Cardiorenal Syndrome in Adults with Congenital Heart Disease
Abstract
:1. Introduction
CHD Physiology | Prevalence of Renal Dysfunction | Key Pathophysiology | Management Strategies |
---|---|---|---|
Systemic RV (e.g., d-TGA with atrial switch, ccTGA) | Moderate to severe in ~30%; albuminuria common [7] | Low systemic output; RAAS activation; RV failure [8,9,10] | Neurohormonal blockade, diuretics, CRT, transplant eval [11,12,13] |
Subpulmonary RV (e.g., TOF, Ebstein, Eisenmenger) | Up to 50% with reduced eGFR; albuminuria in edema/TR [2,14] | High CVP; venous congestion; ↓ filtration gradient [5,15] | Volume control, lesion repair, PAH therapy, transplant [2,15] |
Fontan circulation | ~20–30% with GFR < 90; ~10% with CKD stage 3+ [16] | Chronic venous hypertension; ↓ CO; systemic inflammation [16,17,18] | Cautious diuresis, PLE therapy, ACEi/ARB, transplant eval [19,20] |
CHD Physiology | Biomarker | Diagnostic Utility | Key References |
---|---|---|---|
Systemic RV (e.g., d-TGA with atrial switch, ccTGA) | NT-proBNP | Marker of systemic RV dysfunction and HF severity; correlates with GFR decline | [8,21] |
Cystatin C | More accurate GFR estimation in patients with low muscle mass | [21] | |
Albuminuria | Early sign of renal impairment and CRS risk | [7] | |
Subpulmonary RV (e.g., TOF, Ebstein, Eisenmenger) | BNP/NT-proBNP | Correlates with right atrial and RV pressure; marker of congestion | [14] |
Urine NGAL | Detects tubular injury even with normal creatinine | [22] | |
Albuminuria | Associated with venous congestion and systemic edema | [14] | |
Fontan Circulation | Cystatin C | Detects early GFR decline missed by creatinine-based estimates | [18,21] |
Albuminuria | Reflects chronic renal congestion and low-grade glomerular injury | [18,23] | |
BUN:Cr ratio | Suggests prerenal azotemia due to low output state | [23] | |
Renin, Aldosterone, Aldosternoe to renis ratio | Reflect neurohormonal activation and guide volume strategies | [24,25] |
2. Systemic Right Ventricle and Cardiorenal Syndrome
3. Subpulmonary Right Ventricle and Renal Implications
4. Fontan Physiology and the Kidney
- Volume management: Diuretics are frequently used to manage edema and effusions in Fontan patients. Loop diuretics (often in combination with aldosterone antagonists) can reduce venous congestion. However, over-diuresis can be detrimental: Fontan circulation is highly preload dependent and excessive volume removal may precipitate a low cardiac output state and acute kidney injury. Therefore, clinicians often aim for a “euvolemic” state rather than aggressive diuresis. Monitoring daily weights, renal function, and even invasive hemodynamics (during catheterization) guides therapy. Some Fontan patients benefit from outpatient intravenous albumin infusions (in those with PLE) combined with diuretics to augment plasma volume and diuresis effectiveness.
- Afterload reduction: If the systemic ventricle in a Fontan (usually a single ventricle that could be morphologically left or right) has systolic dysfunction or systemic hypertension, ACE inhibitors or ARBs are used to reduce afterload. Evidence for ACE-inhibitor benefit in Fontan patients without ventricular dysfunction is limited—small trials did not show improved exercise capacity in pediatric Fontan patients on enalapril, for example [35]. But in adults, if blood pressure is elevated or there are signs of proteinuric kidney disease, an ACEi/ARB is often added for its renal-protective effects (analogous to use in other CKD) [36]. Cautious titration is needed to avoid hypotension.
- Evolving role of SGLT2 inhibitors: SGLT2 inhibitors have been demonstrated to reduce the incidence of cardiovascular death and heart failure in patients with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF) [37]. SGTL2 inhibitors lower blood glucose and glycated hemoglobin in patients with type 2 diabetes, improve cardiac function in patients with heart failure with or without type 2 diabetes, and improve renal function [19]. These agents have been demonstrated to be safe and beneficial in Fontan circulation [38,39]. Metabolic syndrome is common among patients with Fontan circulation and may also be associated with poor hemodynamics [40]. SGTL2 inhibitors may offer additional benefits in these patient phenotypes of Fontan physiology and heart failure [20]. Initiation of dapagliflozin is indicated in patients with an eGFR > 25 mL/min/1.73 m2 [41]. While the addition of SGLT2 inhibitors to standard diuretic therapy increases urine output without impacting renal function, it is also critical to exercise caution and closely monitor renal function [42]. SGTLT2 agents significantly reduce the diuretic requirement, and it may be prudent to minimize the diuretic use when using these agents [43].
- Pulmonary vasodilators: Given the absence of a subpulmonary pump, reducing pulmonary vascular resistance can significantly impact Fontan flow. Medications like sildenafil or bosentan (an endothelin blocker) have been tried in Fontan patients to improve exercise capacity and cardiac output [44,45,46]. Some studies have shown modest improvements in hemodynamics, though others are inconclusive. Still, if pulmonary vascular resistance is elevated or there is suspicion of impaired pulmonary blood flow, a trial of pulmonary vasodilator therapy may be considered. Improved pulmonary flow should enhance preload to the systemic ventricle and potentially renal perfusion. These therapies can also improve exercise tolerance, which indirectly benefits overall health, including kidney perfusion during activity.
- Mineralocorticoid antagonists: In patients with chronic systolic heart failure and mild symptoms (NYHA class II), eplerenone significantly reduced the risk of cardiovascular death or heart failure hospitalization compared to placebo [47]. The use of eplerenone in patients with Fontan circulation experiencing heart failure has not been extensively studied. Given the limited and inconclusive data, the routine use of eplerenone in Fontan patients with heart failure cannot be recommended at this time. Further research is necessary to establish its safety and efficacy in this specific group.
- Management of complications: Treating Fontan-specific complications can mitigate CRS. For instance, if a patient has significant Fontan obstruction (e.g., a narrowed conduit or collaterals causing shunting), relieving this via catheter intervention or surgery can improve hemodynamics. In patients with PLE, therapies such as steroids, heparin, or novel lymphatic interventions (like thoracic duct decompression) may reduce protein loss, raising albumin levels and helping restore intravascular volume, thus improving renal blood flow. Liver congestion and cirrhosis are harder to directly treat; however, avoiding hepatotoxins and monitoring for HCC (hepatocellular carcinoma) is important, as advanced liver disease can further impair kidney function (via hepatorenal mechanisms).
- Surveillance: Fontan patients require lifelong surveillance, and renal function should be part of routine follow-up. We recommend at least annual serum creatinine/eGFR checks and periodic urinalysis for albumin. When GFR falls below ~60, consultation with a nephrologist is prudent to manage CKD risks (bone health, anemia, electrolyte disturbances) and to discuss renoprotective measures. Aggressive control of blood pressure (often Fontan patients have low BP, but if normal or high, keep it in optimal range) and avoidance of nephrotoxic drugs (NSAIDs, certain antibiotics) are general principles.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
ACHD | Adult Congenital Heart Disease |
CRS | Cardiorenal Syndrome |
CKD | Chronic Kidney Disease |
GFR | Glomerular Filtration Rate |
eGFR | Estimated Glomerular Filtration Rate |
NT-proBNP | N-terminal pro-B-type Natriuretic Peptide; a biomarker for heart failure |
BNP | B-type Natriuretic Peptide |
NGAL | Neutrophil Gelatinase-Associated Lipocalin; a marker of acute kidney injury |
RAAS | Renin–Angiotensin–Aldosterone System |
ARR | Aldosterone-to-Renin Ratio |
CRT | Cardiac Resynchronization Therapy |
PLE | Protein-Losing Enteropathy |
TOF | Tetralogy of Fallot |
TGA | Transposition of the Great Arteries |
ccTGA | Congenitally Corrected Transposition of the Great Arteries |
d-TGA | Dextro-Transposition of the Great Arteries |
PAH | Pulmonary Arterial Hypertension |
TR | Tricuspid Regurgitation |
CO | Cardiac Output |
CVP | Central Venous Pressure |
ACEi | Angiotensin-Converting Enzyme Inhibitor |
ARB | Angiotensin II Receptor Blocker |
HF | Heart Failure |
References
- Dodeja, A.K.; Upadhyay, S. Arrhythmias in Adult Congenital Heart Disease Heart Failure. Heart Fail. Clin. 2024, 20, 175–188. [Google Scholar] [CrossRef]
- Dimopoulos, K.; Diller, G.-P.; Koltsida, E.; Pijuan-Domenech, A.; Papadopoulou, S.A.; Babu-Narayan, S.V.; Salukhe, T.V.; Piepoli, M.F.; Poole-Wilson, P.A.; Best, N.; et al. Prevalence, predictors, and prognostic value of renal dysfunction in adults with congenital heart disease. Circulation 2008, 117, 2320–2328. [Google Scholar] [CrossRef] [PubMed]
- Morgan, C.; Al-Aklabi, M.; Guerra, G.G. Chronic kidney disease in congenital heart disease patients: A narrative review of evidence. Can. J. Kidney Health Dis. 2015, 2, 27. [Google Scholar] [CrossRef]
- Martínez-Quintana, E.; Rodríguez-González, F. Risk Factors for Chronic Kidney Disease in Adult Patients with Congenital Heart Disease and Its Relationship with Cardiovascular Mortality. J. Clin. Med. 2024, 13, 6963. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, A.B.; Foster, E.; Kuehl, K.; Alpert, J.; Brabeck, S.; Crumb, S.; Davidson, W.R.; Earing, M.G.; Ghoshhajra, B.B.; Karamlou, T.; et al. Congenital heart disease in the older adult: A scientific statement from the American heart association. Circulation 2015, 131, 1884–1931. [Google Scholar] [CrossRef]
- Brida, M.; De Rosa, S.; Legendre, A.; Ladouceur, M.; Dos Subira, L.; Scognamiglio, G.; Di Mario, C.; Roos-Hesselink, J.; Goossens, E.; Diller, G.; et al. Acquired cardiovascular disease in adults with congenital heart disease A call to action for timely preventive measures—A clinical consensus statement of the European Society of Cardiology Working Group on Adult Congenital Heart Disease in collaboration with the European Association of Preventive Cardiology and the European Association of Percutaneous Cardiovascular Interventions. Eur. Heart J. 2023, 44, 4533–4548. [Google Scholar] [CrossRef] [PubMed]
- Rajpal, S.; Alshawabkeh, L.; Owumi, J.; Bradley, R.; Landzberg, E.I.; Singh, M.N.; Gurvitz, M.; McCausland, F.R.; Waikar, S.S.; Landzberg, M.J.; et al. Albuminuria in adults with congenital heart disease: Results from the boston adult congenital heart biobank. Circulation 2016, 134, A18079. [Google Scholar]
- Sabbah, B.N.; Arabi, T.Z.; Shafqat, A.; Rab, S.A.; Razak, A.; Albert-Brotons, D.C. Heart failure in systemic right ventricle: Mechanisms and therapeutic options. Front. Cardiovasc. Med. 2023, 9, 1064196. [Google Scholar] [CrossRef]
- Hartupee, J.; Mann, D.L. Neurohormonal activation in heart failure with reduced ejection fraction. Nat. Rev. Cardiol. 2016, 14, 30–38. [Google Scholar] [CrossRef]
- Xanthopoulos, A.; Starling, R.C.; Kitai, T.; Triposkiadis, F. Heart Failure and Liver Disease: Cardiohepatic Interactions. JACC Heart Fail. 2019, 7, 87–97. [Google Scholar] [CrossRef]
- Smit-Fun, V.M.; Buhre, W.F. Heart Failure in Adult Patients with Congenital Heart Disease. Anesthesiol. Clin. 2019, 37, 751–768. [Google Scholar] [CrossRef] [PubMed]
- Neijenhuis, R.M.L.; Nederend, M.; Jongbloed, M.R.M.; Kiès, P.; Rotmans, J.I.; Vliegen, H.W.; Jukema, J.W.; Egorova, A.D. The potential of sodium-glucose cotransporter 2 inhibitors for the treatment of systemic right ventricular failure in adults with congenital heart disease. Front. Cardiovasc. Med. 2023, 10, 1093201. [Google Scholar] [CrossRef]
- Chung, M.K.; Patton, K.K.; Lau, C.-P.; Forno, A.R.D.; Al-Khatib, S.M.; Arora, V.; Birgersdotter-Green, U.M.; Cha, Y.-M.; Chung, E.H.; Cronin, E.M.; et al. 2023 HRS/APHRS/LAHRS guideline on cardiac physiologic pacing for the avoidance and mitigation of heart failure. Heart Rhythm. 2023, 20, e17–e91. [Google Scholar] [CrossRef]
- Boorsma, E.M.; ter Maaten, J.M.; Damman, K.; van Essen, B.J.; Zannad, F.; van Veldhuisen, D.J.; Samani, N.J.; Dickstein, K.; Metra, M.; Filippatos, G.; et al. Albuminuria as a marker of systemic congestion in patients with heart failure. Eur. Heart J. 2023, 44, 368–380. [Google Scholar] [CrossRef]
- El Sayegh, S.; Ephrem, G.; Wish, J.B.; Moe, S.; Lim, K. Kidney disease and congenital heart disease: Partnership for life. Front. Physiol. 2022, 13, 970389. [Google Scholar] [CrossRef]
- Khuong, J.N.; Wilson, T.G.; Grigg, L.E.; Bullock, A.; Celermajer, D.; Disney, P.; Wijesekera, V.A.; Hornung, T.; Zannino, D.; Iyengar, A.J.; et al. Fontan-associated nephropathy: Predictors and outcomes. Int. J. Cardiol. 2020, 306, 73–77. [Google Scholar] [CrossRef]
- Van De Bruaene, A.; Claessen, G.; Salaets, T.; Gewillig, M. Late Fontan Circulatory Failure. What Drives Systemic Venous Congestion and Low Cardiac Output in Adult Fontan Patients? Front. Cardiovasc. Med. 2022, 9, 825472. [Google Scholar] [CrossRef]
- Zafar, F.; Lubert, A.M.; Katz, D.A.; Hill, G.D.; Opotowsky, A.R.; Alten, J.A.; Goldstein, S.L.; Alsaied, T. Long-Term Kidney Function After the Fontan Operation: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2020, 76, 334–341. [Google Scholar] [CrossRef]
- Braunwald, E.; Longo, D.L. Gliflozins in the Management of Cardiovascular Disease. N. Engl. J. Med. 2022, 386, 2024–2034. [Google Scholar] [CrossRef]
- Renaud, D.; Scholl-Bürgi, S.; Karall, D.; Michel, M. Comparative Metabolomics in Single Ventricle Patients after Fontan Palliation: A Strong Case for a Targeted Metabolic Therapy. Metabolites 2023, 13, 932. [Google Scholar] [CrossRef]
- Ohuchi, H.; Mori, A.; Fujita, A.; Kurosaki, K.; Shiraishi, I.; Nakai, M. Determinants and prognostic value of albuminuria in adult patients with congenital heart disease. Am. Heart J. 2023, 263, 15–25. [Google Scholar] [CrossRef]
- Eynde, J.V.D.; Salaets, T.; Louw, J.J.; Herman, J.; Breysem, L.; Vlasselaers, D.; Desmet, L.; Meyns, B.; Budts, W.; Gewillig, M.; et al. Persistent Markers of Kidney Injury in Children Who Developed Acute Kidney Injury After Pediatric Cardiac Surgery: A Prospective Cohort Study. J. Am. Heart Assoc. 2022, 11, e024266. [Google Scholar] [CrossRef]
- Katz, D.A.; Gao, Z.; Freytag, J.; Mahendran, A.; Szugye, C.; Woodly, S.; Alvarez, T.C.E.; Lubert, A.M.; Alsaied, T.; Goldstein, S.L.; et al. Associations Between Characteristics of Individuals With Fontan Circulation With Blood and Urine Biomarkers of Kidney Injury and Dysfunction. J. Am. Heart Assoc. 2023, 12, e029130. [Google Scholar] [CrossRef]
- Amatruda, J.G.; Scherzer, R.; Rao, V.S.; Ivey-Miranda, J.B.; Shlipak, M.G.; Estrella, M.M.; Testani, J.M. Renin-Angiotensin-Aldosterone System Activation and Diuretic Response in Ambulatory Patients With Heart Failure. Kidney Med. 2022, 4, 100465. [Google Scholar] [CrossRef]
- Emdin, M.; Fatini, C.; Mirizzi, G.; Poletti, R.; Borrelli, C.; Prontera, C.; Latini, R.; Passino, C.; Clerico, A.; Vergaro, G. Biomarkers of activation of renin-angiotensin-aldosterone system in heart failure: How useful, how feasible? Clin. Chim. Acta 2015, 443, 85–93. [Google Scholar] [CrossRef]
- Brida, M.; Diller, G.P.; Gatzoulis, M.A. Systemic Right Ventricle in Adults With Congenital Heart Disease: Anatomic and Phenotypic Spectrum and Current Approach to Management. Circulation 2018, 137, 508–518. [Google Scholar] [CrossRef]
- Stout, K.K.; Broberg, C.S.; Book, W.M.; Cecchin, F.; Chen, J.M.; Dimopoulos, K.; Everitt, M.D.; Gatzoulis, M.; Harris, L.; Hsu, D.T.; et al. Chronic Heart Failure in Congenital Heart Disease: A Scientific Statement from the American Heart Association. Circulation 2016, 133, 770–801. [Google Scholar] [CrossRef]
- Pabel, S.; Hamdani, N.; Luedde, M.; Sossalla, S. SGLT2 Inhibitors and Their Mode of Action in Heart Failure—Has the Mystery Been Unravelled? Curr. Heart Fail. Rep. 2021, 18, 315–328. [Google Scholar] [CrossRef]
- Dragulescu, A.; Friedberg, M.K. A tale of two ventricles: Ventricular-ventricular interactions and LV dysfunction after surgical repair of tetralogy of fallot. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 498–499. [Google Scholar] [CrossRef]
- Gewillig, M.; Brown, S.C.; Eyskens, B.; Heying, R.; Ganame, J.; Budts, W.; La Gerche, A.; Gorenflo, M. The Fontan circulation: Who controls cardiac output? Interact. Cardiovasc. Thorac. Surg. 2010, 10, 428–433. [Google Scholar] [CrossRef]
- Kavarana, M.N.; Jones, J.A.; Stroud, R.E.; Bradley, S.M.; Ikonomidis, J.S.; Mukherjee, R. Pulmonary arteriovenous malformations after the superior cavopulmonary shunt: Mechanisms and clinical implications. Expert Rev. Cardiovasc. Ther. 2014, 12, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Loomba, R.S. Arterial desaturation due to pulmonary arteriovenous malformations after the Kawashima Operation. Ann. Pediatr. Cardiol. 2016, 9, 35–38. [Google Scholar] [CrossRef]
- van Hassel, G.; Groothof, D.; Douwes, J.M.; Hoendermis, E.S.; Liem, E.T.; Willems, T.P.; Ebels, T.; Voors, A.A.; Bakker, S.J.; Berger, R.M.; et al. Deterioration in Renal Function in Patients With a Fontan Circulation and Association With Mortality. JACC Adv. 2024, 3, 101399. [Google Scholar] [CrossRef] [PubMed]
- Khuong, J.N.; Wilson, T.G.; Iyengar, A.J.; D’uDekem, Y. Acute and Chronic Kidney Disease Following Congenital Heart Surgery: A Review. Ann. Thorac. Surg. 2021, 112, 1698–1706. [Google Scholar] [CrossRef] [PubMed]
- Harteveld, L.M.; Blom, N.A.; Monteros, C.T.E.d.L.; Kuipers, I.M.; Rammeloo, L.A.; Hazekamp, M.G.; van Dijk, J.G.; Harkel, A.D.T. 3-Month Enalapril Treatment in Pediatric Fontan Patients With Moderate to Good Systolic Ventricular Function. Am. J. Cardiol. 2022, 163, 98–103. [Google Scholar] [CrossRef]
- Chu, C.D.; Powe, N.R.; McCulloch, C.E.; Banerjee, T.; Crews, D.C.; Saran, R.; Bragg-Gresham, J.; Morgenstern, H.; Pavkov, M.E.; Saydah, S.H.; et al. Angiotensin-Converting Enzyme Inhibitor or Angiotensin Receptor Blocker Use Among Hypertensive US Adults With Albuminuria. Hypertension 2021, 77, 94–102. [Google Scholar] [CrossRef]
- Lopaschuk, G.D.; Verma, S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. JACC Basic Transl. Sci. 2020, 5, 632–644. [Google Scholar] [CrossRef]
- Gaydos, S.S.; McHugh, K.E.; Woodard, F.K.; Judd, R.N.; Brenzel, T.J.; Henderson, H.T.; Savage, A.J.; Atz, A.M.; Gregg, D. Sodium-glucose cotransporter-2 inhibitor use in patients with a Fontan circulation. Cardiol. Young 2025, 35, 745–747. [Google Scholar] [CrossRef]
- Konduri, A.; West, C.; Lowery, R.; Hunter, T.; Jarosz, A.; Yu, S.; Lim, H.M.; McCormick, A.D.; Schumacher, K.R.; Peng, D.M. Experience with SGLT2 Inhibitors in Patients with Single Ventricle Congenital Heart Disease and Fontan Circulatory Failure. Pediatr. Cardiol. 2023, 46, 81–88. [Google Scholar] [CrossRef]
- Yogeswaran, V.; Anigwe, C.; Salahuddin, A.; Aggarwal, A.; Grady, A.J.M.; Harris, I.S.; Sabanayagam, A.; Kouretas, P.C.; Mahadevan, V.S.; Agarwal, A. Association of Body Mass Index With Clinical Features and Outcomes in Adults with Fontan Palliation. J. Am. Heart Assoc. 2023, 12, e026732. [Google Scholar] [CrossRef]
- Madero, M.; Chertow, G.M.; Mark, P.B. SGLT2 Inhibitor Use in Chronic Kidney Disease: Supporting Cardiovascular, Kidney, and Metabolic Health. Kidney Med. 2024, 6, 100851. [Google Scholar] [CrossRef] [PubMed]
- Schulze, P.C.; Bogoviku, J.; Westphal, J.; Aftanski, P.; Haertel, F.; Grund, S.; von Haehling, S.; Schumacher, U.; Möbius-Winkler, S.; Busch, M. Effects of Early Empagliflozin Initiation on Diuresis and Kidney Function in Patients With Acute Decompensated Heart Failure (EMPAG-HF). Circulation 2022, 146, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Alsalem, A.; Alsultan, M.M.; Alqarni, F.; Almangour, A.; Alsharekh, L.; Alenazi, S.; Alzahrani, S.; Almanqour, R.A.; Alzahrani, A. Real-world evidence of the effects of sodium-glucose co-transporter 2 inhibitors on the dosing of diuretics in patients with heart failure: A retrospective cohort study. Front. Pharmacol. 2024, 15, 1366439. [Google Scholar] [CrossRef]
- Van De Bruaene, A.; La Gerche, A.; Claessen, G.; De Meester, P.; Devroe, S.; Gillijns, H.; Bogaert, J.; Claus, P.; Heidbuchel, H.; Gewillig, M.; et al. Sildenafil improves exercise hemodynamics in fontan patients. Circ. Cardiovasc. Imaging 2014, 7, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Schuuring, M.J.; Vis, J.C.; van Dijk, A.P.; van Melle, J.P.; Vliegen, H.W.; Pieper, P.G.; Sieswerda, G.T.; de Bruin-Bon, R.H.; Mulder, B.J.; Bouma, B.J. Impact of bosentan on exercise capacity in adults after the Fontan procedure: A randomized controlled trial. Eur. J. Heart Fail. 2013, 15, 690–698. [Google Scholar] [CrossRef]
- Hebert, A.; Mikkelsen, U.R.; Thilen, U.; Idorn, L.; Jensen, A.S.; Nagy, E.; Hanseus, K.; Sørensen, K.E.; Søendergaard, L. Bosentan improves exercise capacity in adolescents and adults after fontan operation: The TEMPO (treatment with endothelin receptor antagonist in fontan patients, a randomized, placebo-controlled, double-blind study measuring peak oxygen consumption) study. Circulation 2014, 130, 2021–2030. [Google Scholar] [CrossRef]
- Zannad, F.; McMurray, J.J.; Krum, H.; van Veldhuisen, D.J.; Swedberg, K.; Shi, H.; Vincent, J.; Pocock, S.J.; Pitt, B. Eplerenone in Patients with Systolic Heart Failure and Mild Symptoms. N. Engl. J. Med. 2011, 364, 11–21. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Upadhyay, S.; Dodeja, A.K.; Toro-Salazar, O.; Fairchild, W.; Han, F. Cardiorenal Syndrome in Adults with Congenital Heart Disease. J. Clin. Med. 2025, 14, 4392. https://doi.org/10.3390/jcm14134392
Upadhyay S, Dodeja AK, Toro-Salazar O, Fairchild W, Han F. Cardiorenal Syndrome in Adults with Congenital Heart Disease. Journal of Clinical Medicine. 2025; 14(13):4392. https://doi.org/10.3390/jcm14134392
Chicago/Turabian StyleUpadhyay, Shailendra, Anudeep K. Dodeja, Olga Toro-Salazar, Whitney Fairchild, and Frank Han. 2025. "Cardiorenal Syndrome in Adults with Congenital Heart Disease" Journal of Clinical Medicine 14, no. 13: 4392. https://doi.org/10.3390/jcm14134392
APA StyleUpadhyay, S., Dodeja, A. K., Toro-Salazar, O., Fairchild, W., & Han, F. (2025). Cardiorenal Syndrome in Adults with Congenital Heart Disease. Journal of Clinical Medicine, 14(13), 4392. https://doi.org/10.3390/jcm14134392