Exaggerated Blood Pressure Response to Exercise Is a Risk of Future Hypertension Even in Healthy, Normotensive Young Individuals—Potential Preventive Strategies for This Phenomenon?
Abstract
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peeters, A.; Mamun, A.A.; Willekens, F.; Bonneux, L. A cardiovascular life history. A life course analysis of the original Framingham Heart Study cohort. Eur. Heart J. 2002, 23, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Ezzati, M.; Vander Hoorn, S.; Lawes, C.M.; Leach, R.; James, W.P.; Lopez, A.D.; Rodgers, A.; Murray, C.J.L. Rethinking the “diseases of affluence” paradigm: Global patterns of nutritional risks in relation to economic development. PLoS Med. 2005, 2, e133. [Google Scholar] [CrossRef] [PubMed]
- Lawes, C.M.; Vander Hoorn, S.; Rodgers, A.; International Society of Hypertension. Global burden of blood-pressure-related disease, 2001. Lancet 2008, 371, 1513–1518. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M.A.; Amann, M.; Anderson, H.R.; Andrews, K.G.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef] [PubMed]
- Stamler, J.; Stamler, R.; Neaton, J.D. Blood pressure, systolic and diastolic, and cardiovascular risks. US population data. Arch. Intern. Med. 1993, 153, 598–615. [Google Scholar] [CrossRef]
- Zhou, D.; Xi, B.; Zhao, M.; Wang, L.; Veeranki, S.P. Uncontrolled hypertension increases risk of all-cause and cardiovascular disease mortality in US adults: The NHANES III Linked Mortality Study. Sci. Rep. 2018, 8, 9418. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 Practice Guidelines for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. Blood Press. 2018, 27, 314–340. [Google Scholar] [CrossRef]
- Hupin, D.; Roche, F.; Gremeaux, V.; Chatard, J.C.; Oriol, M.; Gaspoz, J.M.; Barthélémy, J.-C.; Edouard, P. Even a low-dose of moderate-to-vigorous physical activity reduces mortality by 22% in adults aged ≥60 years: A systematic review and meta-analysis. Br. J. Sports Med. 2015, 49, 1262–1267. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, D.; Liu, Y.; Sun, X.; Han, C.; Wang, B.; Zhang, M. Dose-Response Association Between Physical Activity and Incident Hypertension: A Systematic Review and Meta-Analysis of Cohort Studies. Hypertension. 2017, 69, 813–820. [Google Scholar] [CrossRef]
- Carnethon, M.R.; Evans, N.S.; Church, T.S.; Lewis, C.E.; Schreiner, P.J.; Jacobs, D.R., Jr.; Sidney, S. Joint associations of physical activity and aerobic fitness on the development of incident hypertension: Coronary artery risk development in young adults. Hypertension 2010, 56, 49–55. [Google Scholar] [CrossRef]
- Holmlund, T.; Ekblom, B.; Borjesson, M.; Andersson, G.; Wallin, P.; Ekblom-Bak, E. Association between change in cardiorespiratory fitness and incident hypertension in Swedish adults. Eur. J. Prev. Cardiol. 2021, 28, 1515–1522. [Google Scholar] [CrossRef] [PubMed]
- Naci, H.; Ioannidis, J.P. Comparative effectiveness of exercise and drug interventions on mortality outcomes: Metaepidemiological study. Br. J. Sports Med. 2015, 49, 1414–1422. [Google Scholar] [CrossRef] [PubMed]
- Thompson, W.R.; Sallis, R.; Joy, E.; Jaworski, C.A.; Stuhr, R.M.; Trilk, J.L. Exercise Is Medicine. Am. J. Lifestyle Med. 2020, 14, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Jabbarzadeh Ganjeh, B.; Zeraattalab-Motlagh, S.; Jayedi, A.; Daneshvar, M.; Gohari, Z.; Norouziasl, R.; Ghaemi, S.; Selk-Ghaffari, M.; Moghadam, N.; Kordi, R.; et al. Effects of aerobic exercise on blood pressure in patients with hypertension: A systematic review and dose-response meta-analysis of randomized trials. Hypertens. Res. 2024, 47, 385–398. [Google Scholar] [CrossRef]
- Fisher, J.P.; Ogoh, S.; Young, C.N.; Raven, P.B.; Fadel, P.J. Regulation of middle cerebral artery blood velocity during dynamic exercise in humans: Influence of aging. J. Appl. Physiol. 2008, 105, 266–273. [Google Scholar] [CrossRef]
- Mizuno, M.; Siddique, K.; Baum, M.; Smith, S.A. Prenatal programming of hypertension induces sympathetic overactivity in response to physical stress. Hypertension 2013, 61, 180–186. [Google Scholar] [CrossRef]
- Kokkinos, P.F.; Papademetriou, V. Exercise and hypertension. Coron. Artery Dis. 2000, 11, 99–102. [Google Scholar] [CrossRef]
- Lauer, M.S.; Levy, D.; Anderson, K.M.; Plehn, J.F. Is there a relationship between exercise systolic blood pressure response and left ventricular mass? The Framingham Heart Study. Ann. Intern. Med. 1992, 116, 203–210. [Google Scholar] [CrossRef]
- Mundal, R.; Kjeldsen, S.E.; Sandvik, L.; Erikssen, G.; Thaulow, E.; Erikssen, J. Exercise blood pressure predicts cardiovascular mortality in middle-aged men. Hypertension 1994, 24, 56–62. [Google Scholar] [CrossRef]
- Schultz, M.G.; Otahal, P.; Picone, D.S.; Sharman, J.E. Clinical Relevance of Exaggerated Exercise Blood Pressure. J. Am. Coll. Cardiol. 2015, 66, 1843–1845. [Google Scholar] [CrossRef]
- Washio, T.; Suzuki, K.; Saito, S.; Watanabe, H.; Ando, S.; Brothers, R.M.; Ogoh, S. Effects of acute interval handgrip exercise on cognitive performance. Physiol. Behav. 2021, 232, 113327. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Pitti, J.; Herceg-Cavrak, V.; Wojcik, M.; Radovanovic, D.; Brzezinski, M.; Grabitz, C.; Wühl, E.; Drożdż, D.; Melk, A. Blood pressure response to exercise in children and adolescents. Front. Cardiovasc. Med. 2022, 9, 1004508. [Google Scholar] [CrossRef] [PubMed]
- Palatini, P. Exaggerated blood pressure response to exercise: Pathophysiologic mechanisms and clinical relevance. J. Sports Med. Phys. Fit. 1998, 38, 1–9. [Google Scholar]
- Daida, H.; Allison, T.G.; Squires, R.W.; Miller, T.D.; Gau, G.T. Peak exercise blood pressure stratified by age and gender in apparently healthy subjects. Mayo Clin. Proc. 1996, 71, 445–452. [Google Scholar] [CrossRef]
- Fletcher, G.F.; Ades, P.A.; Kligfield, P.; Arena, R.; Balady, G.J.; Bittner, V.A.; Williams, M.A. Exercise standards for testing and training: A scientific statement from the American Heart Association. Circulation 2013, 128, 873–934. [Google Scholar] [CrossRef]
- Gibbons, R.J.; Balady, G.J.; Bricker, J.T.; Chaitman, B.R.; Fletcher, G.F.; Froelicher, V.F. ACC/AHA 2002 guideline update for exercise testing: Summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). J. Am. Coll. Cardiol. 2002, 40, 1531–1540. [Google Scholar] [CrossRef]
- Schultz, M.G.; Sharman, J.E. Exercise Hypertension. Pulse 2014, 1, 161–176. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Hunter, S.K.; Angadi, S.S.; Bhargava, A.; Harper, J.; Hirschberg, A.L.; Levine, B.D.; Moreau, K.L.; Nokoff, N.J.; Stachenfeld, N.S.; Bermon, S. The Biological Basis of Sex Differences in Athletic Performance: Consensus Statement for the American College of Sports Medicine. Med. Sci. Sports Exerc. 2023, 55, 2328–2360. [Google Scholar] [CrossRef]
- Schultz, M.G.; Hare, J.L.; Marwick, T.H.; Stowasser, M.; Sharman, J.E. Masked hypertension is “unmasked” by low-intensity exercise blood pressure. Blood Press. 2011, 20, 284–289. [Google Scholar] [CrossRef]
- Matthews, C.E.; Pate, R.R.; Jackson, K.L.; Ward, D.S.; Macera, C.A.; Kohl, H.W.; Blair, S.N. Exaggerated blood pressure response to dynamic exercise and risk of future hypertension. J. Clin. Epidemiol. 1998, 51, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Miyai, N.; Arita, M.; Miyashita, K.; Morioka, I.; Shiraishi, T.; Nishio, I. Blood pressure response to heart rate during exercise test and risk of future hypertension. Hypertension 2002, 39, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Odahara, T.; Irokawa, M.; Karasawa, H.; Matsuda, S. Detection of exaggerated blood pressure response using laboratory of physical science protocol and risk of future hypertension. J. Occup. Health 2010, 52, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Zafrir, B.; Aker, A.; Asaf, Y.; Saliba, W. Blood pressure response during treadmill exercise testing and the risk for future cardiovascular events and new-onset hypertension. J. Hypertens. 2022, 40, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Benbassat, J.; Froom, P. Blood pressure response to exercise as a predictor of hypertension. Arch. Intern. Med. 1986, 146, 2053–2055. [Google Scholar] [CrossRef]
- Chaney, R.H.; Eyman, R.K. Blood pressure at rest and during maximal dynamic and isometric exercise as predictors of systemic hypertension. Am. J. Cardiol. 1988, 62, 1058–1061. [Google Scholar] [CrossRef]
- Sparrow, D.; Rosner, B.; Vokonas, P.S.; Weiss, S.T. Relation of blood pressure measured in several positions to the subsequent development of systemic hypertension. The Normative Aging Study. Am. J. Cardiol. 1986, 57, 218–221. [Google Scholar]
- Chaix, R.L.; Dimitriu, V.M.; Wagniart, P.R.; Safar, M.E. A simple exercise test in borderline and sustained essential hypertension. Int. J. Cardiol. 1982, 1, 371–382. [Google Scholar] [CrossRef]
- Davidoff, R.; Schamroth, C.L.; Goldman, A.P.; Diamond, T.H.; Cilliers, A.J.; Myburgh, D.P. Postexercise blood pressure as a predictor of hypertension. Aviat. Space Environ. Med. 1982, 53, 591–594. [Google Scholar]
- Svardsudd, K.; Wedel, H.; Wilhelmsen, L. Factors associated with the initial blood pressure level and with the subsequent blood pressure increase in a longitudinal population study. The study of men born in 1913. Eur. Heart J. 1980, 1, 345–354. [Google Scholar] [CrossRef]
- Wilson, N.V.; Meyer, B.M. Early prediction of hypertension using exercise blood pressure. Prev. Med. 1981, 10, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Dlin, R.A.; Hanne, N.; Silverberg, D.S.; Bar-Or, O. Follow-up of normotensive men with exaggerated blood pressure response to exercise. Am. Heart J. 1983, 106, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Trimarchi, G.; Pizzino, F.; Paradossi, U.; Gueli, I.A.; Palazzini, M.; Gentile, P.; Di Spigno, F.; Ammirati, E.; Garascia, A.; Tedeschi, A.; et al. Charting the Unseen: How Non-Invasive Imaging Could Redefine Cardiovascular Prevention. J. Cardiovasc. Dev. Dis. 2024, 11, 245. [Google Scholar] [CrossRef] [PubMed]
- Greaney, J.L.; Matthews, E.L.; Wenner, M.M. Sympathetic reactivity in young women with a family history of hypertension. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H816–H822. [Google Scholar] [CrossRef]
- Oh, M.S.; Cho, S.J.; Sung, J.; Hong, K.P. Higher blood pressure during light exercise is associated with increased left ventricular mass index in normotensive subjects. Hypertens. Res. 2018, 41, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Schultz, M.; Park, C.; Sharman, J.; Fraser, A.; Howe, L.; Lawlor, D.; Chaturvedi, N.; Smith, G.D.; Hughes, A. Exaggerated Exercise Blood Pressure Is Associated with Higher Left Ventricular Mass in Adolescence. The Avon Longitudinal Study of Parents and Children. J. Hypertens. 2016, 34 (Suppl. 1), e55. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, L.T.; Schieken, R.M.; Clarke, W.R.; Lauer, R.M. Left ventricular mass and exercise responses predict future blood pressure. The Muscatine Study. Hypertension 1988, 12, 206–213. [Google Scholar] [CrossRef]
- Wuttichaipradit, C.; Yodwut, C.; Sukhum, P.; Hengrussamee, K.; Treesong, M.; Thiangtham, S.; Samut, B.; Tunhasiriwet, A.; Yingchoncharoen, T. CAVI (Cardio-Ankle Vascular Index) as an independent predictor of hypertensive response to exercise. BMC Cardiovasc. Disord. 2024, 24, 165. [Google Scholar] [CrossRef]
- Tsioufis, C.; Kasiakogias, A.; Tsiachris, D.; Kordalis, A.; Thomopoulos, C.; Giakoumis, M.; Bounas, P.; Pittaras, A.; Michaelides, A.; Stefanadis, C. Metabolic syndrome and exaggerated blood pressure response to exercise in newly diagnosed hypertensive patients. Eur. J. Prev. Cardiol. 2012, 19, 467–473. [Google Scholar] [CrossRef]
- Kokkinos, P.F.; Andreas, P.E.; Coutoulakis, E.; Colleran, J.A.; Narayan, P.; Dotson, C.O.; Choucair, W.; Farmer, C.; Fernhall, B. Determinants of exercise blood pressure response in normotensive and hypertensive women: Role of cardiorespiratory fitness. J. Cardiopulm. Rehabil. 2002, 22, 178–183. [Google Scholar] [CrossRef]
- Pescatello, L.S.; Franklin, B.A.; Fagard, R.; Farquhar, W.B.; Kelley, G.A.; Ray, C.A. American College of Sports Medicine position stand. Exercise and hypertension. Med. Sci. Sports Exerc. 2004, 36, 533–553. [Google Scholar] [CrossRef] [PubMed]
- Cox, K.L.; Puddey, I.B.; Morton, A.R.; Burke, V.; Beilin, L.J.; McAleer, M. Exercise and weight control in sedentary overweight men: Effects on clinic and ambulatory blood pressure. J. Hypertens. 1996, 14, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Schultz, M.G.; Hordern, M.D.; Leano, R.; Coombes, J.S.; Marwick, T.H.; Sharman, J.E. Lifestyle change diminishes a hypertensive response to exercise in type 2 diabetes. Med. Sci. Sports Exerc. 2011, 43, 764–769. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, R.; Schmied, C.; Niederseer, D.; Guazzi, M. Cardiopulmonary Exercise Test Parameters in Athletic Population: A Review. J. Clin. Med. 2021, 10, 5073. [Google Scholar] [CrossRef]
- Pesova, P.; Jiravska Godula, B.; Jiravsky, O.; Jelinek, L.; Sovova, M.; Moravcova, K.; Ozana, J.; Gajdusek, L.; Miklik, R.; Sknouril, L.; et al. Exercise-Induced Blood Pressure Dynamics: Insights from the General Population and the Athletic Cohort. J. Cardiovasc. Dev. Dis. 2023, 10, 480. [Google Scholar] [CrossRef]
- Carlen, A.; Eklund, G.; Andersson, A.; Carlhall, C.J.; Ekstrom, M.; Hedman, K. Systolic Blood Pressure Response to Exercise in Endurance Athletes in Relation to Oxygen Uptake, Work Rate and Normative Values. J. Cardiovasc. Dev. Dis. 2022, 9, 227. [Google Scholar] [CrossRef]
- Caselli, S.; Serdoz, A.; Mango, F.; Lemme, E.; Vaquer Segui, A.; Milan, A.; Jost, C.A.; Schmied, C.; Spataro, A.; Pelliccia, A. High blood pressure response to exercise predicts future development of hypertension in young athletes. Eur. Heart J. 2019, 40, 62–68. [Google Scholar] [CrossRef]
- Benito, B.; Gay-Jordi, G.; Serrano-Mollar, A.; Guasch, E.; Shi, Y.; Tardif, J.C.; Brugada, J.; Nattel, S.; Mont, L. Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training. Circulation 2011, 123, 13–22. [Google Scholar] [CrossRef]
- Nattel, S.; Burstein, B.; Dobrev, D. Atrial remodeling and atrial fibrillation: Mechanisms and implications. Circ. Arrhythm. Electrophysiol. 2008, 1, 62–73. [Google Scholar] [CrossRef]
- Abdulla, J.; Nielsen, J.R. Is the risk of atrial fibrillation higher in athletes than in the general population? A systematic review and meta-analysis. Europace 2009, 11, 1156–1159. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Kardara, D.; Anastasakis, A.; Baou, K.; Terentes-Printzios, D.; Tousoulis, D.; Stefanadis, C. Arterial stiffness and wave reflections in marathon runners. Am. J. Hypertens. 2010, 23, 974–979. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, M. Atrial fibrillation in endurance athletes. Eur. J. Prev. Cardiol. 2014, 21, 1040–1048. [Google Scholar] [CrossRef] [PubMed]
- Caselli, S.; Vaquer Segui, A.; Quattrini, F.; Di Gacinto, B.; Milan, A.; Assorgi, R.; Verdile, L.; Spataro, A.; Pelliccia, A. Upper normal values of blood pressure response to exercise in Olympic athletes. Am. Heart J. 2016, 177, 120–128. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunimatsu, N.; Tsukamoto, H.; Ogoh, S. Exaggerated Blood Pressure Response to Exercise Is a Risk of Future Hypertension Even in Healthy, Normotensive Young Individuals—Potential Preventive Strategies for This Phenomenon? J. Clin. Med. 2024, 13, 5975. https://doi.org/10.3390/jcm13195975
Kunimatsu N, Tsukamoto H, Ogoh S. Exaggerated Blood Pressure Response to Exercise Is a Risk of Future Hypertension Even in Healthy, Normotensive Young Individuals—Potential Preventive Strategies for This Phenomenon? Journal of Clinical Medicine. 2024; 13(19):5975. https://doi.org/10.3390/jcm13195975
Chicago/Turabian StyleKunimatsu, Narumi, Hayato Tsukamoto, and Shigehiko Ogoh. 2024. "Exaggerated Blood Pressure Response to Exercise Is a Risk of Future Hypertension Even in Healthy, Normotensive Young Individuals—Potential Preventive Strategies for This Phenomenon?" Journal of Clinical Medicine 13, no. 19: 5975. https://doi.org/10.3390/jcm13195975
APA StyleKunimatsu, N., Tsukamoto, H., & Ogoh, S. (2024). Exaggerated Blood Pressure Response to Exercise Is a Risk of Future Hypertension Even in Healthy, Normotensive Young Individuals—Potential Preventive Strategies for This Phenomenon? Journal of Clinical Medicine, 13(19), 5975. https://doi.org/10.3390/jcm13195975