Corticospinal Tract Sparing in Cervical Spinal Cord Injury
Abstract
1. Introduction
2. Segmental Motor Recovery After cSCI Relates to Density and Integrity of CST Projections
Clinical Applications in the Field of Neuromodulation
3. The Eloquent Spinal Cord: Lesion-Affected and Recovery-Related Networks
4. Corticospinal Tract (CST) Sparing: Optimizing Diagnostics and Prognostics in Cervical Spinal Cord Injuries (cSCI)
4.1. Central Cord Syndrome
4.2. Midsaggittal Tissue Bridges
4.3. Corticospinal Tract (CST) Sparing: Motor Evoked Potential (MEP)
4.4. Limitations: Proposed and Current Techniques and Assessments
5. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Ahuja, C.S.; Wilson, J.R.; Nori, S.; Kotter, M.R.N.; Druschel, C.; Curt, A.; Fehlings, M.G. Traumatic spinal cord injury. Nat. Rev. Dis. Primers 2017, 3, 17018. [Google Scholar] [CrossRef] [PubMed]
- Velstra, I.M.; Bolliger, M.; Krebs, J.; Rietman, J.S.; Curt, A. Predictive value of upper limb muscles and grasp patterns on functional outcome in cervical spinal cord injury. Neurorehabilit. Neural Repair 2016, 30, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Fawcett, J.W.; Curt, A.; Steeves, J.D.; Coleman, W.P.; Tuszynski, M.H.; Lammertse, D.; Bartlett, P.F.; Blight, A.R.; Dietz, V.; Ditunno, J.; et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: Spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 2007, 45, 190–205. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.R.; Cadotte, D.W.; Fehlings, M.G. Clinical predictors of neurological outcome, functional status, and survival after traumatic spinal cord injury: A systematic review. J. Neurosurg. Spine 2012, 17 (Suppl. S1), 11–26. [Google Scholar] [CrossRef]
- Kirshblum, S.; Schmidt Read, M.; Rupp, R. Classification challenges of the 2019 revised International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI). Spinal Cord 2021, 60, 11–17. [Google Scholar] [CrossRef]
- Balbinot, G.; Li, G.; Kalsi-Ryan, S.; Abel, R.; Maier, D.; Kalke, Y.B.; Weidner, N.; Rupp, R.; Schubert, M.; Curt, A.; et al. Segmental motor recovery after cervical spinal cord injury relates to density and integrity of corticospinal tract projections. Nat. Commun. 2023, 14, 723. [Google Scholar] [CrossRef]
- Fouad, K.; Popovich, P.G.; Kopp, M.A.; Schwab, J.M. The neuroanatomical–functional paradox in spinal cord injury. Nat. Rev. Neurol. 2021, 17, 53–62. [Google Scholar] [CrossRef]
- Pfyffer, D.; Smith, A.C.; Weber, K.A.; Grillhoesl, A.; Mach, O.; Draganich, C.; Berliner, J.C.; Tefertiller, C.; Leister, I.; Maier, D.; et al. Prognostic value of tissue bridges in cervical spinal cord injury: A longitudinal, multicentre, retrospective cohort study. Lancet Neurol. 2024, 23, 816–825. [Google Scholar] [CrossRef]
- Balaguer, J.M.; Prat-Ortega, G.; Verma, N.; Yadav, P.; Sorensen, E.; de Freitas, R.; Ensel, S.; Borda, L.; Donadio, S.; Liang, L.; et al. Supraspinal Control of Motoneurons After Paralysis Enabled by Spinal Cord Stimulation. medRxiv 2023. Available online: https://www.medrxiv.org/content/early/2023/12/01/2023.11.29.23298779 (accessed on 25 October 2024).
- Lorach, H.; Galvez, A.; Spagnolo, V.; Martel, F.; Karakas, S.; Intering, N.; Vat, M.; Faivre, O.; Harte, C.; Komi, S.; et al. Walking naturally after spinal cord injury using a brain–spine interface. Nature 2023, 618, 126–133. [Google Scholar] [CrossRef]
- Hachem, L.D.; Balbinot, G.; Fehlings, M.G. A digital bridge to reverse paralysis. Cell Res. 2023, 33, 892–893. [Google Scholar] [CrossRef] [PubMed]
- Pfurtscheller, G.; Graimann, B.; Huggins, J.E.; Levine, S.P.; Schuh, L.A. Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clin. Neurophysiol. 2003, 114, 1226–1236. [Google Scholar] [CrossRef] [PubMed]
- Osuagwu, B.C.A.; Wallace, L.; Fraser, M.; Vuckovic, A. Rehabilitation of hand in subacute tetraplegic patients based on brain computer interface and functional electrical stimulation: A randomised pilot study. J. Neural Eng. 2016, 13, 065002. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, L.I.; Kapadia, N.; Zivanovic, V.; Rademeyer, H.J.; Alavinia, M.; McGillivray, C.; Kalsi-Ryan, S.; Popovic, M.R.; Marquez-Chin, C. Brain–computer interface-triggered functional electrical stimulation therapy for rehabilitation of reaching and grasping after spinal cord injury: A feasibility study. Spinal Cord. Ser. Cases 2021, 7, 24. [Google Scholar] [CrossRef]
- Popovic, M.R.; Keller, T. Modular transcutaneous functional electrical stimulation system. Med. Eng. Phys. 2005, 27, 81–92. [Google Scholar] [CrossRef]
- Jovanovic, L.I.; Popovic, M.R.; Marquez-Chin, C. KITE-BCI: A brain-computer interface system for functional electrical stimulation therapy. J. Spinal Cord. Med. 2021, 44 (Suppl. S1), S203–S214. [Google Scholar] [CrossRef]
- Sangari, S.; Kirshblum, S.; Guest, J.D.; Oudega, M.; Perez, M.A. Distinct patterns of spasticity and corticospinal connectivity following complete spinal cord injury. J. Physiol. 2021, 599, 4441–4454. [Google Scholar] [CrossRef]
- Sangari, S.; Lundell, H.; Kirshblum, S.; Perez, M.A. Residual descending motor pathways influence spasticity after spinal cord injury. Ann. Neurol. 2019, 86, 28–41. [Google Scholar] [CrossRef]
- Ravits, J.; Stack, J. The lower motor neuron homunculus. Brain 2022, 145, 3727–3729. [Google Scholar] [CrossRef]
- Penfield, W. The Cerebral Cortex of Man: A Clinical Study of Localization of Function. J. Am. Med. Assoc. 1950, 144, 1412. [Google Scholar]
- Penfield, W.; Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 1937, 60, 389–443. [Google Scholar] [CrossRef]
- Jenny, A.B.; Inukai, J. Principles of motor organization of the monkey cervical spinal cord. J. Neurosci. 1983, 3, 567–575. [Google Scholar] [CrossRef]
- Phillips, C.G.; Porter, R. The Pyramidal Projection to Motoneurones of Some Muscle Groups of the Baboon’s Forelimb. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 1964; pp. 222–245. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0079612308606251 (accessed on 25 October 2024).
- Palmer, E.; Ashby, P. Corticospinal projections to upper limb motoneurones in humans. J. Physiol. 1992, 448, 397–412. [Google Scholar] [CrossRef]
- Rosenzweig, E.S.; Courtine, G.; Jindrich, D.L.; Brock, J.H.; Ferguson, A.R.; Strand, S.C.; Nout, Y.S.; Roy, R.R.; Miller, D.M.; Beattie, M.S.; et al. Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat. Neurosci. 2010, 13, 1505–1512. [Google Scholar] [CrossRef]
- Hilton, B.J.; Griffin, J.M.; Fawcett, J.W.; Bradke, F. Neuronal maturation and axon regeneration: Unfixing circuitry to enable repair. Nat. Rev. Neurosci. 2024, 25, 649–667. [Google Scholar] [CrossRef]
- Schirmer, C.M.; Shils, J.L.; Arle, J.E.; Cosgrove, G.R.; Dempsey, P.K.; Tarlov, E.; Kim, S.; Martin, C.J.; Feltz, C.; Moul, M.; et al. Heuristic map of myotomal innervation in humans using direct intraoperative nerve root stimulation: Clinical article. J. Neurosurg. Spine 2011, 15, 64–70. [Google Scholar] [CrossRef]
- Levine, A.J.; Hinckley, C.A.; Hilde, K.L.; Driscoll, S.P.; Poon, T.H.; Montgomery, J.M.; Pfaff, S.L. Identification of a cellular node for motor control pathways. Nat. Neurosci. 2014, 17, 586–593. [Google Scholar] [CrossRef]
- Minassian, K.; Bayart, A.; Lackner, P.; Binder, H.; Freundl, B.; Hofstoetter, U.S. Rare phenomena of central rhythm and pattern generation in a case of complete spinal cord injury. Nat. Commun. 2023, 14, 3276. [Google Scholar] [CrossRef]
- Cheung, V.C.K.; Turolla, A.; Agostini, M.; Silvoni, S.; Bennis, C.; Kasi, P.; Paganoni, S.; Bonato, P.; Bizzi, E. Muscle synergy patterns as physiological markers of motor cortical damage. Proc. Natl. Acad. Sci. USA 2012, 109, 14652–14656. [Google Scholar] [CrossRef]
- Roh, J.; Rymer, W.Z.; Perreault, E.J.; Yoo, S.B.; Beer, R.F. Alterations in upper limb muscle synergy structure in chronic stroke survivors. J. Neurophysiol. 2013, 109, 768–781. [Google Scholar] [CrossRef] [PubMed]
- Zariffa, J.; Steeves, J.; Pai, D.K. Changes in hand muscle synergies in subjects with spinal cord injury: Characterization and functional implications. J. Spinal Cord Med. 2012, 35, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Steele, A.G.; Varghese, B.; Martin, C.A.; Scheffler, M.S.; Markley, R.L.; Lo, Y.-K.; Sayenko, D.G. Cervical transcutaneous spinal stimulation for spinal motor mapping. iScience 2022, 25, 105037. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Scheffler, M.S.; Martin, C.A.; Dinh, J.; Sheynin, J.; Steele, A.G.; Sayenko, D.G. Characterizing neurological status in individuals with tetraplegia using transcutaneous spinal stimulation. Sci. Rep. 2023, 13, 21522. [Google Scholar] [CrossRef]
- Franz, S.; Eck, U.; Schuld, C.; Heutehaus, L.; Wolf, M.; Wilder-Smith, E.; Schulte-Mattler, W.; Weber, M.-A.; Rupp, R.; Weidner, N. Lower Motoneuron Dysfunction Impacts Spontaneous Motor Recovery in Acute Cervical Spinal Cord Injury. J. Neurotrauma 2023, 40, 862–875. [Google Scholar] [CrossRef]
- EMSCI Study Group; Hug, A.; Schuld, C.; Mürle, B.; Böttinger, M.; Weidner, N.; Rupp, R. Ulnar nerve integrity predicts 1-year outcome in cervical spinal cord injury. Neurol. Res. Pract. 2019, 1, 11. [Google Scholar] [CrossRef]
- Debenham, M.I.B.; Franz, C.K.; Berger, M.J. Neuromuscular consequences of spinal cord injury: New mechanistic insights and clinical considerations. Muscle Nerve 2024, 70, 12–27. [Google Scholar] [CrossRef]
- Hupp, M.; Pavese, C.; Bachmann, L.M.; Koller, R.; Schubert, M. Electrophysiological Multimodal Assessments Improve Outcome Prediction in Traumatic Cervical Spinal Cord Injury. J. Neurotrauma 2018, 35, 2916–2923. [Google Scholar] [CrossRef]
- Brüningk, S.C.; Bourguignon, L.; Lukas, L.P.; Maier, D.; Abel, R.; Weidner, N.; Rupp, R.; Geisler, F.; Kramer, J.L.; Guest, J.; et al. Prediction of segmental motor outcomes in traumatic spinal cord injury: Advances beyond sum scores. Exp. Neurol. 2024, 380, 114905. [Google Scholar] [CrossRef]
- Standring, S. (Ed.) Gray’s Anatomy: The Anatomical Basis of Clinical Practice, 4th ed.; Elsevier Limited: New York, NY, USA, 2016; 1562p. [Google Scholar]
- Lemon, R.N.; Morecraft, R.J. The evidence against somatotopic organization of function in the primate corticospinal tract. Brain 2022, 146, 1791–1803. [Google Scholar] [CrossRef]
- Morecraft, R.J.; Stilwell-Morecraft, K.S.; Ge, J.; Kraskov, A.; Lemon, R.N. Lack of somatotopy among corticospinal tract fibers passing through the primate craniovertebral junction and cervical spinal cord: Pathoanatomical substrate of central cord syndrome and cruciate paralysis. J. Neurosurg. 2022, 136, 1395–1409. [Google Scholar] [CrossRef] [PubMed]
- Levi, A.D.; Schwab, J.M. A critical reappraisal of corticospinal tract somatotopy and its role in traumatic cervical spinal cord syndromes. J. Neurosurg. Spine 2022, 36, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, J.M.; Tran, G.; Quinlan, E.B.; Cramer, S.C. Neuroimaging Identifies Patients Most Likely to Respond to a Restorative Stroke Therapy. Stroke 2018, 49, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Stinear, C.M.; Byblow, W.D.; Ackerley, S.J.; Barber, P.A.; Smith, M.C. Predicting Recovery Potential for Individual Stroke Patients Increases Rehabilitation Efficiency. Stroke 2017, 48, 1011–1019. [Google Scholar] [CrossRef]
- van der Vliet, R.; Selles, R.W.; Andrinopoulou, E.R.; Nijland, R.; Ribbers, G.M.; Frens, M.A.; Meskers, C.; Kwakkel, G. Predicting Upper Limb Motor Impairment Recovery after Stroke: A Mixture Model. Ann. Neurol. 2020, 87, 383–393. [Google Scholar] [CrossRef]
- Wadden, K.P.; Peters, S.; Borich, M.R.; Neva, J.L.; Hayward, K.S.; Mang, C.S.; Snow, N.J.; Brown, K.E.; Woodward, T.S.; Meehan, S.K.; et al. White Matter Biomarkers Associated with Motor Change in Individuals with Stroke: A Continuous Theta Burst Stimulation Study. Neural Plast. 2019, 2019, 7092496. [Google Scholar] [CrossRef]
- Winters, C.; Van Wegen, E.E.H.; Daffertshofer, A.; Kwakkel, G. Generalizability of the Proportional Recovery Model for the Upper Extremity After an Ischemic Stroke. Neurorehabil. Neural Repair 2015, 29, 614–622. [Google Scholar] [CrossRef]
- Boyd, L.A.; Hayward, K.S.; Ward, N.S.; Stinear, C.M.; Rosso, C.; Fisher, R.J.; Carter, A.R.; Leff, A.P.; Copland, D.A.; Carey, L.M.; et al. Biomarkers of stroke recovery: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int. J. Stroke 2017, 12, 480–493. [Google Scholar] [CrossRef]
- Hayward, K.S.; Schmidt, J.; Lohse, K.R.; Peters, S.; Bernhardt, J.; Lannin, N.A.; Boyd, L.A. Are we armed with the right data? Pooled individual data review of biomarkers in people with severe upper limb impairment after stroke. NeuroImage Clin. 2017, 13, 310–319. [Google Scholar] [CrossRef]
- Yoo, Y.J.; Kim, J.W.; Kim, J.S.; Hong, B.Y.; Lee, K.B.; Lim, S.H. Corticospinal Tract Integrity and Long-Term Hand Function Prognosis in Patients With Stroke. Front. Neurol. 2019, 10, 374. [Google Scholar] [CrossRef]
- Tao, J.; Li, Z.; Liu, Y.; Li, J.; Bai, R. Performance Comparison of Different Neuroimaging Methods for Predicting Upper Limb Motor Outcomes in Patients after Stroke. Neural Plast. 2022, 2022, 4203698. [Google Scholar] [CrossRef] [PubMed]
- Schuch, C.P.; Lam, T.K.; Levin, M.F.; Cramer, S.C.; Swartz, R.H.; Thiel, A.; Chen, J.L. A comparison of lesion-overlap approaches to quantify corticospinal tract involvement in chronic stroke. J. Neurosci. Methods 2022, 376, 109612. [Google Scholar] [CrossRef] [PubMed]
- Stinear, C. Prediction of recovery of motor function after stroke. Lancet Neurol. 2010, 9, 1228–1232. [Google Scholar] [CrossRef] [PubMed]
- Stinear, C.M.; Byblow, W.D.; Ackerley, S.J.; Smith, M.C.; Borges, V.M.; Barber, P.A. Proportional Motor Recovery after Stroke: Implications for Trial Design. Stroke 2017, 48, 795–798. [Google Scholar] [CrossRef]
- Stinear, C.M. Prediction of motor recovery after stroke: Advances in biomarkers. Lancet Neurol. 2017, 16, 826–836. [Google Scholar] [CrossRef]
- Puig, J.; Blasco, G.; Schlaug, G.; Stinear, C.M.; Daunis-i-Estadella, P.; Biarnes, C.; Figueras, J.; Serena, J.; Hernández-Pérez, M.; Alberich-Bayarri, A.; et al. Diffusion tensor imaging as a prognostic biomarker for motor recovery and rehabilitation after stroke. Neuroradiology 2017, 59, 343–351. [Google Scholar] [CrossRef]
- Arora, T.; Potter-Baker, K.; O’Laughlin, K.; Li, M.; Wang, X.; Cunningham, D.; Bethoux, F.; Frost, F.; Plow, E.B. Measurement error and reliability of TMS metrics collected from biceps and triceps in individuals with chronic incomplete tetraplegia. Exp. Brain Res. 2021, 239, 3077–3089. [Google Scholar] [CrossRef]
- Behrman, A.L.; Ardolino, E.M.; Harkema, S.J. Activity-Based Therapy: From Basic Science to Clinical Application for Recovery After Spinal Cord Injury. J. Neurol. Phys. Ther. 2017, 41, S39–S45. [Google Scholar] [CrossRef]
- Sartori, A.M.; Hofer, A.S.; Schwab, M.E. Recovery after spinal cord injury is enhanced by anti-Nogo-A antibody therapy—From animal models to clinical trials. Curr. Opin. Physiol. 2020, 14, 1–6. [Google Scholar] [CrossRef]
- Kucher, K.; Johns, D.; Maier, D.; Abel, R.; Badke, A.; Baron, H.; Thietje, R.; Casha, S.; Meindl, R.; Gomez-Mancilla, B.; et al. First-in-man intrathecal application of neurite growth-promoting anti-nogo- a antibodies in acute spinal cord injury. Neurorehabil. Neural Repair 2018, 32, 578–589. [Google Scholar] [CrossRef]
- Vaquero, J.; Zurita, M.; Rico, M.A.; Aguayo, C.; Bonilla, C.; Marin, E.; Tapiador, N.; Sevilla, M.; Vazquez, D.; Carballido, J. Intrathecal administration of autologous mesenchymal stromal cells for spinal cord injury: Safety and efficacy of the 100/3 guideline. Cytotherapy 2018, 20, 806–819. [Google Scholar] [CrossRef] [PubMed]
- Wagner, F.B.; Mignardot, J.B.; Le Goff-Mignardot, C.G.; Demesmaeker, R.; Komi, S.; Capogrosso, M.; Rowald, A.; Seáñez, I.; Caban, M.; Pirondini, E.; et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 2018, 563, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Marquez-Chin, C.; Popovic, M.R. Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: A review. Biomed. Eng. Online 2020, 19, 34. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, L.I.; Jervis Rademeyer, H.; Pakosh, M.; Musselman, K.E.; Popovic, M.R.; Marquez-Chin, C. Scoping Review on Brain-Computer Interface–Controlled Electrical Stimulation Interventions for Upper Limb Rehabilitation in Adults: A Look at Participants, Interventions, and Technology. Physiother. Can. 2023, 75, 276–290. [Google Scholar] [CrossRef] [PubMed]
- Murphy, T.H.; Corbett, D. Plasticity during stroke recovery: From synapse to behaviour. Nat. Rev. Neurosci. 2009, 10, 861–872. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schuch, C.P.; Jovanovic, L.I.; Balbinot, G. Corticospinal Tract Sparing in Cervical Spinal Cord Injury. J. Clin. Med. 2024, 13, 6489. https://doi.org/10.3390/jcm13216489
Schuch CP, Jovanovic LI, Balbinot G. Corticospinal Tract Sparing in Cervical Spinal Cord Injury. Journal of Clinical Medicine. 2024; 13(21):6489. https://doi.org/10.3390/jcm13216489
Chicago/Turabian StyleSchuch, Clarissa Pedrini, Lazar I. Jovanovic, and Gustavo Balbinot. 2024. "Corticospinal Tract Sparing in Cervical Spinal Cord Injury" Journal of Clinical Medicine 13, no. 21: 6489. https://doi.org/10.3390/jcm13216489
APA StyleSchuch, C. P., Jovanovic, L. I., & Balbinot, G. (2024). Corticospinal Tract Sparing in Cervical Spinal Cord Injury. Journal of Clinical Medicine, 13(21), 6489. https://doi.org/10.3390/jcm13216489