Evaluation of Choroidal Structure in Type 1 Macular Neovascularization Using Different Optical Coherence Tomography Analyses: Scale Bar and Binarization
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miotto, S.; Zemella, N.; Gusson, E.; Panozzo, G.; Saviano, S.; Scarpa, G.; Boschi, G.; Piermarocchi, S. Morphologic criteria of lesion activity in neovascular age-related macular degeneration: A consensus article. J. Ocul. Pharmacol. Ther. 2018, 34, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Freund, K.B.; Staurenghi, G.; Jung, J.J.; Zweifel, S.A.; Cozzi, M.; Hill, L.; Blotner, S.; Tsuboi, M.; Gune, S. Macular neovascularization lesion type and vision outcomes in neovascular age-related macular degeneration: Post hoc analysis of HARBOR. Graefes. Arch. Clin. Exp. Ophthalmol. 2022, 260, 2437–2447. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F.; Jaffe, G.J.; Sarraf, D.; Freund, K.B.; Sadda, S.R.; Staurenghi, G.; Waheed, N.K.; Chakravarthy, U.; Rosenfeld, P.J.; Holz, F.G.; et al. Consensus nomenclature for reporting neovascular age-related macular degeneration data: Consensus on neovascular age-related macular degeneration nomenclature study group. Ophthalmology 2020, 127, 616–636. [Google Scholar] [CrossRef]
- Zhang, Y.; Gan, Y.; Zeng, Y.; Zhuang, X.; Zhang, X.; Ji, Y.; Su, Y.; Wen, F. Incidence and multimodal imaging characteristics of macular neovascularisation subtypes in Chinese neovascular age-related macular degeneration patients. Br. J. Ophthalmol. 2023, 108, 391–397. [Google Scholar] [CrossRef]
- Kaiser, P.K.; Wykoff, C.C.; Singh, R.P.; Khanani, A.M.; Do, D.V.; Patel, H.; Patel, N. Retinal fluid and thickness as measures of disease activity in neovascular age-related macular degeneration. Retina 2021, 41, 1579–1586. [Google Scholar] [CrossRef] [PubMed]
- Chantarasorn, Y.; Ruamviboonsuk, P.; Thoongsuwan, S.; Vongkulsiri, S.; Kungwanpongpun, P.; Hanutsaha, P. Clinical correlation of retinal fluid fluctuation represented by fluctuation index in wet age-related macular degeneration: TOWER study Report 2 Report 2. Transl. Vis. Sci. Technol. 2023, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jonas, J.B.; Wei, W. Choroidal vessel diameter in central serous chorioretinopathy. Acta Ophthalmol. 2013, 91, e358–e362. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, Y.X.; Zhang, Q.; Wei, W.B.; Xu, L.; Jonas, J.B. Macular choroidal small-vessel layer, Sattler’s layer and Haller’s layer thicknesses: The Beijing Eye study. Sci. Rep. 2018, 8, 4411. [Google Scholar] [CrossRef]
- Ambiya, V.; Goud, A.; Rasheed, M.A.; Gangakhedkar, S.; Vupparaboina, K.K.; Chhablani, J. Retinal and choroidal changes in steroid-associated central serous chorioretinopathy. Int. J. Retin. Vitr. 2018, 4, 11. [Google Scholar] [CrossRef]
- Sonoda, S.; Sakamoto, T.; Yamashita, T.; Shirasawa, M.; Uchino, E.; Terasaki, H.; Tomita, M. Choroidal structure in normal eyes and after photodynamic therapy determined by binarization of optical coherence tomographic images. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3893–3899. [Google Scholar] [CrossRef]
- Aksoy, F.E.; Altan, C.; Kesim, C.; Demircan, A.; Tunç, U.; Demir, G.; Taskapılı, M. Choroidal vascularity index as an indicator of vascular status of choroid, in eyes with nanophthalmos. Eye 2020, 34, 2336–2340. [Google Scholar] [CrossRef]
- Iovino, C.; Pellegrini, M.; Bernabei, F.; Borrelli, E.; Sacconi, R.; Govetto, A.; Vagge, A.; Di Zazzo, A.; Forlini, M.; Finocchio, L.; et al. Choroidal vascularity index: An in-depth analysis of this novel optical coherence tomography parameter. J. Clin. Med. 2020, 9, 595. [Google Scholar] [CrossRef] [PubMed]
- Di Pippo, M.; Santia, C.; Rullo, D.; Ciancimino, C.; Grassi, F.; Abdolrahimzadeh, S. The choroidal vascularity index versus optical coherence tomography angiography in the evaluation of the choroid with a focus on age-related macular degeneration. Tomography 2023, 9, 1456–1470. [Google Scholar] [CrossRef] [PubMed]
- Ting, D.S.W.; Yanagi, Y.; Agrawal, R.; Teo, H.Y.; Seen, S.; Yeo, I.Y.S.; Mathur, R.; Chan, C.M.; Lee, S.Y.; Wong, E.Y.M.; et al. Choroidal Remodeling in Age-related Macular Degeneration and Polypoidal choroidal vasculopathy: A 12-month Prospective Study. Sci. Rep. 2017, 7, 7868. [Google Scholar] [CrossRef]
- Yamashiro, K.; Hosoda, Y.; Miyake, M.; Ooto, S.; Tsujikawa, A. Characteristics of pachychoroid diseases and age-related macular degeneration: Multimodal imaging and genetic backgrounds. J. Clin. Med. 2020, 9, 2034. [Google Scholar] [CrossRef]
- Sato, M.; Minami, S.; Nagai, N.; Suzuki, M.; Kurihara, T.; Shinojima, A.; Sonobe, H.; Akino, K.; Ban, N.; Watanabe, K.; et al. Association between axial length and choroidal thickness in early age-related macular degeneration. PLoS ONE 2020, 15, e0240357. [Google Scholar] [CrossRef] [PubMed]
- Wakatsuki, Y.; Shinojima, A.; Kawamura, A.; Yuzawa, M. Correlation of aging and segmental choroidal thickness measurement using swept source optical coherence tomography in healthy eyes. PLoS ONE 2015, 10, e0144156. [Google Scholar] [CrossRef]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef]
- Liljequist, D.; Elfving, B.; Skavberg Roaldsen, K. Intraclass correlation—A discussion and demonstration of basic features. PLoS ONE 2019, 14, e0219854. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Keenan, T.D.; Klein, B.; Agrón, E.; Chew, E.Y.; Cukras, C.A.; Wong, W.T. Choroidal thickness and vascularity vary with disease severity and subretinal drusenoid deposit presence in nonadvanced age-related macular degeneration. Retina 2020, 40, 632–642. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, M.; Bernabei, F.; Mercanti, A.; Sebastiani, S.; Peiretti, E.; Iovino, C.; Casini, G.; Loiudice, P.; Scorcia, V.; Giannaccare, G. Short-term choroidal vascular changes after aflibercept therapy for neovascular age-related macular degeneration. Graefes. Arch. Clin. Exp. Ophthalmol. 2021, 259, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Betzler, B.K.; Ding, J.; Wei, X.; Lee, J.M.; Grewal, D.S.; Fekrat, S.; Sadda, S.R.; Zarbin, M.A.; Agarwal, A.; Gupta, V.; et al. Choroidal vascularity index: A step towards software as a medical device. Br. J. Ophthalmol. 2022, 106, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.Y.; Tian, L.; Schisterman, E.F. Exact confidence interval estimation for the Youden index and its corresponding optimal cut-point. Comput. Stat. Data Anal. 2012, 56, 1103–1114. [Google Scholar] [CrossRef] [PubMed]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013, 48, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Karasu, B.; Celebi, A.R.C. Choroidal vascularity index: An enhanced depth optical coherence tomography-based parameter to determine vascular status in patients with proliferative and non-proliferative macular telangiectasia. Int. Ophthalmol. 2021, 41, 3505–3513. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zheng, G.; Yu, X.; Jiang, Y.; Lin, Z.; Lin, G.; Chen, W.; Shen, M.; Lu, F. Impact of penetration and image analysis in optical coherence tomography on the measurement of choroidal vascularity parameters. Retina 2022, 42, 1965–1974. [Google Scholar] [CrossRef]
- Ruiz-Medrano, J.; Flores-Moreno, I.; Peña-García, P.; Montero, J.A.; García-Feijóo, J.; Duker, J.S.; Ruiz-Moreno, J.M. Analysis of age-related choroidal layers thinning in healthy eyes using swept-source optical coherence tomography. Retina 2017, 37, 1305–1313. [Google Scholar] [CrossRef]
- Nagai, N.; Suzuki, M.; Minami, S.; Kurihara, T.; Kamoshita, M.; Sonobe, H.; Watanabe, K.; Uchida, A.; Shinoda, H.; Tsubota, K.; et al. Dynamic changes in choroidal conditions during anti-vascular endothelial growth factor therapy in polypoidal choroidal vasculopathy. Sci. Rep. 2019, 9, 11389. [Google Scholar] [CrossRef]
- Lee, W.K.; Baek, J.; Dansingani, K.K.; Lee, J.H.; Freund, K.B. Choroidal morphology in eyes with polypoidal choroidal vasculopathy and normal or subnormal subfoveal choroidal thickness. Retina 2016, 36 (Suppl. S1), S73–S82. [Google Scholar] [CrossRef]
- Qiu, B.; Zhang, X.; Li, Z.; Chhablani, J.; Fan, H.; Wang, Y.; Xie, R. Characterization of choroidal morphology and vasculature in the phenotype of pachychoroid diseases by swept-source OCT and OCTA. J. Clin. Med. 2022, 11, 3243. [Google Scholar] [CrossRef]
- Shen, M.; Zhou, H.; Lu, J.; Li, J.; Jiang, X.; Trivizki, O.; Laiginhas, R.; Liu, J.; Zhang, Q.; de Sisternes, L.; et al. Choroidal changes after anti-vegf therapy in AMD eyes with different types of macular neovascularization using swept-source OCT angiography. Investig. Ophthalmol. Vis. Sci. 2023, 64, 16. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Dai, Y.; Shi, Y.; Russell, J.F.; Lyu, C.; Noorikolouri, J.; Feuer, W.J.; Chu, Z.; Zhang, Q.; de Sisternes, L.; et al. Age-Related Changes in Choroidal Thickness and the Volume of Vessels and Stroma Using Swept-Source OCT and Fully Automated Algorithms. Ophthalmol. Retin. 2020, 4, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Zhou, H.; Kim, K.; Bo, Q.; Lu, J.; Laiginhas, R.; Jiang, X.; Yan, Q.; Iyer, P.; Trivizki, O.; et al. Choroidal changes in eyes with polypoidal choroidal vasculopathy after anti-VEGF therapy imaged with swept-source OCT angiography. Investig. Ophthalmol. Vis. Sci. 2021, 62, 5. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Medrano, J.; Ruiz-Moreno, J.M.; Goud, A.; Vupparaboina, K.K.; Jana, S.; Chhablani, J. Age-related changes in choroidal vascular density of healthy subjects based on image binarization of swept-source optical coherence tomography. Retina 2018, 38, 508–515. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.J.; Won, J.Y. Molecular mechanisms of retinal pigment epithelium dysfunction in age-related macular degeneration. Int. J. Mol. Sci. 2021, 22, 12298. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Jin, H.N.; Kim, H.J.; Lee, J.H.; Ji, Y.S. Influence of scan direction on subfoveal choroidal vascularity index using optical coherence tomography. Sci. Rep. 2022, 12, 16626. [Google Scholar] [CrossRef]
- Shen, M.; Bo, Q.; Song, M.; Jiang, X.; Yehoshua, Z.; Gregori, G.; Sun, X.; Wang, F.; Rosenfeld, P.J. Replacement of polyps with type 1 macular neovascularization in polypoidal choroidal vasculopathy imaged with swept source OCT angiography. Am. J. Ophthalmol. Case Rep. 2021, 22, 101057. [Google Scholar] [CrossRef]
Age, median (IQR) | 72.5 (68.0–79.0) |
Sex (male), n (%) | 61 (73) |
Polyp lesions, n (%) | 51 (61) |
BCVA (LogMAR unit), Median (IQR) | 0.19 (0.05–0.40) |
SRF, n (%) | 63 (75) |
PED, n (%) | 28 (33) |
Drusen, n (%) | 18 (21) |
CCT, median (IQR), µm | 228 (183–275) |
CVD, median (IQR), µm | 172 (125–212) |
SCT, median (IOR), µm | 57.0 (40.9–71.1) |
SV ratio (%), median (IQR) | 31.7 (26.7–45.9) |
Horizontal LC ratio (%), Median (IQR) | 63.3 (61.5–65.2) |
Vertical LC ratio (%), Median (IQR) | 62.8 (61.0–65.0) |
Male (n = 61) | Female (n = 23) | p Value | |
---|---|---|---|
Age, median (IQR) | 74.0 (69.0–79.0) | 69.0 (64.5–78.5) | 0.19 |
Polyp lesions, n (%) | 38 (62) | 13 (57) | 0.63 |
SRF, n (%) | 48 (79) | 15 (65) | 0.26 |
PED, n (%) | 17 (28) | 11 (48) | 0.12 |
Drusen, n (%) | 16 (26) | 2 (9) | 0.13 |
CCT | CVD | SCT | |
---|---|---|---|
ICC (1,1), 95%CI | 0.947 (0.920–0.965) | 0.945 (0.917–0.964) | 0.907 (0.861–0.939) |
ICC (1,2), 95%CI | 0.973 (0.958–0.982) | 0.972 (0.957–0.982) | 0.951 (0.925–0.969) |
Type1 MNV without Polyps (n = 33) | Type1 MNV with Polyps (n = 51) | p Value | |
---|---|---|---|
Age, median (IQR) | 74.0 (68.0–80.0) | 72.0 (68.0–78.0) | 0.27 † |
Sex (male), n (%) | 23 (70) | 38 (75) | 0.63 ‡ |
BCVA (LogMAR unit), Median (IQR) | 0.15 (0.10–0.40) | 0.22 (0.05–0.40) | 0.74 † |
SRF, n (%) | 23 (70) | 40 (78) | 0.44 ‡ |
PED, n (%) | 7 (21) | 21 (41) | 0.06 ‡ |
Drusen, n (%) | 6 (18) | 12 (24) | 0.6 ‡ |
CCT, Median (IQR), µm | 248 (206–289) | 214 (174–261) | 0.56 † |
CVD, Median (IQR), µm | 158 (116–215) | 175 (147–209) | 0.12 † |
SCT, Median (IOR), µm | 63.5 (57.0–72.5) | 48.5 (37.5–63.8) | 0.0047 † |
SV ratio (%), Median (IQR) | 45.8 (31.1–63.0) | 30.4 (24.5–36.4) | <0.001 † |
Horizontal LC ratio (%), Median (IQR) | 62.8 (60.6–65.5) | 63.9 (62.1–65.0) | 0.48 † |
Vertical LC ratio (%), Median (IQR) | 63.6 (60.6–65.0) | 62.7 (61.3–65.1) | 0.67 † |
Type1 MNV without Polyps (n = 33) | p Value | Type1 MNV with Polyps (n = 51) | p Value | |||
---|---|---|---|---|---|---|
SRF (+) (n = 23) | SRF (−) (n = 10) | SRF (+) (n = 40) | SRF (−) (n = 11) | |||
CCT, median (IQR), µm | 256 (214–294) | 229 (165–278) | 0.34 | 220 (183–263) | 209 (132–237) | 0.27 |
CVD, median (IQR), µm | 176 (132–221) | 119 (82–183) | 0.06 | 183 (153–212) | 150 (110–203) | 0.2 |
SCT, median (IOR), µm | 65.5 (56.0–72.0) | 63.0 (57.8–74.3) | 0.85 | 49.3 (37.9–68.8) | 46.5 (31.8–58.5) | 0.28 |
SV ratio (%), median (IQR) | 36.5 (29.9–53.9) | 58.5 (46.8–81.9) | 0.07 | 28.9 (24.8–36.1) | 31.8 (25.1–37.1) | 0.69 |
Horizontal LC ratio (%), Median (IQR) | 64.2 (61.7–66.2) | 61.6 (58.9–62.5) | 0.047 | 63.5 (62.1–64.8) | 64.2 (61.2–65.1) | 0.9 |
Vertical LC ratio (%), Median (IQR) | 64.5 (61.7–65.3) | 60.5 (58.5–63.5) | 0.08 | 62.8 (61.5–65.0) | 62.2 (61.3–64.5) | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirai, H.; Yamashita, M.; Ijuin, N.; Jimura, H.; Nishi, T.; Ogata, N.; Ueda, T. Evaluation of Choroidal Structure in Type 1 Macular Neovascularization Using Different Optical Coherence Tomography Analyses: Scale Bar and Binarization. J. Clin. Med. 2024, 13, 1383. https://doi.org/10.3390/jcm13051383
Hirai H, Yamashita M, Ijuin N, Jimura H, Nishi T, Ogata N, Ueda T. Evaluation of Choroidal Structure in Type 1 Macular Neovascularization Using Different Optical Coherence Tomography Analyses: Scale Bar and Binarization. Journal of Clinical Medicine. 2024; 13(5):1383. https://doi.org/10.3390/jcm13051383
Chicago/Turabian StyleHirai, Hiromasa, Mariko Yamashita, Nobuo Ijuin, Hironobu Jimura, Tomo Nishi, Nahoko Ogata, and Tetsuo Ueda. 2024. "Evaluation of Choroidal Structure in Type 1 Macular Neovascularization Using Different Optical Coherence Tomography Analyses: Scale Bar and Binarization" Journal of Clinical Medicine 13, no. 5: 1383. https://doi.org/10.3390/jcm13051383
APA StyleHirai, H., Yamashita, M., Ijuin, N., Jimura, H., Nishi, T., Ogata, N., & Ueda, T. (2024). Evaluation of Choroidal Structure in Type 1 Macular Neovascularization Using Different Optical Coherence Tomography Analyses: Scale Bar and Binarization. Journal of Clinical Medicine, 13(5), 1383. https://doi.org/10.3390/jcm13051383