The Importance of Vaccination, Variants and Time Point of SARS-CoV-2 Infection in Pregnancy for Stillbirth and Preterm Birth Risk: An Analysis of the CRONOS Register Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Data Capture and Study Variables
Endpoints
2.3. Statistical Analysis
- A descriptive analysis of baseline characteristics of the population: categorical variables are presented as absolute and relative frequencies (N/%); continuous baseline variables were shown as mean and standard deviation (mean ± SD) for each group (Table 1).
- A descriptive bivariate analysis to assess the proportion of stillbirth, early (<32 + 0), and late (32 + 0–36 + 6) PTB, depending on the time point of infection, virus variant, and vaccination status (Table 2).
- Finally, multivariate log-binomial models for calculating adjusted relative risk (aRR) and corresponding 95% confidence intervals (95% CI) were used to correct the risk for maternal characteristics and common risk factors.
3. Results
3.1. Descriptive Statistics
3.2. Rate of Stillbirth, Early and Late PTB
3.3. Adjusted Relative Risks of Stillbirth and Preterm Delivery
4. Discussion
4.1. Principal Findings
4.2. Clinical Implications
4.3. Research Implications
4.4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chmielewska, B.; Barratt, I.; Townsend, R.; Kalafat, E.; van der Meulen, J.; Gurol-Urganci, I.; O’Brien, P.; Morris, E.; Draycott, T.; Thangaratinam, S.; et al. Effects of the COVID-19 pandemic on maternal and perinatal outcomes: A systematic review and meta-analysis. Lancet Glob. Health 2021, 9, e759–e772. [Google Scholar] [CrossRef]
- Maranto, M.; Zaami, S.; Restivo, V.; Termini, D.; Gangemi, A.; Tumminello, M.; Culmone, S.; Billone, V.; Cucinella, G.; Gullo, G. Symptomatic COVID-19 in Pregnancy: Hospital Cohort Data between May 2020 and April 2021, Risk Factors and Medicolegal Implications. Diagnostics 2023, 13, 1009. [Google Scholar] [CrossRef]
- Siston, A.M.; Rasmussen, S.A.; Honein, M.A.; Fry, A.M.; Seib, K.; Callaghan, W.M.; Louie, J.; Doyle, T.J.; Crockett, M.; Lynfield, R.; et al. Pandemic 2009 influenza A(H1N1) virus illness among pregnant women in the United States. JAMA 2010, 303, 1517–1525. [Google Scholar] [CrossRef] [PubMed]
- Poon, L.C.; Yang, H.; Lee, J.C.S.; Copel, J.A.; Leung, T.Y.; Zhang, Y.; Chen, D.; Prefumo, F. ISUOG Interim Guidance on 2019 novel coronavirus infection during pregnancy and puerperium: Information for healthcare professionals. Ultrasound Obstet. Gynecol. 2020, 55, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, L.D.; Ellington, S.; Strid, P.; Galang, R.R.; Oduyebo, T.; Tong, V.T.; Woodworth, K.R.; Nahabedian, J.F., 3rd; Azziz-Baumgartner, E.; Gilboa, S.M.; et al. Update: Characteristics of Symptomatic Women of Reproductive Age with Laboratory-Confirmed SARS-CoV-2 Infection by Pregnancy Status-United States, January 22–October 3, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1641–1647. [Google Scholar] [CrossRef] [PubMed]
- Pecks, U.; Mand, N.; Kolben, T.; Rüdiger, M.; Oppelt, P.; Zöllkau, J.; Dempfle, A. SARS-CoV-2 Infection During Pregnancy. Dtsch. Arztebl. Int. 2022, 119, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Nassikas, N.; Malhamé, I.; Miller, M.; Bourjeily, G. Pulmonary Considerations for Pregnant Women. Clin. Chest Med. 2021, 42, 483–496. [Google Scholar] [CrossRef] [PubMed]
- Epelboin, S.; Labrosse, J.; De Mouzon, J.; Fauque, P.; Gervoise-Boyer, M.-J.; Levy, R.; Sermondade, N.; Hesters, L.; Bergère, M.; Devienne, C.; et al. Obstetrical outcomes and maternal morbidities associated with COVID-19 in pregnant women in France: A national retrospective cohort study. PLoS Med. 2021, 18, e1003857. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, A.; Hedderson, M.M.; Zhu, Y.; Avalos, L.A.; Kuzniewicz, M.W.; Myers, L.C.; Ngo, A.L.; Gunderson, E.P.; Ritchie, J.L.; Quesenberry, C.P.; et al. Perinatal Complications in Individuals in California With or Without SARS-CoV-2 Infection During Pregnancy. JAMA Intern. Med. 2022, 182, 503–512. [Google Scholar] [CrossRef]
- Piekos, S.N.; Roper, R.T.; Hwang, Y.M.; Sorensen, T.; Price, N.D.; Hood, L.; Hadlock, J.J. The effect of maternal SARS-CoV-2 infection timing on birth outcomes: A retrospective multicentre cohort study. Lancet Digit. Health 2022, 4, e95–e104. [Google Scholar] [CrossRef] [PubMed]
- Iannaccone, A.; Mand, N.; Schmidt, B.; Rüdiger, M.; Reisch, B.; Pecks, U.; Schleussner, E. Is the risk of still and preterm birth affected by the timing of symptomatic SARS-CoV-2 infection during pregnancy? Data from the COVID-19 Related Obstetrics and Neonatal Outcome Study Network, Germany. Am. J. Obstet. Gynecol. 2022, 228, 351–352.e2. [Google Scholar] [CrossRef] [PubMed]
- Kelly, K.; Meaney, S.; Leitao, S.; O’Donoghue, K. A review of stillbirth definitions: A rationale for change. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 256, 235–245. [Google Scholar] [CrossRef] [PubMed]
- ACOG. ACOG Practice Bulletin No. 102: Management of stillbirth. Obstet. Gynecol. 2009, 113, 748–761. [Google Scholar] [CrossRef]
- Goldenberg, R.L.; Culhane, J.F.; Iams, J.D.; Romero, R. Epidemiology and causes of preterm birth. Lancet 2008, 371, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Quinn, J.A.; Munoz, F.M.; Gonik, B.; Frau, L.; Cutland, C.; Mallett-Moore, T.; Kissou, A.; Wittke, F.; Das, M.; Nunes, T.; et al. Preterm birth: Case definition & guidelines for data collection, analysis, and presentation of immunisation safety data. Vaccine 2016, 34, 6047–6056. [Google Scholar] [CrossRef]
- Favre, G.; Maisonneuve, E.; Pomar, L.; Daire, C.; Poncelet, C.; Quibel, T.; Monod, C.; Martinez de Tejada, B.; Schäffer, L.; Papadia, A.; et al. Maternal and perinatal outcomes following pre-Delta, Delta, and Omicron SARS-CoV-2 variants infection among unvaccinated pregnant women in France and Switzerland: A prospective cohort study using the COVI-PREG registry. Lancet Reg. Health Eur. 2023, 26, 100569. [Google Scholar] [CrossRef]
- Seaton, C.L.; Cohen, A.; Henninger, E.M.; Gendlina, I.; Hou, W.; Bernstein, P.S.; Duong, T.Q. Coronavirus Disease 2019 (COVID-19) Perinatal Outcomes Across the Pandemic at an Academic Medical Center in New York City. Obstet. Gynecol. 2023, 141, 144–151. [Google Scholar] [CrossRef]
- Torche, F.; Nobles, J. Vaccination, immunity, and the changing impact of COVID-19 on infant health. Proc. Natl. Acad. Sci. USA 2023, 120, e2311573120. [Google Scholar] [CrossRef]
- Kleinwechter, H.J.; Weber, K.S.; Mingers, N.; Ramsauer, B.; Schaefer-Graf, U.M.; Groten, T.; Kuschel, B.; Backes, C.; Banz-Jansen, C.; Berghaeuser, M.A.; et al. Gestational diabetes mellitus and COVID-19: Results from the COVID-19-Related Obstetric and Neonatal Outcome Study (CRONOS). Am. J. Obstet. Gynecol. 2022, 227, 631.e1–631.e19. [Google Scholar] [CrossRef]
- Sitter, M.; Pecks, U.; Rüdiger, M.; Friedrich, S.; Fill Malfertheiner, S.; Hein, A.; Königbauer, J.T.; Becke-Jakob, K.; Zöllkau, J.; Ramsauer, B.; et al. Pregnant and Postpartum Women Requiring Intensive Care Treatment for COVID-19-First Data from the CRONOS-Registry. J. Clin. Med. 2022, 11, 701. [Google Scholar] [CrossRef] [PubMed]
- Pecks, U.; Kuschel, B.; Mense, L.; Oppelt, P.; Rüdiger, M. Pregnancy and SARS-CoV-2 Infection in Germany-the CRONOS Registry. Dtsch. Arztebl. Int. 2020, 117, 841–842. [Google Scholar] [CrossRef] [PubMed]
- Mand, N.; Iannaccone, A.; Longardt, A.C.; Hutten, M.; Mense, L.; Oppelt, P.; Maier, R.F.; Pecks, U.; Rüdiger, M. Neonatal outcome following maternal infection with SARS-CoV-2 in Germany: COVID-19-Related Obstetric and Neonatal Outcome Study (CRONOS). Arch. Dis. Child. Fetal Neonatal Ed. 2021, 107, 454–456. [Google Scholar] [CrossRef] [PubMed]
- Weschenfelder, F.; Zöllkau, J.; Schohe, A.; Pecks, U.; Groten, T.; Schaefer-Graf, U.; On Behalf Of, C.-N. Obesity during Pregnancy and SARS-CoV-2/COVID-19-Case Series of the Registry Study “COVID-19 Related Obstetric and Neonatal Outcome Study” (CRONOS-Network). J. Clin. Med. 2023, 12, 2089. [Google Scholar] [CrossRef] [PubMed]
- Ziert, Y.; Abou-Dakn, M.; Backes, C.; Banz-Jansen, C.; Bock, N.; Bohlmann, M.; Engelbrecht, C.; Gruber, T.M.; Iannaccone, A.; Jegen, M.; et al. Maternal and neonatal outcomes of pregnancies with COVID-19 after medically assisted reproduction: Results from the prospective COVID-19-Related Obstetrical and Neonatal Outcome Study. Am. J. Obstet. Gynecol. 2022, 227, 495.e1–495.e11. [Google Scholar] [CrossRef] [PubMed]
- Gurol-Urganci, I.; Jardine, J.E.; Carroll, F.; Draycott, T.; Dunn, G.; Fremeaux, A.; Harris, T.; Hawdon, J.; Morris, E.; Muller, P.; et al. Maternal and perinatal outcomes of pregnant women with SARS-CoV-2 infection at the time of birth in England: National cohort study. Am. J. Obstet. Gynecol. 2021, 225, 521.e1–522.e11. [Google Scholar] [CrossRef] [PubMed]
- Mohan, M.; Appiah-Sakyi, K.; Oliparambil, A.; Pullattayil, A.K.; Lindow, S.W.; Ahmed, B.; Konje, J.C. A Meta-Analysis of the Global Stillbirth Rates during the COVID-19 Pandemic. J. Clin. Med. 2023, 12, 7219. [Google Scholar] [CrossRef]
- Heuser, C.; Manuck, T.; Hossain, S.; Silver, R.; Varner, M. Non-anomalous stillbirth by gestational age: Trends differ based on method of epidemiologic calculation. J. Matern. Fetal Neonatal Med. 2010, 23, 720–724. [Google Scholar] [CrossRef]
- Allotey, J.; Stallings, E.; Bonet, M.; Yap, M.; Chatterjee, S.; Kew, T.; Debenham, L.; Llavall, A.C.; Dixit, A.; Zhou, D.; et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: Living systematic review and meta-analysis. BMJ 2020, 370, m3320. [Google Scholar] [CrossRef]
- Hofbauer, A.; Schneider, H.; Kehl, S.; Reutter, H.; Pecks, U.; Andresen, K.; Morhart, P. SARS-CoV-2 Infection in Pregnancy and Incidence of Congenital Malformations-is there a Correlation? Analysis of 8032 Pregnancies from the CRONOS Registry. Z. Geburtshilfe Neonatol. 2024, 228, 65–73. [Google Scholar] [CrossRef]
- Gullo, G.; Scaglione, M.; Cucinella, G.; Riva, A.; Coldebella, D.; Cavaliere, A.F.; Signore, F.; Buzzaccarini, G.; Spagnol, G.; Laganà, A.S.; et al. Congenital Zika Syndrome: Genetic Avenues for Diagnosis and Therapy, Possible Management and Long-Term Outcomes. J. Clin. Med. 2022, 11, 1351. [Google Scholar] [CrossRef] [PubMed]
- Incognito, G.G.; Distefano, R.E.C.; Campo, G.; Gulino, F.A.; Gulisano, C.; Gullotta, C.; Gullo, G.; Cucinella, G.; Tuscano, A.; Bruno, M.T.; et al. Comparison of Maternal and Neonatal Outcomes between SARS-CoV-2 Variants: A Retrospective, Monocentric Study. J. Clin. Med. 2023, 12, 6329. [Google Scholar] [CrossRef] [PubMed]
- Berger, R.; Rath, W.; Abele, H.; Garnier, Y.; Kuon, R.-J.; Maul, H. Reducing the Risk of Preterm Birth by Ambulatory Risk Factor Management. Dtsch. Arztebl. Int. 2019, 116, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.A.; Hamilton, B.E.; Osterman, M.J.K. Births in the United States, 2022. NCHS Data Brief 2023, 1–8. [Google Scholar]
- Ellington, S.; Olson, C.K. Safety of mRNA COVID-19 vaccines during pregnancy. Lancet Infect. Dis. 2022, 22, 1514–1515. [Google Scholar] [CrossRef]
- Magnus, M.C.; Örtqvist, A.K.; Dahlqwist, E.; Ljung, R.; Skår, F.; Oakley, L.; Macsali, F.; Pasternak, B.; Gjessing, H.K.; Håberg, S.E.; et al. Association of SARS-CoV-2 Vaccination During Pregnancy With Pregnancy Outcomes. JAMA 2022, 327, 1469–1477. [Google Scholar] [CrossRef]
Mean/N | SD/% | Missing | |
---|---|---|---|
Maternal age (years) | 31.1 | 5.4 | 37 |
BMI at inclusion (kg/m2) | 29.1 | 5.8 | 2282 |
Week of gestation at birth | 38.2 | 3.3 | 735 |
PTB | 835 | 11.4 | 735 |
History of PTB | 138 | 1.7% | 17 |
IVF | 292 | 4.1% | 959 |
Multiple pregnancy | 237 | 3% | 76 |
Smoking during pregnancy | 333 | 4.1% | 240 |
Any symptoms | 6025 | 81.6% | 644 |
Vaccine against SARS-CoV-2 | 2156 | 26.8% | 702 |
Hospital admission | 5585 | 71.9% | 265 |
Hospital admission for COVID-19 | 828 | 10.7% | 264 |
Hospital admission for obstetric reasons | 3756 | 48.3% | 264 |
ICU admission | 223 | 2.9% | 267 |
Stillbirth (N = 70, 0.87%) | Early PTB (N = 165, 2.05%) | Late PTB (N = 670, 8.34%) | ||||||
---|---|---|---|---|---|---|---|---|
N | % | N | % | N | % | N | % | |
Early infection | 3119 | 38.8% | 46 | 1.47% | 113 | 3.62% | 212 | 6.80% |
Late infection | 4913 | 61.2% | 24 | 0.49% | 52 | 1.05% | 458 | 9.32% |
Wild-type | 2334 | 29.1% | 16 | 0.69% | 41 | 1.76% | 217 | 9.30% |
Alpha | 766 | 9.5% | 12 | 1.56% | 24 | 3.13% | 72 | 9.40% |
Delta | 1542 | 19.2% | 24 | 1.56% | 53 | 3.44% | 132 | 8.56% |
Omicron | 3390 | 42.2% | 18 | 0.53% | 47 | 1.39% | 249 | 7.35% |
Vaccine | 2156 | 26.8% | 11 | 0.51% | 27 | 1.25% | 141 | 6.54% |
No vaccine | 5174 | 64.4% | 54 | 1.04% | 138 | 2.66% | 488 | 9.43% |
Outcome | Parameter | Symptomatic | CoV Admission | Ob Admission | ICU Admission | Alpha Delta vs. Others | Early vs. Late | Vaccine |
---|---|---|---|---|---|---|---|---|
Stillbirth | aRR | 0.16 | 2.86 | 5.50 | 3.44 | 1.76 | 5.76 | 0.32 |
95% CI | 0.26–1.25 | 1.08–8.02 | 2.90–10.1 | 1.04–11.38 | 0.99–3.08 | 3.07–10.83 | 0.16–0.83 | |
p-Value | 0.573 | 0.035 | <0.001 | 0.043 | 0.055 | <0.001 | 0.019 | |
Early PTB | aRR | 0.35 | 2.49 | 4.40 | 11.66 | 1.45 | 6.07 | 0.65 |
95% CI | 0.20–0.61 | 1.14–4.47 | 2.80–6.91 | 5.22–26.05 | 0.96–2.18 | 3.65–10.09 | 0.38–1.11 | |
p-Value | <0.001 | 0.023 | <0.001 | <0.001 | 0.077 | <0.001 | 0.112 | |
Late PTB | aRR | 0.99 | 1.71 | 2.06 | 1.98 | 0.89 | 0.79 | 0.73 |
95% CI | 0.77–1.27 | 1.25–2.51 | 1.70–2.51 | 1.31–3.00 | 0.72–1.10 | 0.62–1.01 | 0.58–0.92 | |
p-Value | 0.924 | <0.001 | <0.001 | <0.001 | 0.269 | 0.065 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iannaccone, A.; Gellhaus, A.; Reisch, B.; Dzietko, M.; Schmidt, B.; Mavarani, L.; Kraft, K.; Andresen, K.; Kimmig, R.; Pecks, U.; et al. The Importance of Vaccination, Variants and Time Point of SARS-CoV-2 Infection in Pregnancy for Stillbirth and Preterm Birth Risk: An Analysis of the CRONOS Register Study. J. Clin. Med. 2024, 13, 1522. https://doi.org/10.3390/jcm13061522
Iannaccone A, Gellhaus A, Reisch B, Dzietko M, Schmidt B, Mavarani L, Kraft K, Andresen K, Kimmig R, Pecks U, et al. The Importance of Vaccination, Variants and Time Point of SARS-CoV-2 Infection in Pregnancy for Stillbirth and Preterm Birth Risk: An Analysis of the CRONOS Register Study. Journal of Clinical Medicine. 2024; 13(6):1522. https://doi.org/10.3390/jcm13061522
Chicago/Turabian StyleIannaccone, Antonella, Alexandra Gellhaus, Beatrix Reisch, Mark Dzietko, Boerge Schmidt, Laven Mavarani, Katrina Kraft, Kristin Andresen, Rainer Kimmig, Ulrich Pecks, and et al. 2024. "The Importance of Vaccination, Variants and Time Point of SARS-CoV-2 Infection in Pregnancy for Stillbirth and Preterm Birth Risk: An Analysis of the CRONOS Register Study" Journal of Clinical Medicine 13, no. 6: 1522. https://doi.org/10.3390/jcm13061522
APA StyleIannaccone, A., Gellhaus, A., Reisch, B., Dzietko, M., Schmidt, B., Mavarani, L., Kraft, K., Andresen, K., Kimmig, R., Pecks, U., & Schleußner, E. (2024). The Importance of Vaccination, Variants and Time Point of SARS-CoV-2 Infection in Pregnancy for Stillbirth and Preterm Birth Risk: An Analysis of the CRONOS Register Study. Journal of Clinical Medicine, 13(6), 1522. https://doi.org/10.3390/jcm13061522