Role of Free Radicals in the Pathophysiology of OSA: A Narrative Review of a Double-Edged Sword
Abstract
1. Introduction
1.1. Cardiovascular and Cerebrovascular Morbidity
1.2. Neuropsychiatric Dysfunction
1.3. Metabolic Syndrome and Type 2 Diabetes
1.4. Nonalcoholic Fatty Liver Disease (NAFLD)
1.5. Miscellaneous
2. Materials and Methods
Limitations
3. OSA and Intermittent Hypoxia: The Main Driver of Oxidative Stress
4. Molecular Mechanisms of Free Radical Generation in OSA
5. Oxidative Stress Biomarkers in OSA
6. Discussion
6.1. Oral Appliances
6.2. Positional Therapy
6.3. Myofunctional Therapy
6.4. Surgical Interventions
- Hypoglossal Nerve Stimulation (HGNS): This therapy involves stimulating the hypoglossal nerve to induce genioglossus muscle contraction, thereby stabilizing the airway. Systematic reviews have confirmed its efficacy in reducing AHI and improving sleepiness and quality of life in appropriately selected patients with moderate to severe OSA [94].
- Maxillomandibular Advancement (MMA): This invasive surgery expands the facial skeleton to permanently enlarge the airway. For carefully selected patients with a refractory to other treatments, it is highly effective, with one meta-analysis reporting a mean AHI reduction of over 80% [97].
6.5. Oxygen Therapy
6.6. Pharmacologic Therapy
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.M.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pépin, J.L.; et al. Estimation of the Global Prevalence and Burden of Obstructive Sleep Apnoea: A Literature-Based Analysis. Lancet Respir. Respir. Med. 2019, 7, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Young, T.; Palta, M.; Dempsey, J.; Peppard, P.E.; Nieto, F.J.; Hla, K.M. Burden of Sleep Apnea: Rationale, Design, and Major Findings of the Wisconsin Sleep Cohort Study. WMJ Off. Publ. State Med. Soc. Wis. 2009, 108, 246–249. [Google Scholar]
- Leger, D.; Bayon, V.; Laaban, J.P.; Philip, P. Impact of Sleep Apnea on Economics. Sleep Med. Rev. 2012, 16, 455–462. [Google Scholar] [CrossRef]
- Bradley, T.D.; Floras, J.S. Obstructive Sleep Apnoea and Its Cardiovascular Consequences. Lancet 2009, 373, 82–93. [Google Scholar] [CrossRef]
- Labarca, G.; Vena, D.; Hu, W.H.; Esmaeili, N.; Gell, L.; Yang, H.C.; Wang, T.Y.; Messineo, L.; Taranto-Montemurro, L.; Sofer, T.; et al. Sleep Apnea Physiological Burdens and Cardiovascular Morbidity and Mortality. Am. J. Respir. Crit. Care Med. 2023, 208, 802–813. [Google Scholar] [CrossRef]
- Friedman, O.; Logan, A.G. The Price of Obstructive Sleep Apnea-Hypopnea: Hypertension and Other Ill Effects. Am. J. Hypertens. 2009, 22, 474–483. [Google Scholar] [CrossRef]
- Meszaros, M.; Bikov, A. Obstructive Sleep Apnoea and Lipid Metabolism: The Summary of Evidence and Future Perspective in the Pathophysiology of OSA-Associated Dyslipidaemia. Biomedicines 2022, 10, 2754. [Google Scholar] [CrossRef]
- Seif, F.; Patel, S.R.; Walia, H.; Rueschman, M.; Bhatt, D.L.; Gottlieb, D.J.; Lewis, E.F.; Patil, S.P.; Punjabi, N.M.; Babineau, D.C.; et al. Association between Obstructive Sleep Apnea Severity and Endothelial Dysfunction in an Increased Background of Cardiovascular Burden. J. Sleep Res. 2013, 22, 443–451. [Google Scholar] [CrossRef]
- Bikov, A.; Meszaros, M.; Schwarz, E.I. Coagulation and Fibrinolysis in Obstructive Sleep Apnoea. Int. J. Mol. Sci. 2021, 22, 2834. [Google Scholar] [CrossRef]
- Gottesman, R.F.; Lutsey, P.L.; Benveniste, H.; Brown, D.L.; Full, K.M.; Lee, J.M.; Osorio, R.S.; Pase, M.P.; Redeker, N.S.; Redline, S.; et al. Impact of Sleep Disorders and Disturbed Sleep on Brain Health: A Scientific Statement From the American Heart Association. Stroke 2024, 55, e61–e76. [Google Scholar] [CrossRef]
- Hermann, D.M.; Bassetti, C.L. Role of Sleep-Disordered Breathing and Sleep-Wake Disturbances for Stroke and Stroke Recovery. Neurology 2016, 87, 1407–1416. [Google Scholar] [CrossRef] [PubMed]
- Beaudin, A.E.; Pun, M.; Yang, C.; Nicholl, D.D.M.; Steinback, C.D.; Slater, D.M.; Wynne-Edwards, K.E.; Hanly, P.J.; Ahmed, S.B.; Poulin, M.J. Cyclooxygenases 1 and 2 Differentially Regulate Blood Pressure and Cerebrovascular Responses to Acute and Chronic Intermittent Hypoxia: Implications for Sleep Apnea. J. Am. Heart Assoc. 2014, 3, e000875. [Google Scholar] [CrossRef] [PubMed]
- Behrens, S.; Spengos, K.; Hennerici, M. Acceleration of Cerebral Blood Flow Velocity in a Patient with Sleep Apnea and Intracranial Arterial Stenosis. Sleep Breath. Schlaf Atm. 2002, 6, 111–114. [Google Scholar] [CrossRef]
- Somers, V.K.; White, D.P.; Amin, R.; Abraham, W.T.; Costa, F.; Culebras, A.; Daniels, S.; Floras, J.S.; Hunt, C.E.; Olson, L.J.; et al. Sleep Apnea and Cardiovascular Disease: An American Heart Association/American College of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council On Cardiovascular Nursing. In Collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health). Circulation 2008, 118, 1080–1111. [Google Scholar] [CrossRef]
- Ismail, K.; Roberts, K.; Manning, P.; Manley, C.; Hill, N.S. OSA and Pulmonary Hypertension: Time for a New Look. Chest 2015, 147, 847–861. [Google Scholar] [CrossRef]
- Kessler, R.; Chaouat, A.; Schinkewitch, P.; Faller, M.; Casel, S.; Krieger, J.; Weitzenblum, E. The Obesity-Hypoventilation Syndrome Revisited: A Prospective Study of 34 Consecutive Cases. Chest 2001, 120, 369–376. [Google Scholar] [CrossRef]
- Wallace, A.; Bucks, R.S. Memory and Obstructive Sleep Apnea: A Meta-Analysis. Sleep 2013, 36, 203–220. [Google Scholar] [CrossRef]
- George, C.F.P. Sleep Apnea, Alertness, and Motor Vehicle Crashes. Am. J. Respir. Crit. Care Med. 2007, 176, 954–956. [Google Scholar] [CrossRef]
- Wheaton, A.G.; Perry, G.S.; Chapman, D.P.; Croft, J.B. Sleep Disordered Breathing and Depression among U.S. Adults: National Health and Nutrition Examination Survey, 2005–2008. Sleep 2012, 35, 461–467. [Google Scholar] [CrossRef]
- Olaithe, M.; Bucks, R.S. Executive Dysfunction in OSA before and after Treatment: A Meta-Analysis. Sleep 2013, 36, 1297–1305. [Google Scholar] [CrossRef]
- Kendzerska, T.; Gershon, A.S.; Hawker, G.; Tomlinson, G.; Leung, R.S. Obstructive Sleep Apnea and Incident Diabetes. A Historical Cohort Study. Am. J. Respir. Crit. Care Med. 2014, 190, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Punjabi, N.M.; Shahar, E.; Redline, S.; Gottlieb, D.J.; Givelber, R.; Resnick, H.E.; Sleep Heart Health Study Investigators. Sleep-Disordered Breathing, Glucose Intolerance, and Insulin Resistance: The Sleep Heart Health Study. Am. J. Epidemiol. 2004, 160, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Togeiro, S.M.; Carneiro, G.; Ribeiro Filho, F.F.; Zanella, M.T.; Santos-Silva, R.; Taddei, J.A.; Bittencourt, L.R.A.; Tufik, S. Con-sequences of Obstructive Sleep Apnea on Metabolic Profile: A Population-Based Survey. Obesity 2013, 21, 847–851. [Google Scholar] [CrossRef] [PubMed]
- Kent, B.D.; Grote, L.; Ryan, S.; Pépin, J.L.; Bonsignore, M.R.; Tkacova, R.; Saaresranta, T.; Verbraecken, J.; Lévy, P.; Hedner, J.; et al. Diabetes Mellitus Prevalence and Control in Sleep-Disordered Breathing: The European Sleep Apnea Cohort (ESADA) Study. Chest 2014, 146, 982–990. [Google Scholar] [CrossRef]
- Drager, L.F.; Togeiro, S.M.; Polotsky, V.Y.; Lorenzi-Filho, G. Obstructive Sleep Apnea: A Cardiometabolic Risk in Obesity and the Metabolic Syndrome. J. Am. Coll. Cardiol. 2013, 62, 569–576. [Google Scholar] [CrossRef]
- Minville, C.; Hilleret, M.N.; Tamisier, R.; Aron-Wisnewsky, J.; Clement, K.; Trocme, C.; Borel, J.C.; Lévy, P.; Zarski, J.P.; Pépin, J.L. Nonalcoholic Fatty Liver Disease, Nocturnal Hypoxia, and Endothelial Function in Patients with Sleep Apnea. Chest 2014, 145, 525–533. [Google Scholar] [CrossRef]
- Blagojevic-Bucknall, M.; Mallen, C.; Muller, S.; Hayward, R.; West, S.; Choi, H.; Roddy, E. The Risk of Gout Among Patients With Sleep Apnea: A Matched Cohort Study. Arthritis Rheumatol. 2019, 71, 154–160. [Google Scholar] [CrossRef]
- Justeau, G.; Gervès-Pinquié, C.; Le Vaillant, M.; Trzepizur, W.; Meslier, N.; Goupil, F.; Pigeanne, T.; Launois, S.; Leclair-Visonneau, L.; Masson, P.; et al. Association Between Nocturnal Hypoxemia and Cancer Incidence in Patients Investigated for OSA: Data From a Large Multicenter French Cohort. Chest 2020, 158, 2610–2620. [Google Scholar] [CrossRef]
- Trzepizur, W.; Gervès-Pinquié, C.; Heudes, B.; Blanchard, M.; Meslier, N.; Jouvenot, M.; Kerbat, S.; Mao, R.L.; Magois, E.; Racineux, J.L.; et al. Sleep Apnea and Incident Unprovoked Venous Thromboembolism: Data from the Pays de La Loire Sleep Cohort. Thromb. Haemost. 2023, 123, 393–401. [Google Scholar] [CrossRef]
- Tasali, E.; Ip, M.S.M. Obstructive Sleep Apnea and Metabolic Syndrome: Alterations in Glucose Metabolism and Inflammation. Proc. Am. Thorac. Soc. 2008, 5, 207–217. [Google Scholar] [CrossRef]
- Alterki, A.; Abu-Farha, M.; Al Shawaf, E.; Al-Mulla, F.; Abubaker, J. Investigating the Relationship between Obstructive Sleep Apnoea, Inflammation and Cardio-Metabolic Diseases. Int. J. Mol. Sci. 2023, 24, 6807. [Google Scholar] [CrossRef] [PubMed]
- Lavie, L. Oxidative Stress in Obstructive Sleep Apnea and Intermittent Hypoxia—Revisited—The Bad Ugly and Good: Implications to the Heart and Brain. Sleep Med. Rev. 2015, 20, 27–45. [Google Scholar] [CrossRef] [PubMed]
- Eltzschig, H.K.; Eckle, T. Ischemia and Reperfusion–from Mechanism to Translation. Nat. Med. 2011, 17, 1391–1401. [Google Scholar] [CrossRef] [PubMed]
- Eisele, H.J.; Markart, P.; Schulz, R. Obstructive Sleep Apnea, Oxidative Stress, and Cardiovascular Disease: Evidence from Human Studies. Oxidative Med. Cell. Longev. 2015, 2015, 608438. [Google Scholar] [CrossRef]
- Stanek, A.; Broz˙yna-Tkaczyk, K.; Mys’lin’ski, W. Oxidative Stress Markers among Obstructive Sleep Apnea Patients. Oxidative Med. Cell. Longev. 2021, 2021, 9681595. [Google Scholar] [CrossRef]
- Meliante, P.G.; Zoccali, F.; Cascone, F.; Di Stefano, V.; Greco, A.; de Vincentiis, M.; Petrella, C.; Fiore, M.; Minni, A.; Barbato, C. Molecular Pathology, Oxidative Stress, and Biomarkers in Obstructive Sleep Apnea. Int. J. Mol. Sci. 2023, 24, 5478. [Google Scholar] [CrossRef]
- Zuo, L.; Zhou, T.; Pannell, B.K.; Ziegler, A.C.; Best, T.M. Biological and Physiological Role of Reactive Oxygen Species—The Good, the Bad and the Ugly. Acta Physiol. 2015, 214, 329–348. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef]
- Calcerrada, P.; Peluffo, G.; Radi, R. Nitric Oxide-Derived Oxidants with a Focus on Peroxynitrite: Molecular Targets, Cellular Responses and Therapeutic Implications. Curr. Pharm. Des. 2011, 17, 3905–3932. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M. Role of Free Radicals and Catalytic Metal Ions in Human Disease: An Overview. Methods Enzymol. 1990, 186, 1–85. [Google Scholar] [CrossRef]
- Stocker, R.; Keaney, J.F. Role of Oxidative Modifications in Atherosclerosis. Physiol. Rev. 2004, 84, 1381–1478. [Google Scholar] [CrossRef] [PubMed]
- Proteggente, A.R.; England, T.G.; Rehman, A.; Rice-Evans, C.A.; Halliwell, B. Gender Differences in Steady-State Levels of Oxidative Damage to DNA in Healthy Individuals. Free Radic. Res. 2002, 36, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative Stress, Inflammation, and Cancer: How Are They Linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Nelson, S.K.; Wong, G.H.W.; McCord, J.M. Leukemia Inhibitory Factor and Tumor Necrosis Factor Induce Manganese Superoxide Dismutase and Protect Rabbit Hearts from Reperfusion Injury. J. Mol. Cell. Cardiol. 1995, 27, 223–229. [Google Scholar] [CrossRef]
- Lavie, L. Oxidative Stress Inflammation and Endothelial Dysfunction in Obstructive Sleep Apnea. Front. Biosci.-Elite 2012, 4, 1391–1403. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 1–9. [Google Scholar] [CrossRef]
- Cottone, S.; Mulè, G.; Nardi, E.; Vadalà, A.; Guarneri, M.; Briolotta, C.; Arsena, R.; Palermo, A.; Riccobene, R.; Cerasola, G. Relation of C-Reactive Protein to Oxidative Stress and to Endothelial Activation in Essential Hypertension. Am. J. Hypertens. 2006, 19, 313–318. [Google Scholar] [CrossRef]
- Yeun, J.Y.; Kaysen, G.A. C-Reactive Protein, Oxidative Stress, Homocysteine, and Troponin as Inflammatory and Metabolic Predictors of Atherosclerosis in ESRD. Curr. Opin. Nephrol. Hypertens. 2000, 9, 621–630. [Google Scholar] [CrossRef]
- Fleming, W.E.; Holty, J.E.C.; Bogan, R.K.; Hwang, D.; Ferouz-Colborn, A.S.; Budhiraja, R.; Redline, S.; Mensah-Osman, E.; Osman, N.I.; Li, Q.; et al. Use of Blood Biomarkers to Screen for Obstructive Sleep Apnea. Nat. Sci. Sleep 2018, 10, 159–167. [Google Scholar] [CrossRef]
- Barceló, A.; Miralles, C.; Barbé, F.; Vila, M.; Pons, S.; Agustí, A.G. Abnormal Lipid Peroxidation in Patients with Sleep Apnoea. Eur. Respir. J. 2000, 16, 644–647. [Google Scholar] [CrossRef] [PubMed]
- Carpagnano, G.E.; Kharitonov, S.A.; Resta, O.; Foschino-Barbaro, M.P.; Gramiccioni, E.; Barnes, P.J. 8-Isoprostane, a Marker of Oxidative Stress, Is Increased in Exhaled Breath Condensate of Patients with Obstructive Sleep Apnea After Night and Is Reduced by Continuous Positive Airway Pressure Therapy. Chest 2003, 124, 1386–1392. [Google Scholar] [CrossRef] [PubMed]
- Perrone, S.; Laschi, E.; Buonocore, G. Biomarkers of Oxidative Stress in the Fetus and in the Newborn. Free. Radic. Biol. Med. 2019, 142, 23–31. [Google Scholar] [CrossRef]
- Carpagnano, G.E.; Kharitonov, S.A.; Resta, O.; Foschino-Barbaro, M.P.; Gramiccioni, E.; Barnes, P.J. Increased 8-Isoprostane and Interleukin-6 in Breath Condensate of Obstructive Sleep Apnea Patients. Chest 2002, 122, 1162–1167. [Google Scholar] [CrossRef]
- Hopps, E.; Canino, B.; Calandrino, V.; Montana, M.; Lo Presti, R.; Caimi, G. Lipid Peroxidation and Protein Oxidation Are Related to the Severity of OSAS. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3773–3778. [Google Scholar]
- Witko-Sarsat, V.; Friedlander, M.; Capeillère-Blandin, C.; Nguyen-Khoa, T.; Nguyen, A.T.; Zingraff, J.; Jungers, P.; Descamps-Latscha, B. Advanced Oxidation Protein Products as a Novel Marker of Oxidative Stress in Uremia. Kidney Int. 1996, 49, 1304–1313. [Google Scholar] [CrossRef]
- Massy, Z.A.; Nguyen-Khoa, T. Oxidative Stress and Chronic Renal Failure: Markers and Management. J. Nephrol. 2002, 15, 336–341. [Google Scholar]
- Yag˘ mur, A.R.; Çetin, M.A.; Karakurt, S.E.; Turhan, T.; Dere, H.H. The Levels of Advanced Oxidation Protein Products in Patients with Obstructive Sleep Apnea Syndrome. Ir. J. Med. Sci. 2020, 189, 1403–1409. [Google Scholar] [CrossRef]
- Peres, A.; da Rosa, J.C.F.; Ribeiro, J.S.; Silva, S.d.L.; Bündchen, C.; Dornelles, G.P.; Fontanella, V. Intraoral Appliance TreatmentModulates Inflammatory Markers and Oxidative Damage in Elderly with Sleep Apnea. Braz. Oral Res. 2024, 38, e084. [Google Scholar] [CrossRef]
- Skvarilová, M.; Bulava, A.; Stejskal, D.; Adamovská, S.; Bartek, J. Increased Level of Advanced Oxidation Products (AOPP) as a Marker of Oxidative Stress in Patients with Acute Coronary Syndrome. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czechoslov. 2005, 149, 83–87. [Google Scholar] [CrossRef]
- Yamauchi, M.; Kimura, H. Oxidative Stress in Obstructive Sleep Apnea: Putative Pathways to the Cardiovascular Complications. Antioxid. Redox Signal. 2008, 10, 755–768. [Google Scholar] [CrossRef] [PubMed]
- Pau, M.C.; Mangoni, A.A.; Zinellu, E.; Pintus, G.; Carru, C.; Fois, A.G.; Pirina, P.; Zinellu, A. Circulating Superoxide Dismutase Concentrations in Obstructive Sleep Apnoea (OSA): A Systematic Review and Meta-Analysis. Antioxidants 2021, 10, 1764. [Google Scholar] [CrossRef] [PubMed]
- Pákó, J.; Kunos, L.; Mészáros, M.; Tárnoki, D.L.; Tárnoki, Á.D.; Horváth, I.; Bikov, A. Decreased Levels of Anti-Aging Klotho in Obstructive Sleep Apnea. Rejuvenation Res. 2020, 23, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Clark, J.D.; Pastor, J.V.; Gurnani, P.; Nandi, A.; Kurosu, H.; Miyoshi, M.; Ogawa, Y.; Castrillon, D.H.; Rosenblatt, K.P.; et al. Regulation of Oxidative Stress by the Anti-Aging Hormone Klotho. J. Biol. Chem. 2005, 280, 38029–38034. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Han, X.; Liu, R.; Fang, J. Targeting the Thioredoxin System for Cancer Therapy. Trends Pharmacol. Sci. 2017, 38, 794–808. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y.; Li, Q.Y.; Li, M.; Wan, H.Y. Levels of Thioredoxin Are Related to the Severity of Obstructive Sleep Apnea: Based on Oxidative Stress Concept. Sleep Breath. Schlaf Atm. 2013, 17, 311–316. [Google Scholar] [CrossRef]
- Chiang, S.K.; Chen, S.E.; Chang, L.C. The Role of HO-1 and Its Crosstalk with Oxidative Stress in Cancer Cell Survival. Cells 2021, 10, 2401. [Google Scholar] [CrossRef]
- Kis, A.; Meszaros, M.; Tarnoki, D.L.; Tarnoki, A.D.; Lazar, Z.; Horvath, P.; Kunos, L.; Bikov, A. Exhaled Carbon Monoxide Levels in Obstructive Sleep Apnoea. J. Breath Res. 2019, 13, 036012. [Google Scholar] [CrossRef]
- Lira, A.B.; de Sousa Rodrigues, C.F. Evaluation of Oxidative Stress Markers in Obstructive Sleep Apnea Syndrome and Additional Antioxidant Therapy: A Review Article. Sleep Breath. Schlaf Atm. 2016, 20, 1155–1160. [Google Scholar] [CrossRef]
- Suliman, L.A.E.M.; Morsy, N.E.; El-Sebaie, A.H.; Abo-Emaaty Omar, N.M.; Fathy, A. Modelling Obstructive Sleep Apnea Susceptibility Using Non-Invasive Inflammatory Biomarkers. Egypt. J. Chest Dis. Tuberc. 2017, 66, 657–661. [Google Scholar] [CrossRef]
- Pau, M.C.; Zinellu, E.; Fois, S.S.; Zinellu, A.; Pirina, P. Circulating Malondialdehyde Concentrations in Obstructive Sleep Apnea (OSA): A Systematic Review and Meta-Analysis with Meta-Regression. Antioxidants 2021, 10, 1053. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tian, X.; Song, J.; Wu, C.; Wang, W.; Tang, Z. Advanced Oxidation Protein Products in Obstructive Sleep Apnea Hypopnea Syndrome—A Systematic Review and Meta-Analysis. J. Oral Rehabil. 2025; Early View. [Google Scholar] [CrossRef]
- Chen, B.; Ji, J.; Lv, M.; Xu, X.; Wang, Y. Relationship between Cognitive Dysfunction and Urinary 8-OHdG Levels in Children with Obstructive Sleep Apnea. Front. Neurol. 2025, 16, 1502906. [Google Scholar] [CrossRef] [PubMed]
- Lavie, L. Obstructive Sleep Apnoea Syndrome—An Oxidative Stress Disorder. Sleep Med. Rev. 2003, 7, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Del Ben, M.; Fabiani, M.; Loffredo, L.; Polimeni, L.; Carnevale, R.; Baratta, F.; Brunori, M.; Albanese, F.; Augelletti, T.; Violi, F.; et al. Oxidative Stress Mediated Arterial Dysfunction in Patients with Obstructive Sleep Apnoea and the Effect of Continuous Positive Airway Pressure Treatment. BMC Pulm. Med. 2012, 12, 36. [Google Scholar] [CrossRef]
- Alzoghaibi, M.A.; Bahammam, A.S. The Effect of One Night of Continuous Positive Airway Pressure Therapy on Oxidative Stress and Antioxidant Defense in Hypertensive Patients with Severe Obstructive Sleep Apnea. Sleep Breath. Schlaf Atm. 2012, 16, 499–504. [Google Scholar] [CrossRef]
- Karamanlı, H.; Özol, D.; Ugur, K.S.; Yıldırım, Z.; Armutçu, F.; Bozkurt, B.; Yigitoglu, R. Influence of CPAP Treatment on Airway and Systemic Inflammation in OSAS Patients. Sleep Breath. Schlaf Atm. 2014, 18, 251–256. [Google Scholar] [CrossRef]
- Takahashi, K.I.; Chin, K.; Oga, T.; Matsumoto, H.; Niimi, A.; Fukuhara, S.; Yodoi, J.; Mishima, M. Plasma Thioredoxin, a Novel Oxidative Stress Marker, in Patients with Obstructive Sleep Apnea before and after Nasal Continuous Positive Airway Pressure. Antioxid. Redox Signal. 2008, 10, 715–726. [Google Scholar] [CrossRef]
- Chan, A.S.L.; Lee, R.W.W.; Cistulli, P.A. Non-Positive Airway Pressure Modalities: Mandibular Advancement Devices/Positional Therapy. Proc. Am. Thorac. Soc. 2008, 5, 179–184. [Google Scholar] [CrossRef]
- Ramar, K.; Dort, L.C.; Katz, S.G.; Lettieri, C.J.; Chervin, R.D. Clinical Practice Guideline for the Treatment of Obstructive Sleep Apnea and Snoring with Oral Appliance Therapy: An Update for 2015. J. Clin. Sleep Med. 2015, 11, 773–827. [Google Scholar] [CrossRef]
- Bratton, D.J.; Gaisl, T.; Wons, A.M.; Kohler, M. CPAP vs Mandibular Advancement Devices and Blood Pressure in Patients With Obstructive Sleep Apnea: A Systematic Review and Meta-analysis. JAMA 2015, 314, 2280–2293. [Google Scholar] [CrossRef]
- Schwartz, M.; Acosta, L.; Hung, Y.L.; Padilla, M.; Enciso, R. Effects of CPAP and Mandibular Advancement Device Treatment in Obstructive Sleep Apnea Patients: A Systematic Review and Meta-Analysis. Sleep Breath. Schlaf Atm. 2018, 22, 555–568. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Eckert, D.J.; Guo, J.; Ge, S.; Emami, E.; Almeida, F.R.; Huynh, N.T. Phenotypes of Responders to Mandibular Advancement Device Therapy in Obstructive Sleep Apnea Patients: A Systematic Review and Meta-Analysis. Sleep Med. Rev. 2020, 49, 101229. [Google Scholar] [CrossRef] [PubMed]
- Hoffstein, V. Review of Oral Appliances for Treatment of Sleep-Disordered Breathing. Sleep Breath. Schlaf Atm. 2007, 11, 1–22. [Google Scholar] [CrossRef]
- McEvoy, R.D.; Sharp, D.J.; Thornton, A.T. The Effects of Posture on Obstructive Sleep Apnea. Am. Rev. Respir. Dis. 1986, 133, 662–666. [Google Scholar] [CrossRef]
- Joosten, S.A.; Edwards, B.A.; Wellman, A.; Turton, A.; Skuza, E.M.; Berger, P.J.; Hamilton, G.S. The Effect of Body Position on Physiological Factors That Contribute to Obstructive Sleep Apnea. Sleep 2015, 38, 1469–1478. [Google Scholar] [CrossRef]
- Yingjuan, M.; Siang, W.H.; Leong Alvin, T.K.; Poh, H.P. Positional Therapy for Positional Obstructive Sleep Apnea. Sleep Med. Clin. 2019, 14, 119–133. [Google Scholar] [CrossRef]
- Permut, I.; Diaz-Abad, M.; Chatila, W.; Crocetti, J.; Gaughan, J.P.; D’Alonzo, G.E.; Krachman, S.L. Comparison of Positional Therapy to CPAP in Patients with Positional Obstructive Sleep Apnea. J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med. 2010, 6, 238–243. [Google Scholar] [CrossRef]
- Srijithesh, P.R.; Aghoram, R.; Goel, A.; Dhanya, J. Positional Therapy for Obstructive Sleep Apnoea. Cochrane Database Syst. Rev. 2019, 5, CD010990. [Google Scholar] [CrossRef]
- Dieltjens, M.; Vroegop, A.V.; Vanderveken, O.M. A Promising Concept of Combination Therapy for Positional Obstructive Sleep Apnea. Sleep Breath. Schlaf Atm. 2015, 19, 637–644. [Google Scholar] [CrossRef]
- Guimarães, K.C.; Drager, L.F.; Genta, P.R.; Marcondes, B.F.; Lorenzi-Filho, G. Effects of Oropharyngeal Exercises on Patients with Moderate Obstructive Sleep Apnea Syndrome. Am. J. Respir. Crit. Care Med. 2009, 179, 962–966. [Google Scholar] [CrossRef]
- Camacho, M.; Certal, V.; Abdullatif, J.; Zaghi, S.; Ruoff, C.M.; Capasso, R.; Kushida, C.A. Myofunctional Therapy to Treat Obstructive Sleep Apnea: A Systematic Review and Meta-Analysis. Sleep 2015, 38, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Won, C.H.J.; Li, K.K.; Guilleminault, C. Surgical Treatment of Obstructive Sleep Apnea: Upper Airway and Maxillomandibular Surgery. Proc. Am. Thorac. Soc. 2008, 5, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Costantino, A.; Rinaldi, V.; Moffa, A.; Luccarelli, V.; Bressi, F.; Cassano, M.; Casale, M.; Baptista, P. Hypoglossal Nerve Stimulation Long-Term Clinical Outcomes: A Systematic Review and Meta-Analysis. Sleep Breath. Schlaf Atm. 2020, 24, 399–411. [Google Scholar] [CrossRef]
- Guilleminault, C.; Simmons, F.B.; Motta, J.; Cummiskey, J.; Rosekind, M.; Schroeder, J.S.; Dement, W.C. Obstructive Sleep Apnea Syndrome and Tracheostomy. Long-term Follow-up Experience. Arch. Intern. Med. 1981, 141, 985–988. [Google Scholar] [CrossRef]
- Aurora, R.N.; Casey, K.R.; Kristo, D.; Auerbach, S.; Morgenthaler, T.I.; American Academy of Sleep Medicine. Practice Parameters for the Surgical Modifications of the Upper Airway for Obstructive Sleep Apnea in Adults. Sleep 2010, 33, 1408–1413. [Google Scholar] [CrossRef]
- Zaghi, S.; Holty, J.E.C.; Certal, V.; Abdullatif, J.; Guilleminault, C.; Powell, N.B.; Riley, R.W.; Camacho, M. Maxillomandibular Advancement for Treatment of Obstructive Sleep Apnea: A Meta-analysis. JAMA Otolaryngol. Head Neck Surg. 2016, 142, 58–66. [Google Scholar] [CrossRef]
- He, M.; Yin, G.; Zhan, S.; Xu, J.; Cao, X.; Li, J.; Ye, J. Long-Term Efficacy of Uvulopalatopharyngoplasty among Adult Patients with Obstructive Sleep Apnea: A Systematic Review and Meta-analysis. Otolaryngol.–Head Neck Surg. Off. J. Am. Acad. Otolaryngol. Neck Surg. 2019, 161, 401–411. [Google Scholar] [CrossRef]
- Caples, S.M.; Rowley, J.A.; Prinsell, J.R.; Pallanch, J.F.; Elamin, M.B.; Katz, S.G.; Harwick, J.D. Surgical Modifications of the Upper Airway for Obstructive Sleep Apnea in Adults: A Systematic Review and Meta-Analysis. Sleep 2010, 33, 1396–1407. [Google Scholar] [CrossRef]
- Mehta, V.; Vasu, T.S.; Phillips, B.; Chung, F. Obstructive Sleep Apnea and Oxygen Therapy: A Systematic Review of the Literature and Meta-Analysis. J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med. 2013, 9, 271–279. [Google Scholar] [CrossRef]
- Wellman, A.; Malhotra, A.; Jordan, A.S.; Stevenson, K.E.; Gautam, S.; White, D.P. Effect of Oxygen in Obstructive Sleep Apnea: Role of Loop Gain. Respir. Physiol. Neurobiol. 2008, 162, 144–151. [Google Scholar] [CrossRef]
- Gottlieb, D.J.; Punjabi, N.M.; Mehra, R.; Patel, S.R.; Quan, S.F.; Redline, S. CPAP versus Oxygen in Obstructive Sleep Apnea. N. Engl. J. Med. 2014, 370, 2276–2285. [Google Scholar] [CrossRef] [PubMed]
- Taranto-Montemurro, L.; Messineo, L.; Sands, S.A.; Azarbarzin, A.; Wellman, A. The Combination of Atomoxetine and Oxybutynin Greatly Reduces Obstructive Sleep Apnea Severity. A Randomized, Placebo-controlled, Double-Blind Crossover Trial. Am. J. Respir. Crit. Care Med. 2019, 199, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- Sadasivam, K.; Patial, K.; Vijayan, V.K.; Ravi, K. Anti-Oxidant Treatment in Obstructive Sleep Apnoea Syndrome. Indian J. Chest Dis. Allied Sci. 2011, 53, 153–162. [Google Scholar] [PubMed]
- Grebe, M.; Eisele, H.J.; Weissmann, N.; Schaefer, C.; Tillmanns, H.; Seeger, W.; Schulz, R. Antioxidant Vitamin C Improves Endothelial Function in Obstructive Sleep Apnea. Am. J. Respir. Crit. Care Med. 2006, 173, 897–901. [Google Scholar] [CrossRef]
- Williams, A.L.; Chen, L.; Scharf, S.M. Effects of Allopurinol on Cardiac Function and Oxidant Stress in Chronic Intermittent Hypoxia. Sleep Breath. 2010, 14, 51–57. [Google Scholar] [CrossRef]
- Ayyadevara, S.; Bharill, P.; Dandapat, A.; Hu, C.; Khaidakov, M.; Mitra, S.; Shmookler Reis, R.J.; Mehta, J.L. Aspirin Inhibits Oxidant Stress, Reduces Age-Associated Functional Declines, and Extends Lifespan of Caenorhabditis Elegans. Antioxid. Redox Signal. 2013, 18, 481–490. [Google Scholar] [CrossRef]
- Chen, C.M.; Tung, Y.T.; Wei, C.H.; Lee, P.Y.; Chen, W. Anti-Inflammatory and Reactive Oxygen Species Suppression through Aspirin Pretreatment to Treat Hyperoxia-Induced Acute Lung Injury in NF-κB-Luciferase Inducible Transgenic Mice. Antioxidants 2020, 9, 429. [Google Scholar] [CrossRef]
- Savini, C.; Tenti, E.; Mikus, E.; Eligini, S.; Tremoli, E.; Banfi, C. Albumin Thiolation and Oxidative Stress Status in Patients with Aortic Valve Stenosis. Biomolecules 2023, 13, 1713. [Google Scholar] [CrossRef]
- Kovbasyuk, Z.; Ramos-Cejudo, J.; Parekh, A.; Bubu, O.M.; Ayappa, I.A.; Varga, A.W.; Chen, M.H.; Rapoport, D.M.; Osorio, R.S. Obstructive Sleep Apnea, Platelet Aggregation, and Cardiovascular Risk. J. Am. Heart Assoc. 2024, 13, e034079. [Google Scholar] [CrossRef]
Type | Role | Main Effects |
---|---|---|
GOOD | Cellular activities | Involved in cellular response to stressors, regulates mitochondrial function, expression of certain stress proteins, and antioxidant levels |
Immune system | Activates NLRP3 inflammasomes or other immune-related receptors, helps combat invading pathogens | |
Synaptic plasticity | Involved in the formation of LTP | |
BAD | Protein degradation | Leads to protein modification, influences protein translation, and increases the susceptibility of proteins to proteolysis |
DNA damage | Induces mutagenesis, oxidizes nucleotides (guanine is particularly susceptible) | |
Muscle damage | Increases fatigue thus reducing muscle function, promotes oxidative damage to muscle protein | |
UGLY | Cancer | Induces DNA mutation, upregulates HIF-1α, which is involved in tumor angiogenesis |
Pulmonary diseases | Enhances inflammation response and damages diaphragm function, contributes to pulmonary diseases such as COPD or asthma | |
Cardiovascular diseases | Involved in IR damage, causes hypertension via mechanisms such as lipid peroxidation | |
Neurodegenerative diseases | Correlated with neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease, and ALS |
OS Biomarker | Cut-Off | Sensitivity | Specificity | Reference |
---|---|---|---|---|
hsCRP | 5.55 mg/L | 95% | 88% | Suliman et al. [70] |
TRX | 9.39 ng/mL | 91% | 78% | Guo et al. [66] |
TBARS | N/A | N/A | N/A | Pau et al. [71] |
AOPPS | N/A | N/A | N/A | Li et al. [72] |
8-OHdG | N/A | N/A | N/A | Chen et al. [73] |
OS Biomarker | AHI | ODI | TSpO2 < 90% |
---|---|---|---|
hsCRP | p < 0.001 | p < 0.001 | p < 0.001 |
TRX | p < 0.05 | N/A | N/A |
TBARS | p < 0.0001 | p < 0.0001 | N/A |
AOPPS | p < 0.001 | p < 0.001 | p < 0.001 |
8-OHdG | Positive (p not specified) | Positive (p not specified) | Positive (p not specified) |
Agent | Sample | Oxidative Stress Marker | Outcomes | Reference |
---|---|---|---|---|
N-acetylcysteine (NAC) | Human (n = 20) | Lipid peroxidation levels | Reduction in the NAC- treated group compared to the control group (p < 0.001) | Sadasivam et al. [104] |
Vitamin C | Human (n = 20) | Brachial artery flow-mediated dilation (FMD) | Improved in the Vitamin C-treated group compared to the control group (p < 0.01) | Grebe et al. [105] |
Allopurinol | Rats | Lipid peroxidation levels | Reduction in the allopurinol-treated group compared to the control group (p < 0.05) | Williams et al. [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinelli, A.; Portacci, A.; Bikov, A.; Carratù, P.; Quaranta, V.N.; Lazar, Z.; Carpagnano, G.E.; Dragonieri, S. Role of Free Radicals in the Pathophysiology of OSA: A Narrative Review of a Double-Edged Sword. J. Clin. Med. 2025, 14, 4752. https://doi.org/10.3390/jcm14134752
Marinelli A, Portacci A, Bikov A, Carratù P, Quaranta VN, Lazar Z, Carpagnano GE, Dragonieri S. Role of Free Radicals in the Pathophysiology of OSA: A Narrative Review of a Double-Edged Sword. Journal of Clinical Medicine. 2025; 14(13):4752. https://doi.org/10.3390/jcm14134752
Chicago/Turabian StyleMarinelli, Alessio, Andrea Portacci, Andras Bikov, Pierluigi Carratù, Vitaliano Nicola Quaranta, Zsofia Lazar, Giovanna Elisiana Carpagnano, and Silvano Dragonieri. 2025. "Role of Free Radicals in the Pathophysiology of OSA: A Narrative Review of a Double-Edged Sword" Journal of Clinical Medicine 14, no. 13: 4752. https://doi.org/10.3390/jcm14134752
APA StyleMarinelli, A., Portacci, A., Bikov, A., Carratù, P., Quaranta, V. N., Lazar, Z., Carpagnano, G. E., & Dragonieri, S. (2025). Role of Free Radicals in the Pathophysiology of OSA: A Narrative Review of a Double-Edged Sword. Journal of Clinical Medicine, 14(13), 4752. https://doi.org/10.3390/jcm14134752