Four-Dimensional Flow in Fontan Patients: Advanced Haemodynamic Assessment
Abstract
:1. Introduction
2. Acquisition and Applications of 4D Flow
2.1. Acquisition and Reconstruction
2.2. Post-Processing, Clinical, and Advanced Parameters
2.3. Modelling
2.4. Extended Reality
3. Applications of 4D Flow in Fontan Patients
3.1. Four-Dimensional Flow for Surgical and Interventional Planning
3.2. Aortic Flow
3.3. Ventricular Flow
3.4. Total Cavopulmonary Connection (TCPC)
4. Discussion and Outlook
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
4D | Four-dimensional |
TCPC | Total cavopulmonary connection |
3D | Three-dimensional |
2D | Two-dimensional |
VENC | Velocity encoding |
References
- Corno, A.F.; Findley, T.O.; Salazar, J.D. Narrative review of single ventricle: Where are we after 40 years? Transl. Pediatr. 2023, 12, 221–244. [Google Scholar] [CrossRef]
- Rychik, J.; Atz, A.M.; Celermajer, D.S.; Deal, B.J.; Gatzoulis, M.A.; Gewillig, M.H.; Hsia, T.Y.; Hsu, D.T.; Kovacs, A.H.; McCrindle, B.W.; et al. Evaluation and Management of the Child and Adult with Fontan Circulation: A Scientific Statement from the American Heart Association. Circulation 2019, 140, e234–e284. [Google Scholar] [CrossRef]
- Fontan, F.; Baudet, E. Surgical repair of tricuspid atresia. Thorax 1971, 26, 240–248. [Google Scholar] [CrossRef]
- Perrin, N.; Dore, A.; van de Bruaene, A.; Mongeon, F.P.; Mondésert, B.; Poirier, N.; Miró, J.; Khairy, P.; Ibrahim, R.; Chaix, M.A. The Fontan Circulation: From Ideal to Failing Hemodynamics and Drug Therapies for Optimization. Can. J. Cardiol. 2022, 38, 1059–1071. [Google Scholar] [CrossRef]
- Ait Ali, L.; Martini, N.; Listo, E.; Valenti, E.; Sotelo, J.; Salvadori, S.; Passino, C.; Monteleone, A.; Stagnaro, N.; Trocchio, G.; et al. Impact of 4D-Flow CMR Parameters on Functional Evaluation of Fontan Circulation. Pediatr. Cardiol. 2024, 45, 998–1006. [Google Scholar] [CrossRef]
- Fogel, M.A.; Anwar, S.; Broberg, C.; Browne, L.; Chung, T.; Johnson, T.; Muthurangu, V.; Taylor, M.; Valsangiacomo-Buechel, E.; Wilhelm, C. Society for Cardiovascular Magnetic Resonance/European Society of Cardiovascular Imaging/American Society of Echocardiography/Society for Pediatric Radiology/North American Society for Cardiovascular Imaging Guidelines for the Use of Cardiac Magnetic Resonance in Pediatric Congenital and Acquired Heart Disease: Endorsed by The American Heart Association. Circ. Cardiovasc. Imaging 2022, 15, e014415. [Google Scholar]
- Zentner, D.; Celermajer, D.S.; Gentles, T.; d’Udekem, Y.; Ayer, J.; Blue, G.M.; Bridgman, C.; Burchill, L.; Cheung, M.; Cordina, R.; et al. Management of People with a Fontan Circulation: A Cardiac Society of Australia and New Zealand Position statement. Heart Lung Circ. 2020, 29, 5–39. [Google Scholar] [CrossRef]
- Hanneman, K.; Sivagnanam, M.; Nguyen, E.T.; Wald, R.; Greiser, A.; Crean, A.M.; Ley, S.; Wintersperger, B.J. Magnetic resonance assessment of pulmonary (QP) to systemic (QS) flows using 4D phase-contrast imaging: Pilot study comparison with standard through-plane 2D phase-contrast imaging. Acad. Radiol. 2014, 21, 1002–1008. [Google Scholar] [CrossRef]
- Isorni, M.A.; Martins, D.; Ben Moussa, N.; Monnot, S.; Boddaert, N.; Bonnet, D.; Hascoet, S.; Raimondi, F. 4D flow MRI versus conventional 2D for measuring pulmonary flow After Tetralogy of Fallot repair. Int. J. Cardiol. 2020, 300, 132–136. [Google Scholar] [CrossRef]
- Jacobs, K.G.; Chan, F.P.; Cheng, J.Y.; Vasanawala, S.S.; Maskatia, S.A. 4D flow vs. 2D cardiac MRI for the evaluation of pulmonary regurgitation and ventricular volume in repaired tetralogy of Fallot: A retrospective case control study. Int. J. Cardiovasc. Imaging 2020, 36, 657–669. [Google Scholar] [CrossRef]
- Bissell, M.M.; Raimondi, F.; Ait Ali, L.; Allen, B.D.; Barker, A.J.; Bolger, A.; Burris, N.; Carhäll, C.J.; Collins, J.D.; Ebbers, T.; et al. 4D Flow cardiovascular magnetic resonance consensus statement: 2023 update. J. Cardiovasc. Magn. Reson. 2023, 25, 40. [Google Scholar] [CrossRef] [PubMed]
- Dyverfeldt, P.; Bissell, M.; Barker, A.J.; Bolger, A.F.; Carlhäll, C.J.; Ebbers, T.; Francios, C.J.; Frydrychowicz, A.; Geiger, J.; Giese, D.; et al. 4D flow cardiovascular magnetic resonance consensus statement. J. Cardiovasc. Magn. Reson. 2015, 17, 72. [Google Scholar] [CrossRef] [PubMed]
- Itatani, K.; Sekine, T.; Yamagishi, M.; Maeda, Y.; Higashitani, N.; Miyazaki, S.; Matsuda, J.; Takehara, Y. Hemodynamic Parameters for Cardiovascular System in 4D Flow MRI: Mathematical Definition and Clinical Applications. Magn. Reson. Med. Sci. 2022, 21, 380–399. [Google Scholar] [CrossRef]
- Puricelli, F.; Voges, I.; Gatehouse, P.; Rigby, M.; Izgi, C.; Pennell, D.J.; Krupickova, S. Performance of Cardiac MRI in Pediatric and Adult Patients with Fontan Circulation. Radiol. Cardiothorac. Imaging 2022, 4, e210235. [Google Scholar] [CrossRef]
- Kroeger, J.R.; Pavesio, F.C.; Mörsdorf, R.; Weiss, K.; Bunck, A.C.; Baeßler, B.; Maintz, D.; Giese, D. Velocity quantification in 44 healthy volunteers using accelerated multi-VENC 4D flow CM.R. Eur. J. Radiol. 2021, 137, 109570. [Google Scholar] [CrossRef]
- Moersdorf, R.; Treutlein, M.; Kroeger, J.R.; Ruijsink, B.; Wong, J.; Maintz, D.; Weiss, K.; Bunck, A.C.; Baeßler, B.; Giese, D. Precision, reproducibility and applicability of an undersampled multi-venc 4D flow MRI sequence for the assessment of cardiac hemodynamics. Magn. Reson. Imaging 2019, 61, 73–82. [Google Scholar] [CrossRef]
- Gabbert, D.D.; Hart, C.; Jerosch-Herold, M.; Wegner, P.; Salehi Ravesh, M.; Voges, I.; Kristo, I.; Bulushi, A.A.L.; Scheewe, J.; Kheradvar, A.; et al. Heart beat but not respiration is the main driving force of the systemic venous return in the Fontan circulation. Sci. Rep. 2019, 9, 2034. [Google Scholar]
- Markl, M.; Frydrychowicz, A.; Kozerke, S.; Hope, M.; Wieben, O. 4D flow MR.I. J. Magn. Reson. Imaging 2012, 36, 1015–1036. [Google Scholar] [CrossRef] [PubMed]
- Dyverfeldt, P.; Kvitting, J.P.; Sigfridsson, A.; Engvall, J.; Bolger, A.F.; Ebbers, T. Assessment of fluctuating velocities in disturbed cardiovascular blood flow: In vivo feasibility of generalized phase-contrast MR.I. J. Magn. Reson. Imaging 2008, 28, 655–663. [Google Scholar] [CrossRef]
- Dyverfeldt, P.; Sigfridsson, A.; Kvitting, J.P.; Ebbers, T. Quantification of intravoxel velocity standard deviation and turbulence intensity by generalizing phase-contrast MR.I. Magn. Reson. Med. 2006, 56, 850–858. [Google Scholar] [CrossRef]
- Rijnberg, F.M.; van Assen, H.C.; Juffermans, J.F.; Kroft, L.J.M.; van den Boogaard, P.J.; de Koning, P.J.H.; Hazekamp, M.G.; van der Woude, S.F.S.; Warmerdam, E.G.; Leiner, T.; et al. Reduced scan time and superior image quality with 3D flow MRI compared to 4D flow MRI for hemodynamic evaluation of the Fontan pathway. Sci. Rep. 2021, 11, 6507. [Google Scholar] [CrossRef] [PubMed]
- Minderhoud, S.C.S.; van der Velde, N.; Wentzel, J.J.; van der Geest, R.J.; Attrach, M.; Wielopolski, P.A.; Budde, R.P.J.; Helbing, W.A.; Roos-Hesselink, J.W.; Hirsch, A. The clinical impact of phase offset errors and different correction methods in cardiovascular magnetic resonance phase contrast imaging: A multi-scanner study. J. Cardiovasc. Magn. Reson. 2020, 22, 68. [Google Scholar] [CrossRef] [PubMed]
- Löcke, M.; Garay Labra, J.E.; Franco, P.; Uribe, S.; Bertoglio, C. A comparison of phase unwrapping methods in velocity-encoded MRI for aortic flows. Magn. Reson. Med. 2023, 90, 2102–2115. [Google Scholar] [CrossRef] [PubMed]
- Roos, P.R.; Rijnberg, F.M.; Westenberg, J.J.M.; Lamb, H.J. Particle Tracing Based on 4D Flow Magnetic Resonance Imaging: A Systematic Review into Methods, Applications, and Current Developments. J. Magn. Reson. Imaging 2023, 57, 1320–1339. [Google Scholar] [CrossRef]
- Kanski, M.; Arvidsson, P.M.; Töger, J.; Borgquist, R.; Heiberg, E.; Carlsson, M.; Arheden, H. Left ventricular fluid kinetic energy time curves in heart failure from cardiovascular magnetic resonance 4D flow data. J. Cardiovasc. Magn. Reson. 2015, 17, 111. [Google Scholar] [CrossRef]
- Gabbert, D.D.; Kheradvar, A.; Jerosch-Herold, M.; Oechtering, T.H.; Uebing, A.S.; Kramer, H.H.; Voges, I.; Rickers, C. MRI-based comprehensive analysis of vascular anatomy and hemodynamics. Cardiovasc. Diagn. Ther. 2021, 11, 1367–1378. [Google Scholar] [CrossRef]
- Ha, H.; Kvitting, J.P.; Dyverfeldt, P.; Ebbers, T. Validation of pressure drop assessment using 4D flow MRI-based turbulence production in various shapes of aortic stenoses. Magn. Reson. Med. 2019, 81, 893–906. [Google Scholar] [CrossRef]
- Lorenz, R.; Bock, J.; Barker, A.J.; von Knobelsdorff-Brenkenhoff, F.; Wallis, W.; Korvink, J.G.; Bissell, M.M.; Schulz-Menger, J.; Markl, M. 4D flow magnetic resonance imaging in bicuspid aortic valve disease demonstrates altered distribution of aortic blood flow helicity. Magn. Reson. Med. 2014, 71, 1542–1553. [Google Scholar] [CrossRef]
- Qin, J.J.; Obeidy, P.; Gok, M.; Gholipour, A.; Grieve, S.M. 4D-flow MRI derived wall shear stress for the risk stratification of bicuspid aortic valve aortopathy: A systematic review. Front. Cardiovasc. Med. 2022, 9, 1075833. [Google Scholar] [CrossRef]
- Rijnberg, F.M.; Hazekamp, M.G.; Wentzel, J.J.; de Koning, P.J.H.; Westenberg, J.J.M.; Jongbloed, M.R.M.; Blom, N.A.; Roest, A.A.W. Energetics of Blood Flow in Cardiovascular Disease: Concept and Clinical Implications of Adverse Energetics in Patients with a Fontan Circulation. Circulation 2018, 137, 2393–2407. [Google Scholar] [CrossRef]
- Slesnick, T.C. Role of Computational Modelling in Planning and Executing Interventional Procedures for Congenital Heart Disease. Can. J. Cardiol. 2017, 33, 1159–1170. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.H.; Koo, H.J.; Park, K.J.; Yang, D.H.; Ha, H. Characterization of baseline hemodynamics after the Fontan procedure: A retrospective cohort study on the comparison of 4D Flow MRI and computational fluid dynamics. Front. Physiol. 2023, 14, 1199771. [Google Scholar] [CrossRef]
- van Bakel, T.M.J.; Lau, K.D.; Hirsch-Romano, J.; Trimarchi, S.; Dorfman, A.L.; Figueroa, C.A. Patient-Specific Modeling of Hemodynamics: Supporting Surgical Planning in a Fontan Circulation Correction. J. Cardiovasc. Transl. Res. 2018, 11, 145–155. [Google Scholar] [CrossRef]
- Dumoulin, C.L.; Souza, S.P.; Walker, M.F.; Wagle, W. Three-dimensional phase contrast angiography. Magn. Reson. Med. 1989, 9, 139–149. [Google Scholar] [CrossRef]
- Aramburu, J.; Ruijsink, B.; Chabiniok, R.; Pushparajah, K.; Alastruey, J. Patient-specific closed-loop model of the fontan circulation: Calibration and validation. Heliyon 2024, 10, e30404. [Google Scholar] [CrossRef] [PubMed]
- Taylor-LaPole, A.M.; Colebank, M.J.; Weigand, J.D.; Olufsen, M.S.; Puelz, C. A computational study of aortic reconstruction in single ventricle patients. Biomech. Model. Mechanobiol. 2023, 22, 357–377. [Google Scholar] [CrossRef]
- Bossers, S.S.; Cibis, M.; Gijsen, F.J.; Schokking, M.; Strengers, J.L.; Verhaart, R.F.; Moelker, A.; Wentzel, J.J.; Helbing, W.A. Computational fluid dynamics in Fontan patients to evaluate power loss during simulated exercise. Heart 2014, 100, 696–701. [Google Scholar] [CrossRef] [PubMed]
- Roldán-Alzate, A.; García-Rodríguez, S.; Anagnostopoulos, P.V.; Srinivasan, S.; Wieben, O.; François, C.J. Hemodynamic study of TCPC using in vivo and in vitro 4D Flow MRI and numerical simulation. J. Biomech. 2015, 48, 1325–1330. [Google Scholar] [CrossRef]
- Frieberg, P.; Sjöberg, P.; Revstedt, J.; Heiberg, E.; Liuba, P.; Carlsson, M. Simulation of aortopulmonary collateral flow in Fontan patients for use in prediction of interventional outcomes. Clin. Physiol. Funct. Imaging 2018, 38, 622–629. [Google Scholar] [CrossRef]
- Lau, I.; Gupta, A.; Ihdayhid, A.; Sun, Z. Clinical Applications of Mixed Reality and 3D Printing in Congenital Heart Disease. Biomolecules 2022, 12, 1548. [Google Scholar] [CrossRef]
- Stephenson, N.; Pushparajah, K.; Wheeler, G.; Deng, S.; Schnabel, J.A.; Simpson, J.M. Extended reality for procedural planning and guidance in structural heart disease—A review of the state-of-the-art. Int. J. Cardiovasc. Imaging 2023, 39, 1405–1419. [Google Scholar] [CrossRef]
- Karmonik, C.; Elias, S.N.; Zhang, J.Y.; Diaz, O.; Klucznik, R.P.; Grossman, R.G.; Britz, G.W. Augmented Reality with Virtual Cerebral Aneurysms: A Feasibility Study. World Neurosurg. 2018, 119, e617–e622. [Google Scholar] [CrossRef] [PubMed]
- Carberry, T.; Murthy, R.; Hsiao, A.; Petko, C.; Moore, J.; Lamberti, J.; Hegde, S. Fontan Revision: Presurgical Planning Using Four-Dimensional (4D) Flow and Three-Dimensional (3D) Printing. World J. Pediatr. Congenit. Heart Surg. 2019, 10, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Chessa, M.; Van De Bruaene, A.; Farooqi, K.; Valverde, I.; Jung, C.; Votta, E.; Sturla, F.; Diller, G.P.; Brida, M.; Sun, Z.; et al. Three-dimensional printing, holograms, computational modelling, and artificial intelligence for adult congenital heart disease care: An exciting future. Eur. Heart J. 2022, 43, 2672–2684. [Google Scholar]
- Schafstedde, M.; Yevtushenko, P.; Nordmeyer, S.; Kramer, P.; Schleiger, A.; Solowjowa, N.; Berger, F.; Photiadis, J.; Mykychak, Y.; Cho, M.Y.; et al. Virtual treatment planning in three patients with univentricular physiology using computational fluid dynamics-Pitfalls and strategies. Front. Cardiovasc. Med. 2022, 9, 898701. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.A.; Fogel, M.A. Engineering Perspective on Cardiovascular Simulations of Fontan Hemodynamics: Where Do We Stand with a Look Towards Clinical Application. Cardiovasc. Eng. Technol. 2021, 12, 618–630. [Google Scholar] [CrossRef]
- Be’eri, E.; Maier, S.E.; Landzberg, M.J.; Chung, T.; Geva, T. In vivo evaluation of Fontan pathway flow dynamics by multidimensional phase-velocity magnetic resonance imaging. Circulation 1998, 98, 2873–2882. [Google Scholar] [CrossRef]
- Ensley, A.E.; Ramuzat, A.; Healy, T.M.; Chatzimavroudis, G.P.; Lucas, C.; Sharma, S.; Pettigrew, R.; Yoganathan, A.P. Fluid mechanic assessment of the total cavopulmonary connection using magnetic resonance phase velocity mapping and digital particle image velocimetry. Ann. Biomed. Eng. 2000, 28, 1172–1183. [Google Scholar] [CrossRef]
- Sharma, S.; Ensley, A.E.; Hopkins, K.; Chatzimavroudis, G.P.; Healy, T.M.; Tam, V.K.; Kanter, K.R.; Yoganathan, A.P. In vivo flow dynamics of the total cavopulmonary connection from three-dimensional multislice magnetic resonance imaging. Ann. Thorac. Surg. 2001, 71, 889–898. [Google Scholar] [CrossRef]
- Rutkowski, D.R.; Medero, R.; Ruesink, T.A.; Roldán-Alzate, A. Modeling Physiological Flow in Fontan Models with Four-Dimensional Flow Magnetic Resonance Imaging, Particle Image Velocimetry, and Arterial Spin Labeling. J. Biomech. Eng. 2019, 141, 121004. [Google Scholar] [CrossRef]
- Voges, I.; Scheewe, J.; Attmann, T.; Uebing, A.; Oechtering, T.; Gabbert, D. Abnormal aortic arch shape and vortical flow patterns are associated with descending aortic dilatation in patients with hypoplastic left heart syndrome. Int. J. Cardiol. 2021, 323, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, M.; Di Maria, M.V.; Stone, M.L.; Barker, A.J.; Carmody, K.K.; Reece, T.B.; Ivy, D.D.; Jaggers, J.; Mitchell, M.B. Principal component analysis identified neo-aortic diameter variations post Norwood surgery associated with the single ventricle performance and flow quality. Int. J. Cardiovasc. Imaging 2024, 40, 2603–2616. [Google Scholar] [CrossRef]
- Gabbert, D.D.; Trotz, P.; Kheradvar, A.; Jerosch-Herold, M.; Scheewe, J.; Kramer, H.H.; Voges, I.; Rickers, C. Abnormal torsion and helical flow patterns of the neo-aorta in hypoplastic left heart syndrome assessed with 4D-flow MR.I. Cardiovasc. Diagn. Ther. 2021, 11, 1379–1388. [Google Scholar] [CrossRef] [PubMed]
- Sjöberg, P.; Heiberg, E.; Wingren, P.; Ramgren Johansson, J.; Malm, T.; Arheden, H.; Liuba, P.; Carlsson, M. Decreased Diastolic Ventricular Kinetic Energy in Young Patients with Fontan Circulation Demonstrated by Four-Dimensional Cardiac Magnetic Resonance Imaging. Pediatr. Cardiol. 2017, 38, 669–680. [Google Scholar] [CrossRef]
- Hu, L.W.; Zhao, X.; Leng, S.; Ouyang, R.; Wang, Q.; Sun, A.M.; Liu, Y.M.; Dong, W.; Zhong, L.; Zhong, Y.M. Assessment of hemodynamic disturbances and impaired ventricular filling in asymptomatic fontan patients: A 4D flow CMR study. Eur. J. Radiol. Open 2025, 14, 100631. [Google Scholar] [CrossRef]
- Stone, M.L.; Schäfer, M.; DiMaria, M.V.; von Alvensleben, J.C.; Campbell, D.N.; Jaggers, J.; Mitchell, M.B. Diastolic inflow is associated with inefficient ventricular flow dynamics in Fontan patients. J. Thorac. Cardiovasc. Surg. 2022, 163, 1195–1207. [Google Scholar] [CrossRef]
- Kamphuis, V.P.; Elbaz, M.S.M.; van den Boogaard, P.J.; Kroft, L.J.M.; Lamb, H.J.; Hazekamp, M.G.; Jongbloed, M.R.M.; Blom, N.A.; Helbing, W.A.; Roest, A.A.W.; et al. Stress increases intracardiac 4D flow cardiovascular magnetic resonance-derived energetics and vorticity and relates to VO2max in Fontan patients. J. Cardiovasc. Magn. Reson. 2019, 21, 43. [Google Scholar] [CrossRef] [PubMed]
- Raimondi, F.; Martins, D.; Coenen, R.; Panaioli, E.; Khraiche, D.; Boddaert, N.; Bonnet, D.; Atkins, M.; El-Said, H.; Alshawabkeh, L.; et al. Prevalence of Venovenous Shunting and High-Output State Quantified with 4D Flow MRI in Patients with Fontan Circulation. Radiol. Cardiothorac. Imaging 2021, 3, e210161. [Google Scholar] [CrossRef]
- Rijnberg, F.M.; Juffermans, J.F.; Hazekamp, M.G.; Helbing, W.A.; Lamb, H.J.; Roest, A.A.W.; Westenberg, J.J.M.; van Assen, H.C. Segmental assessment of blood flow efficiency in the total cavopulmonary connection using four-dimensional flow magnetic resonance imaging: Vortical flow is associated with increased viscous energy loss rate. Eur. Heart, J. Open 2021, 1, oeab018. [Google Scholar] [CrossRef]
- Rijnberg, F.M.; Westenberg, J.J.M.; van Assen, H.C.; Juffermans, J.F.; Kroft, L.J.M.; van den Boogaard, P.J.; Terol Espinosa de Los Monteros, C.; Warmerdam, E.G.; Leiner, T.; Grotenhuis, H.B.; et al. 4D flow cardiovascular magnetic resonance derived energetics in the Fontan circulation correlate with exercise capacity and CMR-derived liver fibrosis/congestion. J. Cardiovasc. Magn. Reson. 2022, 24, 21. [Google Scholar] [CrossRef]
- Rijnberg, F.M.; Elbaz, M.S.M.; Westenberg, J.J.M.; Kamphuis, V.P.; Helbing, W.A.; Kroft, L.J.; Blom, N.A.; Hazekamp, M.G.; Roest, A.A.W. Four-dimensional flow magnetic resonance imaging-derived blood flow energetics of the inferior vena cava-to-extracardiac conduit junction in Fontan patients. Eur. J. Cardiothorac. Surg. 2019, 55, 1202–1210. [Google Scholar] [CrossRef] [PubMed]
- Weiss, E.K.; Robinson, J.D.; Sodhi, A.; Markl, M.; Rigsby, C.K. Impact of pulmonary artery flow distribution on Fontan hemodynamics and flow energetics. Pediatr. Radiol. 2023, 53, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Rijnberg, F.M.; van Assen, H.C.; Hazekamp, M.G.; Roest, A.A.W. Tornado-like flow in the Fontan circulation: Insights from quantification and visualization of viscous energy loss rate using 4D flow MR.I. Eur. Heart J. 2019, 40, 2170. [Google Scholar] [CrossRef]
- Nakatsuka, T.; Soroida, Y.; Nakagawa, H.; Shindo, T.; Sato, M.; Soma, K.; Nakagomi, R.; Kobayashi, T.; Endo, M.; Hikita, H.; et al. Identification of liver fibrosis using the hepatic vein waveform in patients with Fontan circulation. Hepatol. Res. 2019, 49, 304–313. [Google Scholar] [CrossRef]
- Rijnberg, F.M.; van’t Hul, L.C.; Hazekamp, M.G.; van den Boogaard, P.J.; Juffermans, J.F.; Lamb, H.J.; Terol Espinosa de Los Monteros, C.; Kroft, L.J.M.; Kenjeres, S.; le Cessie, S.; et al. Haemodynamic performance of 16–20-mm extracardiac Goretex conduits in adolescent Fontan patients at rest and during simulated exercise. Eur. J. Cardiothorac. Surg. 2022, 63, ezac522. [Google Scholar] [CrossRef]
- Kisamori, E.; Venna, A.; Chaudhry, H.E.; Desai, M.; Tongut, A.; Mehta, R.; Clauss, S.; Yerebakan, C.; d’Udekem, Y. Alarming rate of liver cirrhosis after the small conduit extracardiac Fontan: A comparative analysis with the lateral tunnel. J. Thorac. Cardiovasc. Surg. 2024, 168, 1221–1227.e1. [Google Scholar] [CrossRef] [PubMed]
- Glatz, A.C.; Rome, J.J.; Small, A.J.; Gillespie, M.J.; Dori, Y.; Harris, M.A.; Keller, M.S.; Fogel, M.A.; Whitehead, K.K. Systemic-to-pulmonary collateral flow, as measured by cardiac magnetic resonance imaging, is associated with acute post-Fontan clinical outcomes. Circ. Cardiovasc. Imaging 2012, 5, 218–225. [Google Scholar] [CrossRef]
- Whitehead, K.K.; Gillespie, M.J.; Harris, M.A.; Fogel, M.A.; Rome, J.J. Noninvasive quantification of systemic-to-pulmonary collateral flow: A major source of inefficiency in patients with superior cavopulmonary connections. Circ. Cardiovasc. Imaging 2009, 2, 405–411. [Google Scholar] [CrossRef]
- Latus, H.; Kruppa, P.; Hofmann, L.; Reich, B.; Jux, C.; Apitz, C.; Schranz, D.; Voges, I.; Khalil, M.; Gummel, K. Impact of aortopulmonary collateral flow and single ventricle morphology on longitudinal hemodynamics in Fontan patients: A serial CMR study. Int. J. Cardiol. 2020, 311, 28–34. [Google Scholar] [CrossRef]
- Rizk, J. 4D flow MRI applications in congenital heart disease. Eur. Radiol. 2021, 31, 1160–1174. [Google Scholar] [CrossRef]
- Voges, I.; Raimondi, F.; McMahon, C.J.; Ait-Ali, L.; Babu-Narayan, S.V.; Botnar, R.M.; Burkhardt, B.; Gabbert, D.D.; Grosse-Wortmann, L.; Hasan, H.; et al. Clinical impact of novel cardiovascular magnetic resonance technology on patients with congenital heart disease: A scientific statement of the Association for European Pediatric and Congenital Cardiology and the European Association of Cardiovascular Imaging of the European Society of Cardiology. Eur. Heart J. Cardiovasc. Imaging 2024, 25, e274–e294. [Google Scholar] [PubMed]
- Garzia, S.; Scarpolini, M.A.; Mazzoli, M.; Capellini, K.; Monteleone, A.; Cademartiri, F.; Positano, V.; Celi, S. Coupling synthetic and real-world data for a deep learning-based segmentation process of 4D flow MR.I. Comput. Methods Programs Biomed. 2023, 242, 107790. [Google Scholar] [CrossRef] [PubMed]
- Marin-Castrillon, D.M.; Geronzi, L.; Boucher, A.; Lin, S.; Morgant, M.C.; Cochet, A.; Rochette, M.; Leclerc, S.; Ambarki, K.; Jin, N.; et al. Segmentation of the aorta in systolic phase from 4D flow MRI: Multi-atlas vs. deep learning. Magma 2023, 36, 687–700. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabbert, D.D.; Uebing, A.S.; Voges, I. Four-Dimensional Flow in Fontan Patients: Advanced Haemodynamic Assessment. J. Clin. Med. 2025, 14, 3801. https://doi.org/10.3390/jcm14113801
Gabbert DD, Uebing AS, Voges I. Four-Dimensional Flow in Fontan Patients: Advanced Haemodynamic Assessment. Journal of Clinical Medicine. 2025; 14(11):3801. https://doi.org/10.3390/jcm14113801
Chicago/Turabian StyleGabbert, Dominik Daniel, Anselm Sebastian Uebing, and Inga Voges. 2025. "Four-Dimensional Flow in Fontan Patients: Advanced Haemodynamic Assessment" Journal of Clinical Medicine 14, no. 11: 3801. https://doi.org/10.3390/jcm14113801
APA StyleGabbert, D. D., Uebing, A. S., & Voges, I. (2025). Four-Dimensional Flow in Fontan Patients: Advanced Haemodynamic Assessment. Journal of Clinical Medicine, 14(11), 3801. https://doi.org/10.3390/jcm14113801