Calculating the Risk of Admission to Intensive Care Units in COVID-19 Patients Using Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting
2.2. Design
2.3. Data Preparation
2.4. Dependent Variable
2.5. Independent Variables
2.6. Model Development
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ICU | Intensive Care Unit |
EMR | Electronic Medical Record |
CRP | C-Reactive Protein |
RFE | Recursive Feature Elimination |
IQR | Interquartile range |
RFECV | Recursive Feature Elimination Cross Validation |
ADASYN | Adaptive synthetic sampling approach for imbalanced learning |
AUC | Area Under the Curve |
SHAP | Shapley Additive Explanations |
AST | Aspartate aminotransferase |
NEWS | National Early Warning Score |
ARI | Acute Respiratory Infections |
LDH | Lactate dehydrogenase |
PCO2 | Partial pressure CO2 |
PO2 | Partial pressure O2 |
aPTT | Activated partial thromboplastin |
PPV | Positive Predictive Value |
NPV | Negative Predictive Value |
F1-S | F1-Score |
Appendix A
Appendix A.1
Variable | No. Values | Type of Value | Type of Variable | Data Collection Timing |
---|---|---|---|---|
Number of antibiotics | 8 | Accumulated | Dynamic | Value prior to ICU admission or expected ICU admission (median) |
Hours of anticoagulant treatment | All | Accumulated | Dynamic | Value prior to ICU admission or expected ICU admission (median) |
Aspartate aminotransferase (AST) value | All | Individual | Dynamic | Last recorded value prior to ICU admission or expected ICU admission (median) |
Bilirubin value | All | Individual | Dynamic | Last recorded value prior to ICU admission or expected ICU admission (median) |
Creatine Kinase (CK) value | All | Individual | Dynamic | Last recorded value prior to ICU admission or expected ICU admission (median) |
Hours of corticosteroid treatment | All | Accumulated | Dynamic | Value prior to ICU admission or expected ICU admission (median) |
Creatinine value | All | Individual | Dynamic | Last recorded value prior to ICU admission or expected ICU admission (median) |
D-dimer value | All | Individual | Dynamic | Last recorded value prior to ICU admission or expected ICU admission (median) |
Ferritin value | All | Individual | Dynamic | Last recorded value prior to ICU admission or expected ICU admission (median) |
Heart rate | All | Individual | Dynamic | Last recorded value in the 24 h prior to ICU admission or expected ICU admission (median) |
Age group | 6 | Individual | Static | On admission |
Hours of hospitalization | All | Accumulated | Dynamic | Value from the emergency department admission to the ICU admission or to the discharge day |
Hours of Emergency department | All | Accumulated | Dynamic | Value from the emergency department stay |
Lactate dehydrogenase (LDH) value | All | Individual | Dynamic | Last recorded value prior to ICU admission or expected ICU admission (median) |
Leukocytes value | All | Individual | Dynamic | Last recorded value prior to ICU admission or expected ICU admission (median) |
Lymphocyte value | All | Individual | Dynamic | Last recorded value prior to ICU admission or expected ICU admission (median) |
Place of birth | 2 | Individual | Static | On admission |
Type of oxygen therapy | 6 | Individual | Dynamic | Last recorded value in the 24 h prior to ICU admission or expected ICU admission (median) |
Partial Pressure CO2 (PCO2) value | All | Individual | Dynamic | Last recorded value prior to ICU admission or expected ICU admission (median) |
Platelet value | All | Individual | Dynamic | Last recorded value prior to ICU admission or expected ICU admission (median) |
Partial Pressure O2 (PO2) value | All | Individual | Dynamic | Last recorded value prior to ICU admission or expected ICU admission (median) |
C-Reactive Protein (CRP) value | All | Individual | Dynamic | Last recorded value prior to ICU admission or expected ICU admission (median) |
Urea range | 2 | Individual | Dynamic | Last recorded value prior to ICU admission or expected ICU admission (median) |
Oxygen saturation value | All | Individual | Dynamic | Last recorded value in the 24 h prior to ICU admission or expected ICU admission (median) |
Oxygen saturation Lab value | All | Individual | Dynamic | Last recorded value prior to ICU admission or expected ICU admission (median) |
Temperature | All | Individual | Dynamic | Last recorded value in the 24 h prior to ICU admission or expected ICU admission (median) |
Systolic blood pressure | All | Individual | Dynamic | Last recorded value in the 24 h prior to ICU admission or expected ICU admission (median) |
Troponin value | All | Individual | Dynamic | Last recorded value prior to ICU admission or expected ICU admission (median) |
Activated partial thromboplastin (aPTT) value | All | Individual | Dynamic | Last recorded value prior to ICU admission or expected ICU admission (median) |
Urea value | All | Individual | Dynamic | Last recorded value prior to ICU admission or expected ICU admission (median) |
Appendix A.2
Hyperparameter | Value |
---|---|
boosting_type | gbdt |
class_weight | balanced |
colsample_bytree | 0.4750764935387468 |
importance_type | split |
learning_rate | 0.28312968303160313 |
max_depth | −1 |
min_child_samples | 3 |
min_child_weight | 0.001 |
min_split_gain | 0.0 |
n_estimators | 76 |
n_jobs | 4 |
num_leaves | 326 |
objective | binary |
random_state | 50 |
reg_alpha | 0.5985119228590867 |
reg_lambda | 0.5845451820124326 |
silent | True |
subsample | 1.0 |
subsample_for_bin | 300000 |
subsample_freq | 0 |
bagging_fraction | 0.6087654298259604 |
References
- Baj, J.; Karakuła-Juchnowicz, H.; Teresiński, G.; Buszewicz, G.; Ciesielka, M.; Sitarz, R.; Forma, A.; Karakuła, K.; Flieger, W.; Portincasa, P.; et al. COVID-19: Specific and non-specific clinical manifestations and symptoms: The current state of knowledge. J. Clin. Med. 2020, 9, 1753. [Google Scholar] [CrossRef] [PubMed]
- Johns Hopkins Coronavirus Resource Center. COVID-19 Map. 2022. Available online: https://coronavirus.jhu.edu/map.html (accessed on 15 October 2022).
- Cheng, F.-Y.; Joshi, H.; Tandon, P.; Freeman, R.; Reich, D.L.; Mazumdar, M.; Kohli-Seth, R.; Levin, M.A.; Timsina, P.; Kia, A. Using machine learning to predict ICU transfer in hospitalized COVID-19 patients. J. Clin. Med. 2020, 9, 1668. [Google Scholar] [CrossRef]
- Wu, G.; Yang, P.; Xie, Y.; Woodruff, H.C.; Rao, X.; Guiot, J.; Frix, A.-N.; Louis, R.; Moutschen, M.; Li, J.; et al. Development of a clinical decision support system for severity risk prediction and triage of COVID-19 patients at hospital admission: An international multicentre study. Eur. Respir. J. 2020, 56, 2001104. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef]
- White, D.B.; Lo, B. A framework for rationing ventilators and critical care beds during the COVID-19 pandemic. JAMA 2020, 323, 1773–1774. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Han, D.; Kim, J.-H.; Kim, D.; Ha, B.; Seog, W.; Lee, Y.-K.; Lim, D.; Hong, S.O.; Park, M.-J.; et al. An easy-to-use machine learning model to predict the prognosis of patients with COVID-19: Retrospective cohort study. J. Med. Internet Res. 2020, 22, e24225. [Google Scholar] [CrossRef]
- Chen, R.; Chen, J.; Yang, S.; Luo, S.; Xiao, Z.; Lu, L.; Liang, B.; Liu, S.; Shi, H.; Xu, J. Prediction of prognosis in COVID-19 patients using machine learning: A systematic review and meta-analysis. Int. J. Med. Inform. 2023, 177, 105151. [Google Scholar] [CrossRef]
- Hou, W.; Zhao, Z.; Chen, A.; Li, H.; Duong, T.Q. Machining learning predicts the need for escalated care and mortality in COVID-19 patients from clinical variables. Int. J. Med. Sci. 2021, 18, 1739–1745. [Google Scholar] [CrossRef]
- Adamidi, E.S.; Mitsis, K.; Nikita, K.S. Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review. Comput. Struct. Biotechnol. J. 2021, 19, 2833–2850. [Google Scholar] [CrossRef]
- Myers, L.C.; Parodi, S.M.; Escobar, G.J.; Liu, V.X. Characteristics of hospitalized adults with COVID-19 in an integrated health care system in California. JAMA 2020, 323, 2195–2198. [Google Scholar] [CrossRef]
- Zhou, Y.; He, Y.; Yang, H.; Yu, H.; Wang, T.; Chen, Z.; Yao, R.; Liang, Z. Development and validation a nomogram for predicting the risk of severe COVID-19: A multi-center study in Sichuan, China. PLoS ONE 2020, 15, e0233328. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Liang, H.; Ou, L.; Chen, B.; Chen, A.; Li, C.; Li, Y.; Guan, W.; Sang, L.; Lu, J.; et al. Development and validation of a clinical risk score to predict the occurrence of critical illness in hospitalized patients with COVID-19. JAMA Intern. Med. 2020, 180, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Burian, E.; Jungmann, F.; Kaissis, G.A.; Lohöfer, F.K.; Spinner, C.D.; Lahmer, T.; Treiber, M.; Dommasch, M.; Schneider, G.; Geisler, F.; et al. Intensive care risk estimation in COVID-19 pneumonia based on clinical and imaging parameters: Experiences from the Munich cohort. J. Clin. Med. 2020, 9, 1514. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.; Kher, V.; Desai, B.; Lei, X.; Cen, S.; Nanda, N.; Gholamrezanezhad, A.; Duddalwar, V.; Varghese, B.; A Oberai, A. Machine learning based predictors for COVID-19 disease severity. Sci. Rep. 2021, 11, 4673. [Google Scholar] [CrossRef]
- Statsenko, Y.; Al Zahmi, F.; Habuza, T.; Gorkom, K.N.-V.; Zaki, N. Prediction of COVID-19 severity using laboratory findings on admission: Informative values, thresholds, ML model performance. BMJ Open 2021, 11, e044500. [Google Scholar] [CrossRef]
- Bolourani, S.; Brenner, M.; Wang, P.; McGinn, T.; Hirsch, J.S.; Barnaby, D.; Zanos, T.P. A machine learning prediction model of respiratory failure within 48 hours of patient admission for COVID-19: Model development and validation. J. Med. Internet Res. 2021, 23, e24246. [Google Scholar] [CrossRef]
- Wendland, P.; Schmitt, V.; Zimmermann, J.; Häger, L.; Göpel, S.; Schenkel-Häger, C.; Kschischo, M. Machine learning models for predicting severe COVID-19 outcomes in hospitals. Inform. Med. Unlocked 2023, 37, 101188. [Google Scholar] [CrossRef]
- Mauer, E.; Lee, J.; Choi, J.; Zhang, H.; Hoffman, K.L.; Easthausen, I.J.; Rajan, M.; Weiner, M.G.; Kaushal, R.; Safford, M.M.; et al. A predictive model of clinical deterioration among hospitalized COVID-19 patients by harnessing hospital course trajectories. J. Biomed. Inform. 2021, 118, 103794. [Google Scholar] [CrossRef]
- Douville, N.J.; Douville, C.B.; Mentz, G.; Mathis, M.R.; Pancaro, C.; Tremper, K.K.; Engoren, M. Clinically applicable approach for predicting mechanical ventilation in patients with COVID-19. Br. J. Anaesth. 2021, 126, 578–589. [Google Scholar] [CrossRef]
- Park, H.; Choi, C.-M.; Kim, S.-H.; Kim, S.H.; Kim, D.K.; Jeong, J.B. In-hospital real-time prediction of COVID-19 severity regardless of disease phase using electronic health records. PLoS ONE 2024, 19, e0294362. [Google Scholar] [CrossRef]
- Subudhi, S.; Verma, A.; Patel, A.B.; Hardin, C.C.; Khandekar, M.J.; Lee, H.; McEvoy, D.; Stylianopoulos, T.; Munn, L.L.; Dutta, S.; et al. Comparing machine learning algorithms for predicting ICU admission and mortality in COVID-19. NPJ Digit. Med. 2021, 4, 87. [Google Scholar] [CrossRef] [PubMed]
- Assaf, D.; Gutman, Y.; Neuman, Y.; Segal, G.; Amit, S.; Gefen-Halevi, S.; Shilo, N.; Epstein, A.; Mor-Cohen, R.; Biber, A.; et al. Utilization of machine-learning models to accurately predict the risk for critical COVID-19. Intern. Emerg. Med. 2020, 15, 1435–1443. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ge, P.; Zhu, J.; Li, H.; Graham, J.; Singer, A.; Richman, P.S.; Duong, T.Q. Deep learning prediction of likelihood of ICU admission and mortality in COVID-19 patients using clinical variables. PeerJ 2020, 8, e10337. [Google Scholar] [CrossRef]
- Jimenez-Solem, E.; Petersen, T.S.; Hansen, C.; Hansen, C.; Lioma, C.; Igel, C.; Boomsma, W.; Krause, O.; Lorenzen, S.; Selvan, R.; et al. Developing and validating COVID-19 adverse outcome risk prediction models from a bi-national European cohort of 5594 patients. Sci. Rep. 2021, 11, 3246. [Google Scholar] [CrossRef] [PubMed]
Variable | Total | % | 2020 Training | % | 2021 Test | % | Chi2, t-Student or Comparison of Two Population Means | p Value |
---|---|---|---|---|---|---|---|---|
Age (categorized) | ||||||||
0–20 | 19 | 0.90 | 15 | 1.18 | 4 | 0.73 | ||
21–40 | 124 | 5.85 | 90 | 7.08 | 22 | 4.00 | ||
41–60 | 583 | 27.50 | 361 | 28.38 | 138 | 25.09 | ||
61–75 | 832 | 39.24 | 504 | 39.62 | 228 | 41.45 | ||
76–85 | 427 | 20.14 | 239 | 18.79 | 116 | 21.09 | ||
86–150 | 135 | 6.37 | 63 | 4.95 | 42 | 7.64 | ||
2120 | 100.00 | 1272 | 100.00 | 550 | 100.00 | 14.34 | 0.0136 * | |
Sex | ||||||||
Male | 1220 | 57.55 | 741 | 58.26 | 316 | 57.45 | ||
Female | 900 | 42.45 | 531 | 41.74 | 234 | 42.55 | 0.0854 | 0.7702 |
2120 | 100.00 | 1272 | 100.00 | 550 | 100.00 | |||
Place of birth | ||||||||
Spain | 1230 | 58.02 | 855 | 67.22 | 375 | 68.1 | ||
Outside Spain | 592 | 27.92 | 417 | 32.78 | 175 | 31.81 | ||
2120 | 100.00 | 1272 | 100.00 | 550 | 100.00 | 0.1219 | 0.7269 | |
Emergency hours | ||||||||
1st Qu | 5.00 | 2.00 | ||||||
Mean (SD) | 13.19 (10.85) | 8.68 (7.83) | −41.065 (−43.73; −39.74) | <0.0001 * | ||||
3rd Qu | 21.00 | 12.00 | ||||||
Hours of hospitalization | ||||||||
1st Qu | 24.00 | 24.00 | ||||||
Mean (SD) | 207.86 (146.29) | 202.00 (166.16) | 0.751 (−9.42; 21.12) | 0.4523 | ||||
3rd Qu | 261.2 | 258.00 | ||||||
Type of oxygen therapy | ||||||||
No oxygen | 682 | 32.17 | 452 | 35.53 | 141 | 25.64 | ||
Nasal prong | 912 | 43.02 | 535 | 42.07 | 244 | 44.36 | ||
Venturi oxygen mask | 231 | 10.90 | 116 | 9.12 | 63 | 11.45 | ||
Reservoir | 193 | 9.10 | 120 | 9.43 | 64 | 11.64 | ||
High flow | 62 | 2.92 | 22 | 1.73 | 28 | 5.09 | ||
Non-invasive mechanical ventilation | 40 | 1.89 | 27 | 2.12 | 10 | 1.82 | ||
2120 | 100.00 | 1272 | 100.00 | 550 | 100.00 | 31.995 | <0.0001 * | |
Number of antibiotics | ||||||||
0 | 1256 | 59.26 | 704 | 55.36 | 413 | 75.10 | ||
1 | 771 | 36.37 | 539 | 42.37 | 129 | 23.45 | ||
2 | 76 | 3.57 | 27 | 2.12 | 8 | 1.45 | ||
3 | 9 | 0.42 | 2 | 0.15 | 0 | 0.00 | ||
4 | 6 | 0.28 | 0 | 0.00 | 0 | 0.00 | ||
5 | 1 | 0.05 | 0 | 0.00 | 0 | 0.00 | ||
8 | 1 | 0.05 | 0 | 0.00 | 0 | 0.00 | ||
2120 | 100.00 | 1272 | 100.00 | 550 | 100.00 | 63.664 | <0.0001 * | |
Hours of anticoagulant treatment | ||||||||
1st Qu | 25.00 | 13.50 | ||||||
Mean (SD) | 66.75 (47.82) | 63.34 (60.16) | ||||||
3rd Qu | 103.00 | 92.00 | 1.2814 (−1.79; 8.58) | 0.2000 | ||||
Hours of corticosteroid treatment | ||||||||
1st Qu | 0.00 | 0.00 | ||||||
Mean (SD) | 27.12 (42.83) | 51.53 (47.57) | ||||||
3rd Qu | 55.00 | 80.00 | −10.789 (−28.84; −19.97) | <0.0001 * | ||||
Systolic blood pressure | ||||||||
1st Qu | 110.00 | 115.00 | ||||||
Mean (SD) | 124.50 (16.47) | 126.20 (16.17) | ||||||
3rd Qu | 135.00 | 140.00 | −1.9996 (−3.31; −0.03) | 0.0457 * | ||||
Heart rate | ||||||||
1st Qu | 67.00 | 66.00 | ||||||
Mean (SD) | 77.23 (12.74) | 75.44 (13.26) | ||||||
3rd Qu | 86.00 | 82.00 | 2.7197 (0.50; 3.08) | 0.0066 * | ||||
Temperature | ||||||||
1st Qu | 36.00 | 35.00 | ||||||
Mean (SD) | 36.03 (0.75) | 35.80 (0.74) | ||||||
3rd Qu | 39.00 | 36.00 | 5.1661 (0.13; 0.28) | <0.0001 * | ||||
Urea value | ||||||||
1st Qu | 29.00 | 36.00 | ||||||
Mean (SD) | 44.83 (27.47) | 54.97 (32.30) | ||||||
3rd Qu | 63.00 | 63.00 | −6.8451 (−13.04; −7.23) | <0.0001 * | ||||
Bilirubin value | ||||||||
1st Qu | 0.40 | 0.30 | ||||||
Mean (SD) | 0.63 (0.49) | 0.45 (0.35) | ||||||
3rd Qu | 0.70 | 0.50 | 8.1922 (0.13; 0.22) | <0.0001 * | ||||
Creatine Kinase (CK) value | ||||||||
1st Qu | 46.00 | 63.00 | ||||||
Mean (SD) | 170.61 (230.82) | 138.79 (145.72) | 2.9863 (10.92; 52.73) | 0.0029 * | ||||
3rd Qu | 160.0 | 150.60 | ||||||
Creatinine value | ||||||||
1st Qu | 0.69 | 0.71 | ||||||
Mean (SD) | 0.98 (0.76) | 0.99 (0.86) | ||||||
3rd Qu | 1.03 | 1.01 | −0.2779 (−0.09; 0.07) | 0.7917 | ||||
D-dimer value | ||||||||
1st Qu | 425 | 484 | ||||||
Mean (SD) | 1621 (3833.99) | 1920 (4688) | −1.0543 (−0.15; 0.04) | 0.292 | ||||
3rd Qu | 1621 | 1920 | ||||||
Ferritin value | ||||||||
1st Qu | 258 | 304 | ||||||
Mean (SD) | 887.8 (1041.45) | 831.89 (797.67) | ||||||
3rd Qu | 1197 | 1014 | 0.0464 (−0.09: 0.10) | 0.963 | ||||
Lactate dehydrogenase (LDH) value | ||||||||
1st Qu | 407 | 454 | ||||||
Mean (SD) | 565.6 (286.26) | 623.32 (353.85) | −5.1556 (−0.13; −0.06) | |||||
3rd Qu | 633 | 687 | <0.0001 * | |||||
Leukocytes value | ||||||||
1st Qu | 4.99 | 5.85 | ||||||
Mean (SD) | 7.31 (4.22) | 8.67 (4.01) | ||||||
3rd Qu | 8.71 | 10.51 | −6.5963 (−78; −0.96) | <0.0001 * | ||||
Partial pressure CO2 (PCO2) | ||||||||
1st Qu | 33.10 | 35.20 | ||||||
Mean (SD) | 41.30 (8.60) | 41.53 (9.33) | ||||||
3rd Qu | 45.55 | 45.45 | −0.496 (−1.14; 0.68) | 0.62 | ||||
Partial pressure O2 (PO2) | ||||||||
1st Qu | 38.38 | 55.95 | ||||||
Mean (SD) | 5976 (26.77) | 63.59 (12.79) | ||||||
3rd Qu | 72.20 | 69.05 | −4.1106 (−8.47; −2.99) | <0.0001 * | ||||
Platelet value | ||||||||
1st Qu | 182 | 176 | ||||||
Mean (SD) | 258 (108.97) | 254 (110.66) | ||||||
3rd Qu | 312 | 323 | 0.9963 (−0.02; 0.07) | 0.3194 | ||||
Troponin value | ||||||||
1st Qu | 0.017 | 0.008 | ||||||
Mean (SD) | 0.03 (0.07) | 0.05 (0.073) | ||||||
3rd Qu | 0.03 | 0.046 | −4.0135 (−0.34; −0.12) | <0.0001 * | ||||
Aspartate aminotransferase (AST) value | ||||||||
1st Qu | 27 | 27 | ||||||
Mean (SD) | 46 (33.92) | 44 (28.71) | 1.1084 (−1.32; 4.75) | 0.2679 | ||||
3rd Qu | 54 | 50 | ||||||
Activated partial thromboplastin (aPTT) value | ||||||||
1st Qu | 24.40 | 22.30 | ||||||
Mean (SD) | 29.94 (7.50) | 26.74 (9.69) | ||||||
3rd Qu | 34.40 | 30.94 | 8.2431 (2.14; 3.47) | <0.0001 * |
PPV (95% CI) | NPV (95% CI) | Accuracy (95% CI) | AUC (95% CI) | Specificity (95% CI) | Sensitivity (95% CI) | F1-S | Youden Index | |
---|---|---|---|---|---|---|---|---|
LightGBM | 0.93 (0.85–1.0) | 0.99 (0.98–1.0) | 0.98 (0.97–1.0) | 0.95 (0.93–0.97) | 0.99 (0.98–1.0) | 0.91 (0.82–0.99) | 0.94 | 0.91 |
XGBoost | 0.93 (0.85–1.0) | 0.99 (0.98–1.0) | 0.98 (0.97–1.0) | 0.94 (0.91–0.97) | 0.99 (0.98–1.0) | 0.91 (0.82–0.99) | 0.91 | 0.91 |
Logistic regression | 0.85 (0.75–0.96) | 0.97 (0.96–0.99) | 0.98 (0.97–1.0) | 0.92 (0.89–0.95) | 0.98 (0.97–1.0) | 0.80 (0.68–0.91) | 0.79 | 0.81 |
Random Forest | 0.95 (0.88–1.0) | 0.98 (0.96–1.0) | 0.96 (0.94–0.98) | 0.90 (0.87–0.93) | 0.99 (0.98–1.0) | 0.84 (0.73–0.95) | 0.88 | 0.93 |
PPV (95% CI) | NPV (95% CI) | Accuracy (95% CI) | AUC (95% CI) | Specificity (95% CI) | Sensitivity (95% CI) | F1-S | Youden Index | |
---|---|---|---|---|---|---|---|---|
LightGBM (Training) | 0.93 (0.85–1.00) | 0.99 (0.97–1.00) | 0.98 (0.97–1.00) | 0.95 (0.93–1.00) | 0.99 (0.98–1.00) | 0.91 (0.82–0.99) | 0.94 | 0.91 |
LightGBM (Test) | 0.95 (0.90–1.00) | 0.99 (0.98–1.00) | 0.98 (0.97–0.99) | 1.00 (0.99–1.00) | 0.99 (0.97–1.00) | 0.92 (0.86–0.98) | 0.93 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ladios-Martin, M.; Cabañero-Martínez, M.J.; Fernández-de-Maya, J.; Ballesta-López, F.-J.; Garcia-Garcia, I.; Belso-Garzas, A.; Aznar-Zamora, F.-M.; Cabrero-García, J. Calculating the Risk of Admission to Intensive Care Units in COVID-19 Patients Using Machine Learning. J. Clin. Med. 2025, 14, 4205. https://doi.org/10.3390/jcm14124205
Ladios-Martin M, Cabañero-Martínez MJ, Fernández-de-Maya J, Ballesta-López F-J, Garcia-Garcia I, Belso-Garzas A, Aznar-Zamora F-M, Cabrero-García J. Calculating the Risk of Admission to Intensive Care Units in COVID-19 Patients Using Machine Learning. Journal of Clinical Medicine. 2025; 14(12):4205. https://doi.org/10.3390/jcm14124205
Chicago/Turabian StyleLadios-Martin, Mireia, María José Cabañero-Martínez, José Fernández-de-Maya, Francisco-Javier Ballesta-López, Ignacio Garcia-Garcia, Adrián Belso-Garzas, Francisco-Manuel Aznar-Zamora, and Julio Cabrero-García. 2025. "Calculating the Risk of Admission to Intensive Care Units in COVID-19 Patients Using Machine Learning" Journal of Clinical Medicine 14, no. 12: 4205. https://doi.org/10.3390/jcm14124205
APA StyleLadios-Martin, M., Cabañero-Martínez, M. J., Fernández-de-Maya, J., Ballesta-López, F.-J., Garcia-Garcia, I., Belso-Garzas, A., Aznar-Zamora, F.-M., & Cabrero-García, J. (2025). Calculating the Risk of Admission to Intensive Care Units in COVID-19 Patients Using Machine Learning. Journal of Clinical Medicine, 14(12), 4205. https://doi.org/10.3390/jcm14124205