The Impact of Neutrophil-to-High-Density Lipoprotein Ratio and Serum 25-Hydroxyvitamin D on Ischemic Heart Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Clinical and Laboratory Data
2.3. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Differences in NHR and Vitamin D Concentrations Between Patients with Different CAD Stages
3.3. Differences in Vitamin D Concentrations Between Patients with Different Diagnoses and CAD Stages
3.4. Determinants of the NHR Level
4. Discussion
5. Limitations of This Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Libby, P. The Changing Landscape of Atherosclerosis. Nature 2021, 592, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Global Health Estimates: Life Expectancy and Leading Causes of Death and Disability. Available online: https://www.who.int/data/gho/data/themes/theme-details/GHO/mortality-and-global-health-estimates (accessed on 23 July 2024).
- Virchow, R. As Based upon Physiological and Pathological Histology. Nutr. Rev. 1989, 47, 23–25. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Paradossi, U.; De Caterina, A.R.; Trimarchi, G.; Pizzino, F.; Bastiani, L.; Dossi, F.; Raccis, M.; Bianchi, G.; Palmieri, C.; de Gregorio, C.; et al. The enigma of the ‘smoker’s paradox’: Results from a single-center registry of patients with STEMI undergoing primary percutaneous coronary intervention. Cardiovasc. Revasc. Med. 2024, in press. [Google Scholar] [CrossRef]
- Yusuf, S.; Hawken, S.; Ounpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J.; et al. Effect of Potentially Modifiable Risk Factors Associated with Myocardial Infarction in 52 Countries (the INTERHEART Study): Case-Control Study. Lancet 2004, 364, 937–952. [Google Scholar] [CrossRef]
- Lipidy, Apolipoproteiny i Zapalne Biomarkery Ryzyka Sercowo-Naczyniowego: Czego Się Dowiedzieliśmy?—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/29761474/ (accessed on 23 July 2024).
- Kawaguchi, H.; Mori, T.; Kawano, T.; Kono, S.; Sasaki, J.; Arakawa, K. Band Neutrophil Count and the Presence and Severity of Coronary Atherosclerosis. Am. Heart J. 1996, 132, 9–12. [Google Scholar] [CrossRef]
- Sweetnam, P.M.; Thomas, H.F.; Yarnell, J.W.; Baker, I.A.; Elwood, P.C. Total and Differential Leukocyte Counts as Predictors of Ischemic Heart Disease: The Caerphilly and Speedwell Studies. Am. J. Epidemiol. 1997, 145, 416–421. [Google Scholar] [CrossRef]
- Avanzas, P.; Arroyo-Espliguero, R.; Cosín-Sales, J.; Quiles, J.; Zouridakis, E.; Kaski, J.C. Multiple Complex Stenoses, High Neutrophil Count and C-Reactive Protein Levels in Patients with Chronic Stable Angina. Atherosclerosis 2004, 175, 151–157. [Google Scholar] [CrossRef]
- Bennett, M.R.; Sinha, S.; Owens, G.K. Vascular Smooth Muscle Cells in Atherosclerosis. Circ. Res. 2016, 118, 692–702. [Google Scholar] [CrossRef]
- Kou, T.; Luo, H.; Yin, L. Relationship between Neutrophils to HDL-C Ratio and Severity of Coronary Stenosis. BMC Cardiovasc. Disord. 2021, 21, 127. [Google Scholar] [CrossRef]
- Li, X.; Gao, D. GW29-E0445 The Value of Neutrophil to High-Density Lipoprotein-Cholesterol Ratio in the Assessment of the Severity of Coronary Atherosclerosis. J. Am. Coll. Cardiol. 2018, 72, C207. [Google Scholar] [CrossRef]
- Manoochehri, H.; Gheitasi, R.; Pourjafar, M.; Amini, R.; Yazdi, A. Investigating the Relationship between the Severity of Coronary Artery Disease and Inflammatory Factors of MHR, PHR, NHR, and IL-25. Med. J. Islam. Repub. Iran 2021, 35, 85. [Google Scholar] [CrossRef] [PubMed]
- Başyiğit, F.; Çöteli, C. Relationship between the Neutrophil to HDL-C Ratio and Anatomical Significance of Coronary Artery Stenosis in Patients with Documented Myocardial Ischemia. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 3179–3184. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Chen, H.; Xiao, H.; Tang, H.; Xiang, Z.; Wang, X.; Wang, X.; Zou, H. Comparison of the Value of Neutrophil to High-Density Lipoprotein Cholesterol Ratio and Lymphocyte to High-Density Lipoprotein Cholesterol Ratio for Predicting Metabolic Syndrome Among a Population in the Southern Coast of China. Diabetes Metab. Syndr. Obes. 2020, 13, 597–605. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, D.; Tao, H.; Ge, P.; Duan, Q. Neutrophils to High-Density Lipoprotein Cholesterol Ratio as a New Prognostic Marker in Patients with ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention: A Retrospective Study. BMC Cardiovasc. Disord. 2022, 22, 434. [Google Scholar] [CrossRef]
- Ozgeyik, M.; Ozgeyik, M.O. Long-Term Prognosis after Treatment of Total Occluded Coronary Artery Is Well Predicted by Neutrophil to High-Density Lipoprotein Ratio: A Comparison Study. Kardiologiia 2021, 61, 60–67. [Google Scholar] [CrossRef]
- Ridker, P.M. How Common Is Residual Inflammatory Risk? Circ. Res. 2017, 120, 617–619. [Google Scholar] [CrossRef]
- Umar, M.; Sastry, K.S.; Chouchane, A.I. Role of Vitamin D Beyond the Skeletal Function: A Review of the Molecular and Clinical Studies. Int. J. Mol. Sci. 2018, 19, 1618. [Google Scholar] [CrossRef]
- Della Nera, G.; Sabatino, L.; Gaggini, M.; Gorini, F.; Vassalle, C. Vitamin D Determinants, Status, and Antioxidant/Anti-Inflammatory-Related Effects in Cardiovascular Risk and Disease: Not the Last Word in the Controversy. Antioxidants 2023, 12, 948. [Google Scholar] [CrossRef]
- Rosen, C.J.; Adams, J.S.; Bikle, D.D.; Black, D.M.; Demay, M.B.; Manson, J.E.; Murad, M.H.; Kovacs, C.S. The Nonskeletal Effects of Vitamin D: An Endocrine Society Scientific Statement. Endocr. Rev. 2012, 33, 456–492. [Google Scholar] [CrossRef]
- Elmi, C.; Fan, M.M.; Le, M.; Cheng, G.; Khalighi, K. Association of Serum 25-Hydroxy Vitamin D Level with Lipid, Lipoprotein, and Apolipoprotein Level. J. Community Hosp. Intern. Med. Perspect. 2021, 11, 812–816. [Google Scholar] [CrossRef] [PubMed]
- Dahdah, A.; Johnson, J.; Gopalkrishna, S.; Jaggers, R.M.; Webb, D.; Murphy, A.J.; Hanssen, N.M.J.; Hanaoka, B.Y.; Nagareddy, P.R. Neutrophil Migratory Patterns: Implications for Cardiovascular Disease. Front. Cell Dev. Biol. 2022, 10, 795784. [Google Scholar] [CrossRef] [PubMed]
- Kose, M.; Senkal, N.; Tukek, T.; Cebeci, T.; Atalar, S.C.; Altinkaynak, M.; Arici, H.; Genc, S.; Catma, Y.; Kocaaga, M.; et al. Severe Vitamin D Deficiency Is Associated with Endothelial Inflammation in Healthy Individuals Even in the Absence of Subclinical Atherosclerosis. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 7046–7052. [Google Scholar] [CrossRef] [PubMed]
- Haas, M.J.; Jafri, M.; Wehmeier, K.R.; Onstead-Haas, L.M.; Mooradian, A.D. Inhibition of Endoplasmic Reticulum Stress and Oxidative Stress by Vitamin D in Endothelial Cells. Free Radic. Biol. Med. 2016, 99, 1–10. [Google Scholar] [CrossRef]
- Andrukhova, O.; Slavic, S.; Zeitz, U.; Riesen, S.C.; Heppelmann, M.S.; Ambrisko, T.D.; Markovic, M.; Kuebler, W.M.; Erben, R.G. Vitamin D Is a Regulator of Endothelial Nitric Oxide Synthase and Arterial Stiffness in Mice. Mol. Endocrinol. 2014, 28, 53–64. [Google Scholar] [CrossRef]
- Deletion of Macrophage Vitamin D Receptor Promotes Insulin Resistance and Monocyte Cholesterol Transport to Accelerate Atherosclerosis in Mice—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/25801026/ (accessed on 23 July 2024).
- Takeda, M.; Yamashita, T.; Sasaki, N.; Nakajima, K.; Kita, T.; Shinohara, M.; Ishida, T.; Hirata, K. Oral Administration of an Active Form of Vitamin D3 (Calcitriol) Decreases Atherosclerosis in Mice by Inducing Regulatory T Cells and Immature Dendritic Cells with Tolerogenic Functions. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2495–2503. [Google Scholar] [CrossRef]
- Bishop, E.; Ismailova, A.; Dimeloe, S.; Hewison, M.; White, J.H. Vitamin D and Immune Regulation: Antibacterial, Antiviral, Anti-Inflammatory. JBMR Plus 2021, 5, e10405. [Google Scholar] [CrossRef]
- Wojtasińska, A.; Frąk, W.; Lisińska, W.; Sapeda, N.; Młynarska, E.; Rysz, J.; Franczyk, B. Novel Insights into the Molecular Mechanisms of Atherosclerosis. Int. J. Mol. Sci. 2023, 24, 13434. [Google Scholar] [CrossRef]
- Casas, J.P.; Shah, T.; Hingorani, A.D.; Danesh, J.; Pepys, M.B. C-Reactive Protein and Coronary Heart Disease: A Critical Review. J. Intern. Med. 2008, 264, 295–314. [Google Scholar] [CrossRef]
- Dziedzic, E.A.; Gąsior, J.S.; Tuzimek, A.; Paleczny, J.; Junka, A.; Dąbrowski, M.; Jankowski, P. Investigation of the Associations of Novel Inflammatory Biomarkers-Systemic Inflammatory Index (SII) and Systemic Inflammatory Response Index (SIRI)-With the Severity of Coronary Artery Disease and Acute Coronary Syndrome Occurrence. Int. J. Mol. Sci. 2022, 23, 9553. [Google Scholar] [CrossRef]
- Dziedzic, E.A.; Gąsior, J.S.; Tuzimek, A.; Dąbrowski, M.; Jankowski, P. The Association between Serum Vitamin D Concentration and New Inflammatory Biomarkers-Systemic Inflammatory Index (SII) and Systemic Inflammatory Response (SIRI)-In Patients with Ischemic Heart Disease. Nutrients 2022, 14, 4212. [Google Scholar] [CrossRef] [PubMed]
- Tuzimek, A.; Dziedzic, E.A.; Beck, J.; Kochman, W. Correlations Between Acute Coronary Syndrome and Novel Inflammatory Markers (Systemic Immune-Inflammation Index, Systemic Inflammation Response Index, and Aggregate Index of Systemic Inflammation) in Patients with and without Diabetes or Prediabetes. J. Inflamm. Res. 2024, 17, 2623–2632. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Chen, M.; Hong, Y.; Huang, Y.; Zhang, H.; Zhou, Y.; Zhou, B.; Fu, M. Comparison of the Predicting Value of Neutrophil to High-Density Lipoprotein Cholesterol Ratio and Monocyte to High-Density Lipoprotein Cholesterol Ratio for in-Hospital Prognosis and Severe Coronary Artery Stenosis in Patients with ST-Segment Elevation Acute Myocardial Infarction Following Percutaneous Coronary Intervention: A Retrospective Study. J. Inflamm. Res. 2023, 16, 4541–4557. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-B.; Chen, Y.-S.; Ji, H.-Y.; Xie, W.-M.; Jiang, J.; Ran, L.-S.; Zhang, C.-T.; Quan, X.-Q. Neutrophil to High-Density Lipoprotein Ratio Has a Superior Prognostic Value in Elderly Patients with Acute Myocardial Infarction: A Comparison Study. Lipids Health Dis. 2020, 19, 59. [Google Scholar] [CrossRef]
- Liu, S.-L.; Feng, B.-Y.; Song, Q.-R.; Zhang, Y.-M.; Wu, S.-L.; Cai, J. Neutrophil to High-Density Lipoprotein Cholesterol Ratio Predicts Adverse Cardiovascular Outcomes in Subjects with Pre-Diabetes: A Large Cohort Study from China. Lipids Health Dis. 2022, 21, 86. [Google Scholar] [CrossRef]
- Ren, H.; Zhu, B.; Zhao, Z.; Li, Y.; Deng, G.; Wang, Z.; Ma, B.; Feng, Y.; Zhang, Z.; Zhao, X.; et al. Neutrophil to High-Density Lipoprotein Cholesterol Ratio as the Risk Mark in Patients with Type 2 Diabetes Combined with Acute Coronary Syndrome: A Cross-Sectional Study. Sci. Rep. 2023, 13, 7836. [Google Scholar] [CrossRef]
- Dziedzic, E.A.; Smyk, W.; Sowińska, I.; Dąbrowski, M.; Jankowski, P. Serum Level of Vitamin D Is Associated with Severity of Coronary Atherosclerosis in Postmenopausal Women. Biology 2021, 10, 1139. [Google Scholar] [CrossRef]
- Dziedzic, E.A.; Przychodzeń, S.; Dąbrowski, M. The Effects of Vitamin D on Severity of Coronary Artery Atherosclerosis and Lipid Profile of Cardiac Patients. Arch. Med. Sci. 2016, 12, 1199–1206. [Google Scholar] [CrossRef]
- Grandi, N.C.; Breitling, L.P.; Brenner, H. Vitamin D and Cardiovascular Disease: Systematic Review and Meta-Analysis of Prospective Studies. Prev. Med. 2010, 51, 228–233. [Google Scholar] [CrossRef]
- Barbarawi, M.; Kheiri, B.; Zayed, Y.; Barbarawi, O.; Dhillon, H.; Swaid, B.; Yelangi, A.; Sundus, S.; Bachuwa, G.; Alkotob, M.L.; et al. Vitamin D Supplementation and Cardiovascular Disease Risks in More Than 83 000 Individuals in 21 Randomized Clinical Trials: A Meta-Analysis. JAMA Cardiol. 2019, 4, 765–776. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, M.; Xu, X.; He, L.; Wang, P.; Cai, X.; Huang, R.; Zhang, S.; Xu, X.; Lai, Y.; et al. Serum Klotho Modifies the Associations of 25-Hydroxy Vitamin D With All-Cause and Cardiovascular Mortality. J. Clin. Endocrinol. Metab. 2024, 109, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Li, Y.; Liu, S.; Zhang, X.; Liang, H.; Wang, Y.; Wang, R.; Liu, H.; Wen, Y.; Jing, C.; et al. Association between Serum 25-Hydroxyvitamin D and Vitamin D Dietary Supplementation and Risk of All-Cause and Cardiovascular Mortality among Adults with Hypertension. Nutr. J. 2024, 23, 33. [Google Scholar] [CrossRef] [PubMed]
- Mousa, H.; Al Saei, A.; Razali, R.M.; Zughaier, S.M. Vitamin D Status Affects Proteomic Profile of HDL-Associated Proteins and Inflammatory Mediators in Dyslipidemia. J. Nutr. Biochem. 2024, 123, 109472. [Google Scholar] [CrossRef] [PubMed]
- Kilic, A.; Halu, A.; De Marzio, M.; Maiorino, E.; Duvall, M.G.; Bruggemann, T.R.; Rojas Quintero, J.J.; Chase, R.; Mirzakhani, H.; Sungur, A.Ö.; et al. Vitamin D Constrains Inflammation by Modulating the Expression of Key Genes on Chr17q12-21.1. eLife 2024, 12, RP89270. [Google Scholar] [CrossRef]
- Laird, E.; O’Halloran, A.M.; Molloy, A.M.; Healy, M.; Bourke, N.; Kenny, R.A. Vitamin D Status & Associations with Inflammation in Older Adults. PLoS ONE 2023, 18, e0287169. [Google Scholar] [CrossRef]
Variable | Values |
---|---|
N of participants [♂/♀] | 404 (63.1%)/236 (36.9%) |
Age [years] | 66.4 (59.3–74.9) |
BMI [kg/m2] | 27.7 (24.9–31.1) |
Diagnosis [stable IHD/STEMI/NSTEMI/UA] | 335 (52.3%)/143 (22.3%)/97 (15.2%)/65 (10.2%) |
Previous MI [yes/no] | 249 (38.9%)/391 (61.1%) |
High-density lipoprotein (HDL) (mg/dL) | 47.1 (39.2–57.7) |
Hypertension [yes/no] | 534 (83.4%)/106 (16.6%) |
Smoking [active/former smoker/no] | 182 (28.4%)/71 (11.1%)/353 (55.2%) |
Type 2 diabetes mellitus [yes/pre-diabetes/no] | 218 (34.1%)/26 (4.1%)/394 (61.6%) |
Coronary Artery Surgery Study (CASS) scale [0/1/2/3] | 158 (24.7%)/176 (27.5%)/161 (25.2%)/145 (22.7%) |
Neutrophils [thousand cells/µL] | 4.8 (3.7–6.2) |
NHR | 0.10 (0.07–0.14) |
Serum 25(OH)D (ng/mL) | 15.1 (10.2–21.2) |
Variable | CASS 0 | CASS 1 | CASS 2 | CASS 3 | p |
---|---|---|---|---|---|
N of participants [♂/♀] | 72/86 | 115/61 | 118/43 | 99/46 | <0.001 |
Age [years] | 67.0 (59.7–72.4) | 65.2 (58.6–75.3) | 63.6 (58.4–74.8) | 69.2 (62.0–76.4) | 0.015 |
BMI [kg/m2] | 27.7 (24.8–31.6) | 27.2 (24.8–31.0) | 27.7 (24.9–30.5) | 28.1 (25.3–30.8) | 0.815 |
Diagnosis [stable IHD/STEMI/NSTEMI/UA] | 133/7/10/8 | 64/63/31/18 | 76/38/29/18 | 62/35/27/21 | <0.001 |
Previous MI [yes/no] | 12/146 | 73/103 | 79/82 | 85/60 | <0.001 |
High-density lipoprotein (HDL) (mg/dL) | 53.8 (43.2–64.1) | 46.6 (39.4–55.5) | 46.7 (38.4–55.1) | 44.3 (36.5–52.7) | <0.001 |
Hypertension [yes/no] | 118/40 | 144/32 | 144/17 | 128/17 | 0.001 |
Smoking [active/former smoker/no] | 27/11/109 | 62/17/87 | 56/22/78 | 37/21/79 | <0.001 |
Type 2 diabetes mellitus [yes/pre-diabetes/no] | 47/7/103 | 51/4/120 | 59/9/93 | 61/6/78 | 0.089 |
Neutrophils [thousand cells/µL] | 4.5 (3.6–5.7) | 4.8 (3.8–6.4) | 4.7 (3.7–6.2) | 5.0 (3.9–6.5) | 0.107 |
NHR | 0.09 (0.06–0.12) | 0.11 (0.08–0.15) | 0.11 (0.08–0.15) | 0.11 (0.08–0.17) | <0.001 |
Serum 25(OH)D (ng/mL) | 17.7 (11.6–24.2) | 14.2 (9.8–19.8) | 13.9 (11.0–18.3) | 14.6 (9.3–20.8) | <0.001 |
Variable | Stable IHD | STEMI | NSTEMI | UA | p |
---|---|---|---|---|---|
N of participants [♂/♀] | 206/129 | 107/36 | 59/38 | 32/33 | 0.002 |
Age [years] | 67.3 (60.5–75.5) | 62.4 (56.2–69.2) | 65.6 (58.2–75.9) | 70.4 (62.9–76.4) | <0.001 |
BMI [kg/m2] | 27.9 (24.9–31.1) | 26.8 (24.7–31.0) | 27.7 (24.8–31.7) | 27.9 (24.8–30.4) | 0.502 |
Previous MI [yes/no] | 102/233 | 69/74 | 57/40 | 21/44 | <0.001 |
High-density lipoprotein (HDL) (mg/dL) | 50.2 (40.8–61.4) | 45.0 (36.6–52.3) | 42.6 (35.3–50.6) | 46.5 (39.6–55.4) | <0.001 |
Hypertension [yes/no] | 270/65 | 117/26 | 84/13 | 63/2 | 0.009 |
Smoking [active/former smoker/no] | 66/53/196 | 67/8/63 | 39/3/48 | 10/7/46 | <0.001 |
Type 2 diabetes mellitus [yes/pre-diabetes/no] | 120/15/199 | 42/3/97 | 31/6/60 | 25/2/38 | 0.454 |
Neutrophils [thousand cells/µL] | 4.7 (3.6–5.8) | 5.3 (4.1–7.2) | 5.0 (3.8–6.1) | 4.8 (3.7–6.5) | 0.003 |
NHR | 0.09 (0.07–0.13) | 0.12 (0.09–0.17) | 0.11 (0.09–0.16) | 0.11 (0.08–0.13) | <0.001 |
Serum 25(OH)D (ng/mL) | 16.2 (11.1–22.2) | 13.9 (9.9–18.1) | 13.4 (9.6–19.3) | 17.5 (11.1–22.0) | 0.007 |
Variable | Serum 25(OH)D < 15.1 | Serum 25(OH)D ≥ 15.1 | p |
---|---|---|---|
N of participants [♂/♀] | 317 [187/130] | 323 [217/106] | 0.032 |
Age [years] | 65.5 (58.1–74.9) | 66.9 (60.2–75.3) | 0.132 |
BMI [kg/m2] | 27.7 (24.8–31.3) | 27.7 (25.1–30.5) | 0.967 |
Diagnosis [stable IHD/STEMI/NSTEMI/UA] | 143/89/55/30 | 192/54/42/35 | <0.001 |
Previous MI [yes/no] | 133/184 | 116/207 | 0.117 |
High-density lipoprotein (HDL) (mg/dL) | 45.9 (38.2–55.6) | 48.7 (39.9–58.9) | 0.036 |
Hypertension [yes/no] | 270/47 | 264/59 | 0.242 |
Smoking [active/former smoker/no] | 109/24/184 | 73/47/203 | <0.001 |
Type 2 diabetes mellitus [yes/pre-diabetes/no] | 114/17/186 | 104/9/210 | 0.115 |
Coronary Artery Surgery Study (CASS) scale [0/1/2/3] | 57/94/90/76 | 101/82/71/69 | 0.001 |
Neutrophils [thousand cells/µL] | 4.9 (3.9–6.3) | 4.7 (3.5–6.2) | 0.016 |
NHR | 0.11 (0.08–0.16) | 0.09 (0.07–0.13) | 0.002 |
Determinants | β (±95% CI) | P |
---|---|---|
Age [years] | −0.06 (−0.14–0.03) | 0.182 |
Sex | 0.13 (0.05–0.21) | 0.002 |
BMI [kg/m2] | 0.12 (0.04–0.20) | 0.004 |
Diagnosis | 0.13 (0.05–0.22) | 0.001 |
CASS score | 0.12 (0.03–0.21) | 0.009 |
Previous MI [yes/no] | 0.06 (−0.02–0.14) | 0.160 |
Hypertension [yes/no] | −0.07 (−0.15–0.01) | 0.087 |
Smoking [active/former smoker/no] | 0.02 (−0.06–0.11) | 0.582 |
Type 2 diabetes mellitus [yes/pre-diabetes/no] | 0.06 (−0.02–0.14) | 0.125 |
Variable | NHR < 0.1 | NHR ≥ 0.1 | p |
---|---|---|---|
N of participants [♂/♀] | 312 [176/136] | 328 [228/100] | <0.001 |
Age [years] | 67.3 (60.6–75.4) | 64.5 (57.7–74.8) | 0.010 |
BMI [kg/m2] | 27.5 (24.2–30.8) | 27.8 (25.5–31.2) | 0.079 |
Diagnosis [stable IHD/STEMI/NSTEMI/UA] | 198/47/37/30 | 137/96/60/35 | <0.001 |
Previous MI [yes/no] | 104/208 | 145/183 | 0.005 |
High-density lipoprotein (HDL) (mg/dL) | 54.8 (46.3–64.1) | 40.7 (34.7–48.4) | <0.001 |
Hypertension [yes/no] | 261/51 | 273/55 | 0.886 |
Smoking [active/former smoker/no] | 68/42/202 | 114/29/185 | <0.001 |
Type 2 diabetes mellitus [yes/pre-diabetes/no] | 96/13/203 | 122/13/193 | 0.228 |
Coronary Artery Surgery Study (CASS) scale [0/1/2/3] | 101/78/76/57 | 57/98/85/88 | <0.001 |
Neutrophils [thousand cells/µL] | 3.8 (3.2–4.6) | 5.9 (4.9–7.5) | <0.001 |
Serum 25(OH)D (ng/mL) | 16.5 (11.1–22.1) | 14.0 (9.9–20.0) | 0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziedzic, E.A.; Gąsior, J.S.; Koseska, K.; Karol, M.; Czestkowska, E.; Pawlińska, K.; Kochman, W. The Impact of Neutrophil-to-High-Density Lipoprotein Ratio and Serum 25-Hydroxyvitamin D on Ischemic Heart Disease. J. Clin. Med. 2024, 13, 6597. https://doi.org/10.3390/jcm13216597
Dziedzic EA, Gąsior JS, Koseska K, Karol M, Czestkowska E, Pawlińska K, Kochman W. The Impact of Neutrophil-to-High-Density Lipoprotein Ratio and Serum 25-Hydroxyvitamin D on Ischemic Heart Disease. Journal of Clinical Medicine. 2024; 13(21):6597. https://doi.org/10.3390/jcm13216597
Chicago/Turabian StyleDziedzic, Ewelina A., Jakub S. Gąsior, Kamila Koseska, Michał Karol, Ewa Czestkowska, Kamila Pawlińska, and Wacław Kochman. 2024. "The Impact of Neutrophil-to-High-Density Lipoprotein Ratio and Serum 25-Hydroxyvitamin D on Ischemic Heart Disease" Journal of Clinical Medicine 13, no. 21: 6597. https://doi.org/10.3390/jcm13216597
APA StyleDziedzic, E. A., Gąsior, J. S., Koseska, K., Karol, M., Czestkowska, E., Pawlińska, K., & Kochman, W. (2024). The Impact of Neutrophil-to-High-Density Lipoprotein Ratio and Serum 25-Hydroxyvitamin D on Ischemic Heart Disease. Journal of Clinical Medicine, 13(21), 6597. https://doi.org/10.3390/jcm13216597