Assessing Gait Function in Lower Limb Rehabilitation: The Role of the Gait Analysis and Motion Score (GAMS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Testing and Rating Procedure
2.3. Statistical Analysis
3. Results
3.1. Change over Time and Differences Between Groups
3.2. Reliability and Relationships
3.3. Changes in GAMS at Item Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACL | Anterior cruciate ligament |
CROM | Clinician-reported outcome measure |
GAMS | Gait analysis and motion score |
GDI | Gait deviation index |
HSS | Hospital for Special Surgery score |
IGA | Instrumented gait analysis |
KSS | Knee Society score |
MCID | Minimal clinically important difference |
PROM | Patient-reported outcome measure |
TUG | Timed Up and Go test |
VGA | Visual gait analysis |
WOMAC | Western Ontario and McMaster Universities Osteoarthritis Index |
3D | Three-dimensional |
Appendix A
Admission | Discharge | Changes | |||||
---|---|---|---|---|---|---|---|
TUG | WOMAC | TUG | WOMAC | TUG | WOMAC | ||
GAMS | Hip | −0.512 *** | 0.124 | −0.491 ** | 0.072 | −0.267 | 0.006 |
Knee | −0.212 | −0.236 | −0.191 | −0.099 | −0.281 | −0.224 | |
Ankle | −0.180 | 0.114 | −0.102 | 0.124 | 0.433 * | 0.062 | |
ALL | −0.299 ** | 0.038 | −0.225 * | 0.073 | −0.132 | −0.051 |
Item | Admission | Discharge | Δ | p | ηp2 | T2D | Side Difference (p-Value) | Group Difference |
---|---|---|---|---|---|---|---|---|
Initial Contact | 0.79 ± 0.38 | 0.86 ± 0.33 | 0.06 ± 0.35 | 0.051 | 0.04 (*) | 0.92 | 0.596 (ηp2 = 0.00) | 0.385 (ηp2 = 0.02) |
Heel Lift | 0.86 ± 0.28 | 0.94 ± 0.20 | 0.07 ± 0.26 | 0.000 | 0.13 *** | 1.01 | 0.184 (ηp2 = 0.02) | 0.181 (ηp2 = 0.04) |
Hind Foot | 0.77 ± 0.34 | 0.79 ± 0.33 | 0.02 ± 0.14 | 0.045 | 0.04 * | 0.81 | 0.289 (ηp2 = 0.01) | 0.172 (ηp2 = 0.04) |
Clearance | 0.84 ± 0.34 | 0.91 ± 0.24 | 0.08 ± 0.27 | 0.002 | 0.10 ** | 0.99 | 0.356 (ηp2 = 0.01) | 0.239 (ηp2 = 0.03) |
Knee Position Sagittal Plane | 0.54 ± 0.45 | 0.68 ± 0.42 | 0.14 ± 0.40 | 0.000 | 0.15 *** | 0.82 | 0.693 (ηp2 = 0.00) | 0.764 (ηp2 = 0.01) |
Knee Position Frontal Plane | 0.74 ± 0.41 | 0.76 ± 0.41 | 0.02 ± 0.15 | 0.045 | 0.04 * | 0.78 | 0.726 (ηp2 = 0.00) | 0.857 (ηp2 = 0.00) |
Hip Extension | 0.95 ± 0.20 | 0.97 ± 0.16 | 0.02 ± 0.18 | 0.208 | 0.02 | 0.99 | 0.057 (ηp2 = 0.04) | 0.674 (ηp2 = 0.01) |
Trendelenburg Sign | 0.95 ± 0.15 | 0.96 ± 0.13 | 0.01 ± 0.07 | 0.158 | 0.02 | 0.97 | 0.468 (ηp2 = 0.01) | 0.024 (ηp2 = 0.08) |
Duchenne Sign | 0.98 ± 0.13 | 0.98 ± 0.13 | 0.00 ± 0.00 | / | / | 0.98 | 1.000 (ηp2 = 0.00) | 0.551 (ηp2 = 0.01) |
Trunk Position | 0.88 ± 0.32 | 0.96 ± 0.20 | 0.07 ± 0.30 | 0.019 | 0.06 * | 1.03 | / | 0.943 (ηp2 = 0.00) |
Visual Parameters | 0.83 ± 0.30 | 0.88 ± 0.25 | 0.05 ± 0.21 | 0.000 | 0.36 *** | 0.93 | / | 0.363 (ηp2 = 0.12) |
Centre of Pressure Course | 0.59 ± 0.50 | 0.79 ± 0.41 | 0.20 ± 0.40 | 0.000 | 0.20 *** | 0.99 | / | 0.130 (ηp2 = 0.04) |
Step Length Difference | 0.45 ± 0.50 | 0.53 ± 0.50 | 0.09 ± 0.48 | 0.088 | 0.03 (*) | 0.62 | / | 0.469 (ηp2 = 0.02) |
Stride Width | 0.74 ± 0.44 | 0.74 ± 0.44 | 0.00 ± 0.33 | 1.000 | 0.00 | 0.74 | / | 0.216 (ηp2 = 0.03) |
Speed | 0.80 ± 0.40 | 0.81 ± 0.40 | 0.01 ± 0.18 | 0.566 | 0.00 | 0.82 | / | 0.630 (ηp2 = 0.01) |
Foot Rotation | 0.51 ± 0.38 | 0.59 ± 0.39 | 0.08 ± 0.34 | 0.001 | 0.10 *** | 0.67 | 0.041 (ηp2 = 0.04) | 0.715 (ηp2 = 0.01) |
Technical Parameters | 0.62 ± 0.44 | 0.69 ± 0.43 | 0.08 ± 0.35 | 0.000 | 0.28 *** | 0.77 | / | 0.347 (ηp2 = 0.06) |
ALL | 0.76 ± 0.35 | 0.82 ± 0.31 | 0.06 ± 0.26 | 0.000 | 0.45 *** | 0.88 | 0.260 (ηp2 = 0.13) | 0.454 (ηp2 = 0.16) |
References
- Ramesh, S.H.; Lemaire, E.D.; Tu, A.; Cheung, K.; Baddour, N. Automated Implementation of the Edinburgh Visual Gait Score (EVGS) Using OpenPose and Handheld Smartphone Video. Sensors 2023, 23, 4839. [Google Scholar] [CrossRef] [PubMed]
- Pinto, R.F.; Birmingham, T.B.; Leitch, K.M.; Atkinson, H.F.; Jones, I.C.; Giffin, J.R. Reliability and validity of knee angles and moments in patients with osteoarthritis using a treadmill-based gait analysis system. Gait Posture 2020, 80, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Wren, T.A.L.; Tucker, C.A.; Rethlefsen, S.A.; Gorton, G.E., 3rd; Ounpuu, S. Clinical efficacy of instrumented gait analysis: Systematic review 2020 update. Gait Posture 2020, 80, 274–279. [Google Scholar] [CrossRef]
- Naili, J.E.; Esbjornsson, A.C.; Iversen, M.D.; Schwartz, M.H.; Hedstrom, M.; Hager, C.K.; Brostrom, E.W. The impact of symptomatic knee osteoarthritis on overall gait pattern deviations and its association with performance-based measures and patient-reported outcomes. Knee 2017, 24, 536–546. [Google Scholar] [CrossRef]
- Langley, B.; Greig, M. The gait abnormality index: A summary metric for three-dimensional gait analysis. Gait Posture 2023, 105, 87–91. [Google Scholar] [CrossRef]
- Dürregger, C.; Adamer, K.A.; Pirchl, M.; Fischer, M.J. Inter-rater reliability of a newly developed gait analysis and motion score. J. Orthop. Trauma Rehabil. 2020, 0, 2210491720967366. [Google Scholar] [CrossRef]
- Pension Insurance Institution [Pensionsversicherungsanstalt]. Medical Performance Profile for Inpatient Rehabilitation (MLP STAT); Medizinisches Leistungsprofil für die stationäre Rehabilitation (MLP STAT); PV: Vienna, Austria, 2025. [Google Scholar]
- Faude, O.; Donath, L.; Roth, R.; Fricker, L.; Zahner, L. Reliability of gait parameters during treadmill walking in community-dwelling healthy seniors. Gait Posture 2012, 36, 444–448. [Google Scholar] [CrossRef]
- Walker, L.C.; Clement, N.D.; Bardgett, M.; Weir, D.; Holland, J.; Gerrand, C.; Deehan, D.J. The WOMAC score can be reliably used to classify patient satisfaction after total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 3333–3341. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Steffen, T.M.; Hacker, T.A.; Mollinger, L. Age- and gender-related test performance in community-dwelling elderly people: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and gait speeds. Phys. Ther. 2002, 82, 128–137. [Google Scholar] [CrossRef]
- Sawilowsky, S.S. New Effect Size Rules of Thumb. J. Mod. Appl. Stat. Methods 2009, 8, 597–599. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Hinkle, D.E.; Wiersma, W.; Jurs, S.G. Applied Statistics for the Behavioral Sciences, 5th ed.; Houghton Mifflin: Boston, MA, USA; London, UK, 2003. [Google Scholar]
- Bily, W.; Jauker, J.; Nics, H.; Grote, V.; Pirchl, M.; Fischer, M.J. Associations between Patient-Reported and Clinician-Reported Outcome Measures in Patients after Traumatic Injuries of the Lower Limb. Int. J. Environ. Res. Public Health 2022, 19, 3140. [Google Scholar] [CrossRef] [PubMed]
- Wagner, B.; Zdravkovic, A.; Pirchl, M.; Puhan, M.A.; Zwick, R.H.; Grote, V.; Crevenna, R.; Fischer, M.J. Performance Score (T2D)-A New Perspective in the Assessment of Six-Minute Walking Tests in Pulmonary Rehabilitation. Diagnostics 2022, 12, 2402. [Google Scholar] [CrossRef]
- Zdravkovic, A.; Grote, V.; Pirchl, M.; Stockinger, M.; Crevenna, R.; Fischer, M.J. Comparison of patient- and clinician-reported outcome measures in lower back rehabilitation: Introducing a new integrated performance measure (t2D). Qual Life Res. 2022, 31, 303–315. [Google Scholar] [CrossRef]
- Tu, Y.K.; Gilthorpe, M.S. Revisiting the relation between change and initial value: A review and evaluation. Stat. Med. 2007, 26, 443–457. [Google Scholar] [CrossRef]
- Wright, A.A.; Cook, C.E.; Baxter, G.D.; Dockerty, J.D.; Abbott, J.H. A comparison of 3 methodological approaches to defining major clinically important improvement of 4 performance measures in patients with hip osteoarthritis. J. Orthop. Sports Phys. Ther. 2011, 41, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Angst, F.; Aeschlimann, A.; Michel, B.A.; Stucki, G. Minimal clinically important rehabilitation effects in patients with osteoarthritis of the lower extremities. J. Rheumatol. 2002, 29, 131–138. [Google Scholar]
- Christopher, A.; Kraft, E.; Olenick, H.; Kiesling, R.; Doty, A. The reliability and validity of the Timed Up and Go as a clinical tool in individuals with and without disabilities across a lifespan: A systematic review. Disabil. Rehabil. 2021, 43, 1799–1813. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, J.; Zang, Y.; Guo, W.; Disantis, A.; Martin, R.L. Cross-Culturally Adapted Versions of Patient Reported Outcome Measures for the Lower Extremity. Int. J. Sports Phys. Ther. 2023, V18, 653–686. [Google Scholar] [CrossRef]
- Maity, S.; Das, H.; Chakrawarty, A.; Devanbu, V.G.C. Gait analysis and geriatric syndromes: An association among elderly patients attending a teaching hospital of Delhi. J. Family Med. Prim. Care 2024, 13, 2329–2335. [Google Scholar] [CrossRef]
- Zhao, R.; Wei, X.; Hu, S.; Zhang, Y.; Wu, H.; Li, P.; Zhao, Y. Deficient gait function despite effect index of the Western Ontario and McMaster university osteoarthritis index score considered cured one year after bilateral total knee arthroplasty. BMC Musculoskelet Disord 2024, 25, 230. [Google Scholar] [CrossRef] [PubMed]
- Liebensteiner, M.C.; Herten, A.; Gstoettner, M.; Thaler, M.; Krismer, M.; Bach, C.M. Correlation between objective gait parameters and subjective score measurements before and after total knee arthroplasty. Knee 2008, 15, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Nebel, M.B.; Sims, E.L.; Keefe, F.J.; Kraus, V.B.; Guilak, F.; Caldwell, D.S.; Pells, J.J.; Queen, R.; Schmitt, D. The relationship of self-reported pain and functional impairment to gait mechanics in overweight and obese persons with knee osteoarthritis. Arch. Phys. Med. Rehabil. 2009, 90, 1874–1879. [Google Scholar] [CrossRef] [PubMed]
- Bolink, S.A.; Grimm, B.; Heyligers, I.C. Patient-reported outcome measures versus inertial performance-based outcome measures: A prospective study in patients undergoing primary total knee arthroplasty. Knee 2015, 22, 618–623. [Google Scholar] [CrossRef]
- Li, H.; Hu, S.; Zhao, R.; Zhang, Y.; Huang, L.; Shi, J.; Li, P.; Wei, X. Gait Analysis of Bilateral Knee Osteoarthritis and Its Correlation with Western Ontario and McMaster University Osteoarthritis Index Assessment. Medicina 2022, 58, 1419. [Google Scholar] [CrossRef]
- Kirschberg, J.; Goralski, S.; Layher, F.; Sander, K.; Matziolis, G. Normalized gait analysis parameters are closely related to patient-reported outcome measures after total knee arthroplasty. Arch. Orthop. Trauma Surg. 2018, 138, 711–717. [Google Scholar] [CrossRef]
- Bonnefoy-Mazure, A.; Armand, S.; Sagawa, Y., Jr.; Suvà, D.; Miozzari, H.; Turcot, K. Knee Kinematic and Clinical Outcomes Evolution Before, 3 Months, and 1 Year After Total Knee Arthroplasty. J. Arthroplast. 2017, 32, 793–800. [Google Scholar] [CrossRef]
- Senden, R.; Grimm, B.; Meijer, K.; Savelberg, H.; Heyligers, I.C. The importance to including objective functional outcomes in the clinical follow up of total knee arthroplasty patients. Knee 2011, 18, 306–311. [Google Scholar] [CrossRef]
- Turcot, K.; Sagawa, Y., Jr.; Fritschy, D.; Hoffmeyer, P.; Suvà, D.; Armand, S. How gait and clinical outcomes contribute to patients’ satisfaction three months following a total knee arthroplasty. J. Arthroplast. 2013, 28, 1297–1300. [Google Scholar] [CrossRef]
Hip | Knee | Ankle | |
---|---|---|---|
n (m/f) | 37 (19/18) | 28 (12/16) | 29 (13/16) |
Age | 55.9 ± 10.4 | 52.1 ± 14.7 | 48.0 ± 11.7 |
Height | 173.7 ± 11.3 | 171.7 ± 8.0 | 172.9 ± 9.1 |
Weight | 82.7 ± 20.2 | 83.1 ± 18.1 | 80.3 ± 18.1 |
BMI | 27.4 ± 5.5 | 28.0 ± 4.7 | 26.8 ± 5.3 |
Hip | Knee | Ankle | |||||||
---|---|---|---|---|---|---|---|---|---|
t1 | Δ | Cdz | t1 | Δ | Cdz | t1 | Δ | Cdz | |
GAMS | 18.6 ± 3.7 | 1.5 ± 2.4 | 0.63 *** | 20.1 ± 3.6 | 1.5 ± 2.1 | 0.73 *** | 19.4 ± 3.7 | 1.2 ± 1.8 | 0.64 ** |
WOMAC | 39.6 ± 31.7 | −15.5 ± 25.9 | 0.60 *** | 54.9 ± 39.1 | −19.9 ± 28.4 | 0.70 *** | 49.2 ± 39.9 | −10.9 ± 32.8 | 0.33 (*) |
TUG | 8.0 ± 2.0 | −1.2 ± 1.1 | 1.02 *** | 8.4 ± 2.0 | −1.2 ± 1.6 | 0.77 *** | 8.1 ± 2.1 | −0.8 ± 1.0 | 0.88 *** |
Pre–Post | GAMS | WOMAC | TUG |
---|---|---|---|
Hip | 0.76 *** | 0.58 *** | 0.82 *** |
Knee | 0.82 *** | 0.70 *** | 0.60 *** |
Ankle | 0.90 *** | 0.61 *** | 0.89 *** |
ALL | 0.82 *** | 0.64 *** | 0.79 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bily, W.; Prüfer, F.; Adamer, K.; Lederwasch, R.; Matko, Š.; Fischer, M.J.; Grote, V. Assessing Gait Function in Lower Limb Rehabilitation: The Role of the Gait Analysis and Motion Score (GAMS). J. Clin. Med. 2025, 14, 4376. https://doi.org/10.3390/jcm14124376
Bily W, Prüfer F, Adamer K, Lederwasch R, Matko Š, Fischer MJ, Grote V. Assessing Gait Function in Lower Limb Rehabilitation: The Role of the Gait Analysis and Motion Score (GAMS). Journal of Clinical Medicine. 2025; 14(12):4376. https://doi.org/10.3390/jcm14124376
Chicago/Turabian StyleBily, Walter, Ferdinand Prüfer, Klemens Adamer, Roman Lederwasch, Špela Matko, Michael J. Fischer, and Vincent Grote. 2025. "Assessing Gait Function in Lower Limb Rehabilitation: The Role of the Gait Analysis and Motion Score (GAMS)" Journal of Clinical Medicine 14, no. 12: 4376. https://doi.org/10.3390/jcm14124376
APA StyleBily, W., Prüfer, F., Adamer, K., Lederwasch, R., Matko, Š., Fischer, M. J., & Grote, V. (2025). Assessing Gait Function in Lower Limb Rehabilitation: The Role of the Gait Analysis and Motion Score (GAMS). Journal of Clinical Medicine, 14(12), 4376. https://doi.org/10.3390/jcm14124376