, J.M.; Sharmin, S.; Diker, A.; Lim, W.K.; Maier, A.B. Trajectories of Mini-Mental State Examination Scores over the Lifespan in General Populations: A Systematic Review and Meta-Regression Analysis. Clin. Gerontol. 2022, 45, 467–476. [Google Scholar] [CrossRef]
- Kim, J.; Gabriel, U.; Gygax, P.; Frank, S.L. Testing the effectiveness of the Internet-based instrument PsyToolkit: A comparison between web-based (PsyToolkit) and lab-based (E-Prime 3.0) measurements of response choice and response time in a complex psycholinguistic task. PLoS ONE 2019, 14, e0221802. [Google Scholar] [CrossRef]
- Deary, I.J.; Liewald, D.; Nissan, J. A free, easy-to-use, computer-based simple and four-choice reaction time programme: The Deary-Liewald reaction time task. Behav. Res. Methods 2011, 43, 258–268. [Google Scholar] [CrossRef]
- Ferreira, S.; Raimundo, A.; del Pozo-Cruz, J.; Marmeleira, J. Psychometric properties of a computerized and hand-reaction time tests in older adults using long-term facilities with and without mild cognitive impairment. Exp. Gerontol. 2021, 147, 111271. [Google Scholar] [CrossRef]
- Strauss, E.; Sherman, E.M.S.; Spreen, O. A compendium of Neuropsychological Tests: Administration, Norms, and Commentary, 3rd ed.; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Periáñez, J.A.; Lubrini, G.; García-Gutiérrez, A.; Ríos-Lago, M. Construct Validity of the Stroop Color-Word Test: Influence of Speed of Visual Search, Verbal Fluency, Working Memory, Cognitive Flexibility, and Conflict Monitoring. Arch. Clin. Neuropsychol. 2020, 36, 99–111. [Google Scholar] [CrossRef]
- Kirchner, W.K. Age differences in short-term retention of rapidly changing information. J. Exp. Psychol. 1958, 55, 352–358. [Google Scholar] [CrossRef]
- Hockey, A.; Geffen, G. The concurrent validity and test–retest reliability of a visuospatial working memory task. Intelligence 2004, 32, 591–605. [Google Scholar] [CrossRef]
- Dai, M.; Li, Y.; Gan, S.; Du, F. The reliability of estimating visual working memory capacity. Sci. Rep. 2019, 9, 1155. [Google Scholar] [CrossRef]
- Plisky, P.J.; Gorman, P.P.; Butler, R.J.; Kiesel, K.B.; Underwood, F.B.; Elkins, B. The reliability of an instrumented device for measuring components of the star excursion balance test. N. Am. J. Sports Phys. Ther. 2009, 4, 92–99. [Google Scholar]
- Sipe, C.L.; Ramey, K.D.; Plisky, P.P.; Taylor, J.D. Y-Balance Test: A Valid and Reliable Assessment in Older Adults. J. Aging Phys. Act. 2019, 27, 663–669. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics; Pearson: London, UK, 2019. [Google Scholar]
- Rabbitt, P.; Scott, M.; Thacker, N.; Lowe, C.; Horan, M.; Pendleton, N.; Hutchinson, D.; Jackson, A. Balance marks cognitive changes in old age because it reflects global brain atrophy and cerebro-arterial blood-flow. Neuropsychologia 2006, 44, 1978–1983. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1998. [Google Scholar] [CrossRef]
- Biasin, F.; Ceolin, C.; Celli, S.; Terziotti, C.; Raffaelli, C.; Bontempi, C.; Devita, M.; De Rui, M.; Sergi, G.; Coin, A. Interrelation between functional decline and dementia: The potential role of balance assessment. Hum. Mov. Sci. 2023, 89, 103095. [Google Scholar] [CrossRef]
- Matos, F.d.O.; Vido, A.; Garcia, W.F.; Lopes, W.A.; Pereira, A. A Neurovisceral integrative study on cognition, heart rate variability, and fitness in the elderly. Front. Aging Neurosci. 2020, 12, 51. [Google Scholar] [CrossRef]
- Goto, S.; Sasaki, A.; Takahashi, I.; Mitsuhashi, Y.; Nakaji, S.; Matsubara, A. Relationship between cognitive function and balance in a community-dwelling population in Japan. Acta Oto-Laryngol. 2018, 138, 471–474. [Google Scholar] [CrossRef]
- Shahar, S.; Din, N.C.; Singh, D.K.A.; Badrasawi, M.; Manaf, Z.A.; Tan, S.-T.; Tai, C.-C.; Won, H. Relationship between physical performance and cognitive performance measures among community-dwelling older adults. Clin. Epidemiol. 2014, 6, 343–350. [Google Scholar] [CrossRef]
- Kwan, M.M.-S.; Lin, S.-I.; Chen, C.-H.; Close, J.C.T.; Lord, S.R. Sensorimotor function, balance abilities and pain influence Timed Up and Go performance in older community-living people. Aging Clin. Exp. Res. 2011, 23, 196–201. [Google Scholar] [CrossRef]
- Elovainio, M.; Kivimaki, M.; Ferrie, J.E.; Gimeno, D.; De Vogli, R.; Virtanen, M.; Vahtera, J.; Brunner, E.J.; Marmot, M.G.; Singh-Manoux, A. Physical and cognitive function in midlife: Reciprocal effects? A 5-year follow-up of the Whitehall II study. J. Epidemiol. Community Health 2009, 63, 468–473. [Google Scholar] [CrossRef]
- Gothe, N.P.; Fanning, J.; Awick, E.; Chung, D.; Wójcicki, T.R.; Olson, E.A.; Mullen, S.P.; Voss, M.; Erickson, K.I.; Kramer, A.F.; et al. Executive Function Processes Predict Mobility Outcomes in Older Adults. J. Am. Geriatr. Soc. 2014, 62, 285–290. [Google Scholar] [CrossRef]
- Berryman, N.; Bherer, L.; Nadeau, S.; Lauzière, S.; Lehr, L.; Bobeuf, F.; Kergoat, M.J.; Vu, T.T.M.; Bosquet, L. Executive functions, physical fitness and mobility in well-functioning older adults. Exp. Gerontol. 2013, 48, 1402–1409. [Google Scholar] [CrossRef]
- Zettel-Watson, L.; Suen, M.; Wehbe, L.; Rutledge, D.N.; Cherry, B.J. Aging well: Processing speed inhibition and working memory related to balance and aerobic endurance. Geriatr. Gerontol. Int. 2017, 17, 108–115. [Google Scholar] [CrossRef]
- Levin, O.; Fujiyama, H.; Boisgontier, M.P.; Swinnen, S.P.; Summers, J.J. Aging and motor inhibition: A converging perspective provided by brain stimulation and imaging approaches. Neurosci. Biobehav. Rev. 2014, 43, 100–117. [Google Scholar] [CrossRef]
- Redfern, M.S.; Jennings, J.R.; Mendelson, D.; Nebes, R.D. Perceptual Inhibition is Associated with Sensory Integration in Standing Postural Control Among Older Adults. J. Gerontol. Ser. B 2009, 64B, 569–576. [Google Scholar] [CrossRef]
- Boisgontier, M.P.; Cheval, B.; Chalavi, S.; van Ruitenbeek, P.; Leunissen, I.; Levin, O.; Nieuwboer, A.; Swinnen, S.P. Individual differences in brainstem and basal ganglia structure predict postural control and balance loss in young and older adults. Neurobiol. Aging 2017, 50, 47–59. [Google Scholar] [CrossRef]
- Horak, F.B.; Macpherson, J.M. Postural orientation and balance. Compr. Physiol. 2011, 255–292. [Google Scholar]
- Dinomais, M.; Celle, S.; Duval, G.T.; Roche, F.; Henni, S.; Bartha, R.; Beauchet, O.; Annweiler, C.; Schwarz, A.J. Brain structures associated with Mini-Mental State Examination scores in healthy older adults using voxel-based morphometry. PLoS ONE 2016, 11, e0162889. [Google Scholar] [CrossRef]
- Rolls, E.T. The cingulate cortex and limbic systems: Evaluation, action, and memory. In The Brain, Emotion, and Depression; Oxford University Press: Oxford, UK, 2019; pp. 31–33. [Google Scholar] [CrossRef]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef]
- Konstantinović, U.; Bjekić, J.; Purić, D.; Filipović, S. Assessment of inhibitory control in healthy humans—Behavioral measures. IBRO Neurosci. Rep. 2023, 15, S856. [Google Scholar] [CrossRef]
- Anderson, M.C.; Crespo-Garcia, M.; Subbulakshmi, S. Brain mechanisms underlying the inhibitory control of thought. Nat. Rev. Neurosci. 2025, 26, 415–437. [Google Scholar] [CrossRef]
- Aron, A.R.; Robbins, T.W.; Poldrack, R.A. Inhibition and the right inferior frontal cortex. Trends Cogn. Sci. 2004, 8, 170–177. [Google Scholar] [CrossRef]
- Long, J.; Song, X.; Wang, Y.; Wang, C.; Huang, R.; Zhang, R. Distinct neural activation patterns of age in subcomponents of inhibitory control: A fMRI meta-analysis. Front. Aging Neurosci. 2022, 14, 938789. [Google Scholar] [CrossRef]
- Kang, W.; Wang, J.; Malvaso, A. Inhibitory Control in Aging: The Compensation-Related Utilization of Neural Circuits Hypothesis. Front. Aging Neurosci. 2022, 13, 771885. [Google Scholar] [CrossRef]
- Lu, M.; Preston, J.B.; Strick, P.L. Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. J. Comp. Neurol. 1994, 341, 375–392. [Google Scholar] [CrossRef]
- Fine, J.M.; Hayden, B.Y. The whole prefrontal cortex is premotor cortex. arXiv 2021, arXiv:2106.04651. [Google Scholar] [CrossRef]
- Bahureksa, L.; Najafi, B.; Saleh, A.; Sabbagh, M.; Coon, D.; Mohler, M.J.; Schwenk, M. The Impact of Mild Cognitive Impairment on Gait and Balance: A Systematic Review and Meta-Analysis of Studies Using Instrumented Assessment. Gerontology 2016, 63, 67–83. [Google Scholar] [CrossRef]
- Liu-Ambrose, T.; Donaldson, M.G.; Ahamed, Y.; Graf, P.; Cook, W.L.; Close, J.; Lord, S.R.; Khan, K.M. Otago Home-Based Strength and Balance Retraining Improves Executive Functioning in Older Fallers: A Randomized Controlled Trial. J. Am. Geriatr. Soc. 2008, 56, 1821–1830. [Google Scholar] [CrossRef]
- De Almeida, M.P.C.; de Lima, T.R.; da Silva, K.S.; Mazo, G.Z. Influence of frailty and cognitive decline on dual task performance in older adults: An analytical cross-sectional study. Rev. Lat.-Am. De Enferm. 2025, 33, e4485. [Google Scholar] [CrossRef]
- Alice, A.; Yadav, M.; Verma, R.; Kumari, M.; Arora, S. Effect of obesity on balance. Int. J. Heal Sci. 2022, 6, 3261–3279. [Google Scholar] [CrossRef]
- Hartanto, A.; Yong, J.C.; Toh, W.X. Bidirectional Associations between Obesity and Cognitive Function in Midlife Adults: A Longitudinal Study. Nutrients 2019, 11, 2343. [Google Scholar] [CrossRef]
Variables | Number (%) | Mean ± SD |
---|---|---|
Age | 62 | 74 ± 8.6 |
BMI | 62 | 28.1 ± 5.7 |
Education | ||
High school | 33 (53.2%) | |
College/Diploma | 11 (17.7%) | |
Bachelor | 10 (16.1%) | |
Master/PhD | 8 (12.9%) | |
Sex | ||
Female | 41 (66%) | |
Male | 21 (34) | |
Falls history | ||
Yes | 25 (40%) | |
No | 37 (60%) |
Variables | Mean | SD | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|---|
1—YBT | 56.9 | 17.3 | 1 | |||||
2—TUG | 6.7 | 1.5 | −0.607 ** | 1 | ||||
3—MMSE | 28.2 | 1.6 | 0.473 ** | −0.478 ** | 1 | |||
4—Deary–Liewald | 672.4 | 141.7 | −0.379 ** | 0.501 ** | −0.315 | 1 | ||
5—Stroop | 1297.5 | 191.6 | −0.567 ** | 0.405 ** | −0.345 ** | 0.527 ** | 1 | |
6—N-back | 59.5 | 17.5 | 0.346 ** | −0.221 | 0.237 | −0.144 | −0.295 * | 1 |
Model 1 | Model 2 | ||||
---|---|---|---|---|---|
Independent Variables | YBT | TUG | Independent Variables | YBT | TUG |
Step 1: Background variables | Step 1: Background variables | ||||
Age | −0.558 *** | 0.627 *** | Age | −0.558 *** | 0.627 *** |
Education | 0.234 * | −0.318 *** | Education | 0.234 ** | −0.318 *** |
Step 2: Cognitive variable | Step 2: Cognitive variable | ||||
Age | −0.398 ** | 0.673 *** | Age | −0.463 ** | 0.544 *** |
Education | 0.176 | −0.335 *** | Education | 0.206 * | −0.293 *** |
Inhibition | 0.284 * | −0.082 | Global cognition | 0.280 ** | −0.243 ** |
R2 step 1 (Age + Edu) | 0.399 | 0.544 | R2 step 1 (Age + Edu) | 0.399 | 0.544 |
R2 step 2 (Age + Edu + Inhibition) | 0.449 | 0.548 | R2 step 2 (Age + Edu + global cognition) | 0.467 | 0.595 |
R2 change | 0.050* | 0.004 | R2 change | 0.068 ** | 0.051 ** |
Model 3 | Model 4 | ||||
Independent Variables | YBT | TUG | Independent Variables | YBT | TUG |
Step 1: Background variables | Step 1: Background variables | ||||
Age | −0.525 *** | 0.627 *** | Age | −0.558 *** | 0.627 *** |
Education | 0.234 * | −0.318 *** | Education | 0.234 * | −0.318 *** |
Step 2: Cognitive variable | Step 2: Cognitive variable | ||||
Age | −0.525 *** | 0.626 *** | Age | −0.539 *** | 0.561 *** |
Education | 0.189 | −0.317 *** | Education | 0.227 | −0.292 ** |
Working memory | 0.185 | −0.004 | Processing speed | −0.039 | 0.132 |
R2 step 1 (Age + Edu) | 0.399 | 0.544 | R2 step 1 (Age + Edu) | 0.399 | 0.529 |
R2 step 2 (Age + Edu + Working Memory) | 0.43 | 0.544 | R2 step 2 (Age + Edu + Processing speed) | 0.4 | 0.533 |
R2 change | 0.031 | 0 | R2 change | 0.001 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Divandari, N.; Bird, M.-L.; Zoghi, M.; Vakili, F.; Jaberzadeh, S. Global Cognition and Inhibition as Predictors of Dynamic Balance in Aging Populations: A Cross-Sectional Study. J. Clin. Med. 2025, 14, 4754. https://doi.org/10.3390/jcm14134754
Divandari N, Bird M-L, Zoghi M, Vakili F, Jaberzadeh S. Global Cognition and Inhibition as Predictors of Dynamic Balance in Aging Populations: A Cross-Sectional Study. Journal of Clinical Medicine. 2025; 14(13):4754. https://doi.org/10.3390/jcm14134754
Chicago/Turabian StyleDivandari, Nahid, Marie-Louise Bird, Maryam Zoghi, Fefe Vakili, and Shapour Jaberzadeh. 2025. "Global Cognition and Inhibition as Predictors of Dynamic Balance in Aging Populations: A Cross-Sectional Study" Journal of Clinical Medicine 14, no. 13: 4754. https://doi.org/10.3390/jcm14134754
APA StyleDivandari, N., Bird, M.-L., Zoghi, M., Vakili, F., & Jaberzadeh, S. (2025). Global Cognition and Inhibition as Predictors of Dynamic Balance in Aging Populations: A Cross-Sectional Study. Journal of Clinical Medicine, 14(13), 4754. https://doi.org/10.3390/jcm14134754