Myocardial Mechanics and Valvular and Vascular Abnormalities in Cardiac Amyloidosis
Abstract
:1. Cardiac Amyloidosis
2. Cardiovascular Imaging and Criteria
- Characteristic findings (≥2 of a, b, and c have to be present):
- Grade 2 ≤ diastolic dysfunction;
- Decreased tissue Doppler s’, e’, and a’ wave velocities (<5 cm/s);
- Reduced global LV-LS (<−15%).
- Multiparametric echocardiographic score ≥ 8 points:
- Relative LV wall thickness (interventricular septum + posterior wall)/LV end-diastolic diameter > 0.6 (3 points);
- Doppler E/e’ > 11 (1 point);
- Tricuspid annular plane systolic excursion ≤ 19 mm (2 points);
- Global LV-LS absolute value ≤ −13% (1 point);
- Systolic LS apex-to-base ratio > 2.9 (3 points).
- Diffuse subendocardial or transmural LGE;
- Abnormal kinetics of gadolinium;
- ECV ≥ 0.4% (strongly supportive, but not essential/diagnostic).
3. The Left Heart and the Aorta
3.1. Left Ventricle
3.1.1. LV Structure, Volumes, Function, and Strains
3.1.2. Prognostic Significance of LV Parameters
3.1.3. The Role of Treatment on LV Parameters
3.1.4. LV Rotational Mechanics
3.2. Left Atrium
3.3. Mitral Valve
3.4. Aortic Valve
3.5. Aorta
4. The Right Heart
4.1. Right Ventricle
4.2. Right Atrium
4.3. Tricuspid Valve
5. Pathophysiological Background
6. Clinical Implications
7. Conclusions
Funding
Conflicts of Interest
References
- Garcia-Pavia, P.; Rapezzi, C.; Adler, Y.; Arad, M.; Basso, C.; Brucato, A.; Burazor, I.; Caforio, A.L.P.; Damy, T.; Eriksson, U.; et al. Diagnosis and treatment of cardiac amyloidosis: A position statement of the ESC Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2021, 42, 1554–1568. [Google Scholar] [CrossRef] [PubMed]
- Sipe, J.D.; Benson, M.D.; Buxbaum, J.N.; Ikeda, S.I.; Merlini, G.; Saraiva, M.J.M.; Westermark, P. Nomenclature 2014: Amyloid fibril proteins and clinical classification of the amyloidosis. Amyloid 2014, 21, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Esplin, B.L.; Gertz, M.A. Current trends in diagnosis and management of cardiac amyloidosis. Curr. Probl. Cardiol. 2013, 38, 53–96. [Google Scholar] [CrossRef] [PubMed]
- Porcari, A.; Bussani, R.; Merlo, M.; Varrà, G.G.; Pagura, L.; Rozze, D.; Sinagra, G. Incidence and Characterization of Concealed Cardiac Amyloidosis Among Unselected Elderly Patients Undergoing Post-mortem Examination. Front. Cardiovasc. Med. 2021, 8, 749523. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, O.K.; Ruberg, F.L. Cardiac amyloidosis: An update on pathophysiology, diagnosis, and treatment. Trends Cardiovasc. Med. 2018, 28, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Gilstrap, L.G.; Dominici, F.; Wang, Y.; El-Sady, M.S.; Singh, A.; Di Carli, M.F.; Falk, R.H.; Dorbala, S. Epidemiology of Cardiac Amyloidosis-Associated Heart Failure Hospitalizations Among Fee-for-Service Medicare Beneficiaries in the United States. Circ. Heart Fail. 2019, 12, e005407. [Google Scholar] [CrossRef] [PubMed]
- Longhi, S.; Quarta, C.C.; Milandri, A.; Lorenzini, M.; Gagliardi, C.; Manuzzi, L.; Bacchi-Reggiani, M.L.; Leone, O.; Ferlini, A.; Russo, A.; et al. Atrial fibrillation in amyloidotic cardiomyopathy: Prevalence, incidence, risk factors and prognostic role. Amyloid 2015, 22, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, V.; Agrawal, V.; Khulbe, Y.; Hanif, M.; Huang, H.; Hameed, M.; Shrestha, A.B.; Perone, F.; Parikh, C.; Gomez, S.I.; et al. Cardiac amyloidosis and aortic stenosis: A state-of-the-art review. Eur. Heart J. Open 2023, 3, oead106. [Google Scholar] [CrossRef] [PubMed]
- Dobner, S.; Pilgrim, T.; Hagemeyer, D.; Heg, D.; Lanz, J.; Reusser, N.; Gräni, C.; Afshar-Oromieh, A.; Rominger, A.; Langhammer, B.; et al. Amyloid Transthyretin Cardiomyopathy in Elderly Patients With Aortic Stenosis Undergoing Transcatheter Aortic Valve Implantation. J. Am. Heart Assoc. 2023, 12, e030271. [Google Scholar] [CrossRef] [PubMed]
- Ammar, K.A.; Paterick, T.E.; Khandheria, B.K.; Jan, M.F.; Kramer, C.; Umland, M.M.; Tercius, A.J.; Baratta, L.; Tajik, A.J. Myocardial mechanics: Understanding and applying three-dimensional speckle tracking echocardiography in clinical practice. Echocardiography 2012, 97, 861–872. [Google Scholar] [CrossRef]
- Urbano-Moral, J.A.; Patel, A.R.; Maron, M.S.; Arias-Godinez, J.A.; Pandian, N.G. Three-dimensional speckle-tracking echocardio graphy: Methodological aspects and clinical potential. Echocardiography 2012, 29, 997–1010. [Google Scholar] [CrossRef] [PubMed]
- Muraru, D.; Niero, A.; Rodriguez-Zanella, H.; Cherata, D.; Badano, L. Three-dimensional speckle-tracking echocardiography: Benefits and limitations of integrating myocardial mechanics with three-dimensional imaging. Cardiovasc. Diagn. Ther. 2018, 8, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Lin, Y.; Ji, M.; Wu, W.; Li, H.; Qian, M.; Zhang, L.; Xie, M.; Li, Y. Clinical Utility of Three-Dimensional Speckle-Tracking Echocardiography in Heart Failure. J. Clin. Med. 2022, 11, 6307. [Google Scholar] [CrossRef] [PubMed]
- Kormányos, Á.; Domsik, P.; Kalapos, A.; Marton, I.; Földeák, D.; Modok, S.; Gyenes, N.; Borbényi, Z.; Nemes, A. Left ventricular deformation in cardiac light-chain amyloidosis and hypereosinophilic syndrome. Results from the MAGYAR-Path Study. Orv. Hetil. 2020, 161, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Földeák, D.; Kormányos, Á.; Nemes, A. Prognostic role of three-dimensional speckle-tracking echocardiography-derived left ventricular global longitudinal strain in cardiac amyloidosis: Insights from the MAGYAR-Path Study. J. Clin. Ultrasound 2023, 51, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Nemes, A.; Földeák, D.; Domsik, P.; Kalapos, A.; Sepp, R.; Borbényi, Z.; Forster, T. Different patterns of left ventricular rotational mechanics in cardiac amyloidosis-results from the three-dimensional speckle-tracking echocardiographic MAGYAR-Path Study. Quant. Imaging Med. Surg. 2015, 5, 853–857. [Google Scholar] [PubMed]
- Földeák, D.; Kormányos, Á.; Domsik, P.; Kalapos, A.; Piros, G.Á.; Ambrus, N.; Ajtay, Z.; Sepp, R.; Borbényi, Z.; Forster, T.; et al. Left atrial dysfunction in light-chain cardiac amyloidosis and hypertrophic cardiomyopathy—A comparative three-dimensional speckle-tracking echocardiographic analysis from the MAGYAR-Path Study. Rev. Port. Cardiol. 2017, 36, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Nemes, A.; Földeák, D.; Kormányos, Á.; Domsik, P.; Kalapos, A.; Borbényi, Z.; Forster, T. Cardiac Amyloidosis Associated with Enlargement and Functional Impairment of the Mitral Annulus: Insights from the Three-Dimensional Speckle Tracking Echocardiographic MAGYAR-Path Study. J. Heart Valve Dis. 2017, 26, 304–308. [Google Scholar] [PubMed]
- Nemes, A.; Földeák, D.; Domsik, P.; Kalapos, A.; Kormányos, Á.; Borbényi, Z.; Forster, T. Right Atrial Deformation Analysis in Cardiac Amyloidosis—Results from the Three-Dimensional Speckle-Tracking Echocardiographic MAGYAR-Path Study. Arq. Bras. Cardiol. 2018, 111, 384–391. [Google Scholar] [CrossRef]
- Nemes, A.; Rácz, G.; Kormányos, Á.; Földeák, D.; Borbényi, Z. The tricuspid annulus in amyloidosis with cardiac involvement: Detailed analysis from the three-dimensional speckle tracking echocardiographic MAGYAR-Path Study. Int. J. Cardiol. Heart Vasc. 2022, 40, 101026. [Google Scholar] [CrossRef]
- Vergaro, G.; Aimo, A.; Rapezzi, C.; Castiglione, V.; Fabiani, I.; Pucci, A.; Buda, G.; Passino, C.; Lupón, J.; Bayes-Genis, A.; et al. Atrial amyloidosis: Mechanisms and clinical manifestations. Eur. J. Heart Fail. 2022, 24, 2019–2028. [Google Scholar] [CrossRef]
- Mohanty, S.; Torlapati, P.G.; La Fazia, V.M.; Kurt, M.; Gianni, C.; MacDonald, B.; Mayedo, A.; Allison, J.; Bassiouny, M.; Gallinghouse, G.J.; et al. Best anticoagulation strategy with and without appendage occlusion for stroke-prophylaxis in postablation atrial fibrillation patients with cardiac amyloidosis. J. Cardiovasc. Electrophysiol. 2024, 35, 1422–1428. [Google Scholar] [CrossRef]
- Bazoukis, G.; Saplaouras, A.; Efthymiou, P.; Yiannikourides, A.; Liu, T.; Sfairopoulos, D.; Korantzopoulos, P.; Varrias, D.; Letsas, K.P.; Thomopoulos, C.; et al. Atrial fibrillation in the setting of cardiac amyloidosis—A review of the literature. J. Cardiol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, S. Left ventricular rotation and twist: Why should we learn? J. Cardiovasc. Ultrasound 2011, 19, 1–6. [Google Scholar] [CrossRef]
- Sengupta, P.P.; Tajik, A.J.; Chandrasekaran, K.; Khandheria, B.K. Twist mechanics of the left ventricle: Principles and application. JACC Cardiovasc. Imaging 2008, 1, 366–376. [Google Scholar] [CrossRef]
- Melero Polo, J.; Roteta Unceta-Barrenechea, A.; Revilla Martí, P.; Pérez-Palacios, R.; Gracia Gutiérrez, A.; Bueno Juana, E.; Andrés Gracia, A.; Atienza Ayala, S.; Aibar Arregui, M.Á. Echocardiographic markers of cardiac amyloidosis in patients with heart failure and left ventricular hypertrophy. Cardiol. J. 2023, 30, 266–275. [Google Scholar] [CrossRef]
- Nagy, D.; Révész, K.; Peskó, G.; Varga, G.; Horváth, L.; Farkas, P.; Tóth, A.D.; Sepp, R.; Vágó, H.; Nagy, A.I.; et al. Cardiac Amyloidosis with Normal Wall Thickness: Prevalence, Clinical Characteristics and Outcome in a Retrospective Analysis. Biomedicines 2022, 10, 1765. [Google Scholar] [CrossRef]
- Pradel, S.; Magne, J.; Jaccard, A.; Fadel, B.M.; Boulogne, C.; Salemi, V.M.C.; Damy, T.; Aboyans, V.; Mohty, D. Left ventricular assessment in patients with systemic light chain amyloidosis: A 3-dimensional speckle tracking transthoracic echocardiographic study. Int. J. Cardiovasc. Imaging 2019, 35, 845–854. [Google Scholar] [CrossRef]
- Huang, H.; Jing, X.C.; Hu, Z.X.; Chen, X.; Liu, X.Q. Early Impairment of Cardiac Function and Asynchronization of Systemic Amyloidosis with Preserved Ejection Fraction Using Two-Dimensional Speckle Tracking Echocardiography. Echocardiography 2015, 32, 1832–1840. [Google Scholar] [CrossRef]
- De Carli, G.; Mandoli, G.E.; Salvatici, C.; Biagioni, G.; Marallo, C.; Turchini, F.; Ghionzoli, N.; Melani, A.; Pastore, M.C.; Gozzetti, A.; et al. Speckle tracking echocardiography in plasma cell disorders: The role of advanced imaging in the early diagnosis of AL systemic cardiac amyloidosis. Int. J. Cardiol. 2024, 398, 131599. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, X.; Wang, J.; Mu, Y.; Liu, B.; Lv, W.; Wang, Y.; Liu, H.; Liu, H.; Zhi, G. Differentiation of light-chain cardiac amyloidosis from hypertrophic cardiomyopathy using myocardial mechanical parameters by velocity vector imaging echocardiography. Int. J. Cardiovasc. Imaging 2017, 33, 499–507. [Google Scholar] [CrossRef]
- Vitarelli, A.; Lai, S.; Petrucci, M.T.; Gaudio, C.; Capotosto, L.; Mangieri, E.; Ricci, S.; Germanó, G.; De Sio, S.; Truscelli, G.; et al. Biventricular assessment of light-chain amyloidosis using 3D speckle tracking echocardiography: Differentiation from other forms of myocardial hypertrophy. Int. J. Cardiol. 2018, 271, 371–377. [Google Scholar] [CrossRef]
- Koyama, J.; Minamisawa, M.; Sekijima, Y.; Ikeda, S.I.; Kozuka, A.; Ebisawa, S.; Miura, T.; Motoki, H.; Okada, A.; Izawa, A.; et al. Left ventricular deformation and torsion assessed by speckle-tracking echocardiography in patients with mutated transthyretin-associated cardiac amyloidosis and the effect of diflunisal on myocardial function. Int. J. Cardiol. Heart Vasc. 2015, 9, 1–10. [Google Scholar] [CrossRef]
- Ladefoged, B.T.; Dybro, A.; Dahl Pedersen, A.L.; Rasmussen, T.B.; Vase, H.Ø.; Clemmensen, T.S.; Gillmore, J.; Poulsen, S.H. Incidence and predictors of worsening heart failure in patients with wild-type transthyretin cardiac amyloidosis. ESC Heart Fail. 2022, 9, 2978–2987. [Google Scholar] [CrossRef]
- Lewis, S.; Huang, J.; Patel, N.; Folks, R.; Galt, J.; Cooke, C.D.; Zheng, Z.; Zhang, R.; Garcia, E.; Nye, J.; et al. Myocardial perfusion imaging-derived left ventricular strain: Regional abnormalities associated with transthyretin cardiac amyloidosis. Am. Heart J. Plus 2024, 40, 100377. [Google Scholar] [CrossRef]
- Hou, W.; Wang, Z.; Huang, J.; Fan, F.; Yang, F.; Qiu, L.; Zhao, K.; Qiu, J.; Yang, Y.; Ma, W.; et al. Early diagnostic and prognostic value of myocardial strain derived from cardiovascular magnetic resonance in patients with cardiac amyloidosis. Cardiovasc. Diagn. Ther. 2023, 13, 979–993. [Google Scholar] [CrossRef]
- Li, Z.; Yan, C.; Hu, G.X.; Zhao, R.; Jin, H.; Yun, H.; Wei, Z.; Pan, C.Z.; Shu, X.H.; Zeng, M.S. Layer-specific strain in patients with cardiac amyloidosis using tissue tracking MR. Front. Radiol. 2023, 3, 1115527. [Google Scholar] [CrossRef]
- Lehmonen, L.; Kaasalainen, T.; Atula, S.; Mustonen, T.; Holmström, M. Myocardial tissue characterization in patients with hereditary gelsolin (AGel) amyloidosis using novel cardiovascular magnetic resonance techniques. Int. J. Cardiovasc. Imaging 2019, 35, 351–358. [Google Scholar] [CrossRef]
- Huang, P.N.; Liu, Y.N.; Cheng, X.Q.; Liu, H.Y.; Zhang, J.; Li, L.; Sun, J.; Gao, Y.P.; Lu, R.R.; Gao, Y.P.; et al. Relative apical sparing obtained with speckle tracking echocardiography is not a sensitive parameter for diagnosing light-chain cardiac amyloidosis. Quant. Imaging Med. Surg. 2024, 14, 2357–2369. [Google Scholar] [CrossRef]
- Bhatti, S.; Vallurupalli, S.; Ambach, S.; Magier, A.; Watts, E.; Truong, V.; Hakeem, A.; Mazur, W. Myocardial strain pattern in patients with cardiac amyloidosis secondary to multiple myeloma: A cardiac MRI feature tracking study. Int. J. Cardiovasc. Imaging 2018, 34, 27–33. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, R.; Deng, W.; Li, Y.; An, S.; Qian, Y.; Liu, B.; Yu, Y.; Li, X. Left Atrial and Ventricular Strain Differentiates Cardiac Amyloidosis and Hypertensive Heart Disease: A Cardiac MR Feature Tracking Study. Acad. Radiol. 2023, 30, 2521–2532. [Google Scholar] [CrossRef]
- Cotella, J.; Randazzo, M.; Maurer, M.S.; Helmke, S.; Scherrer-Crosbie, M.; Soltani, M.; Goyal, A.; Zareba, K.; Cheng, R.; Kirkpatrick, J.N.; et al. Limitations of Apical Sparing Pattern in Cardiac Amyloidosis: A Multicenter Echocardiographic Study. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 754–761. [Google Scholar] [CrossRef]
- Di Lisi, D.; Brighina, F.; Manno, G.; Comparato, F.; Di Stefano, V.; Macaione, F.; Damerino, G.; Di Caccamo, L.; Cannizzo, N.; Ortello, A.; et al. Hereditary Transthyretin Amyloidosis: How to Differentiate Carriers and Patients Using Speckle-Tracking Echocardiography. Diagnostics 2023, 13, 3634. [Google Scholar] [CrossRef]
- de Gregorio, C.; Trimarchi, G.; Faro, D.C.; De Gaetano, F.; Campisi, M.; Losi, V.; Zito, C.; Tamburino, C.; Di Bella, G.; Monte, I.P. Myocardial Work Appraisal in Transthyretin Cardiac Amyloidosis and Nonobstructive Hypertrophic Cardiomyopathy. Am. J. Cardiol. 2023, 208, 173–179. [Google Scholar] [CrossRef]
- Ladefoged, B.; Pedersen, A.L.D.; Clemmensen, T.S.; Poulsen, S.H. Strain-derived myocardial work in wild-type transthyretin cardiac amyloidosis with aortic stenosis-diagnosis and prognosis. Echocardiography 2023, 40, 1079–1087. [Google Scholar] [CrossRef]
- Henein, M.Y.; Lindqvist, P. Myocardial Work Does Not Have Additional Diagnostic Value in the Assessment of ATTR Cardiac Amyloidosis. J. Clin. Med. 2021, 10, 4555. [Google Scholar] [CrossRef]
- Bernhard, B.; Leib, Z.; Dobner, S.; Demirel, C.; Caobelli, F.; Rominger, A.; Schütze, J.; Grogg, H.; Alwan, L.; Spano, G.; et al. Routine 4D Cardiac CT to Identify Concomitant Transthyretin Amyloid Cardiomyopathy in Older Adults with Severe Aortic Stenosis. Radiology 2023, 309, e230425. [Google Scholar] [CrossRef] [PubMed]
- Baccouche, H.; Maunz, M.; Beck, T.; Gaa, E.; Banzhaf, M.; Knayer, U.; Fogarassy, P.; Beyer, M. Differentiating cardiac amyloidosis and hypertrophic cardiomyopathy by use of three-dimensional speckle tracking echocardiography. Echocardiography 2012, 29, 668–677. [Google Scholar] [CrossRef]
- Gannon, M.P.; Sison, C.P.; Saba, S.G. Regional Analysis of Myocardial Strain to Wall Thickness Ratio in Cardiac Amyloidosis and Hypertrophic Cardiomyopathy. J. Thorac. Imaging 2024, 39, 255–264. [Google Scholar] [CrossRef]
- Wang, F.; Deng, Y.; Li, S.; Cheng, Q.; Wang, Q.; Yu, D.; Wang, Q. CMR left ventricular strains beyond global longitudinal strain in differentiating light-chain cardiac amyloidosis from hypertrophic cardiomyopathy. Front. Cardiovasc. Med. 2023, 10, 1108408. [Google Scholar] [CrossRef]
- Yue, X.; Yang, L.; Wang, R.; Chan, Q.; Yang, Y.; Wu, X.; Ruan, X.; Zhang, Z.; Wei, Y.; Wang, F. The diagnostic value of multiparameter cardiovascular magnetic resonance for early detection of light-chain amyloidosis from hypertrophic cardiomyopathy patients. Front. Cardiovasc. Med. 2022, 9, 1017097. [Google Scholar] [CrossRef] [PubMed]
- Schiano-Lomoriello, V.; Galderisi, M.; Mele, D.; Esposito, R.; Cerciello, G.; Buonauro, A.; Della Pepa, R.; Picardi, M.; Catalano, L.; Trimarco, B.; et al. Longitudinal strain of left ventricular basal segments and E/e’ ratio differentiate primary cardiac amyloidosis at presentation from hypertensive hypertrophy: An automated function imaging study. Echocardiography 2016, 33, 1335–1343. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.Q.; Kakkad, V.; Bradway, D.P.; LeFevre, M.; Kisslo, J.; Khouri, M.G.; Trahey, G.E. Evaluation of Myocardial Stiffness in Cardiac Amyloidosis Using Acoustic Radiation Force Impulse and Natural Shear Wave Imaging. Ultrasound Med. Biol. 2023, 49, 1719–1727. [Google Scholar] [CrossRef] [PubMed]
- Petrescu, A.; Santos, P.; Orlowska, M.; Pedrosa, J.; Bézy, S.; Chakraborty, B.; Cvijic, M.; Dobrovie, M.; Delforge, M.; D’hooge, J.; et al. Velocities of Naturally Occurring Myocardial Shear Waves Increase With Age and in Cardiac Amyloidosis. JACC Cardiovasc. Imaging 2019, 12, 2389–2398. [Google Scholar] [CrossRef] [PubMed]
- Slostad, B.; Appadurai, V.; Narang, A.; Hale, S.; Lehrer, S.; Bavishi, A.; Kline, A.; Okwuosa, I.; Jankowski, M.; Weinberg, R.; et al. Novel echocardiographic pixel intensity quantification method for differentiating transthyretin cardiac amyloidosis from light chain cardiac amyloidosis and other phenocopies. Eur. Heart J. Cardiovasc. Imaging 2024, jeae095. [Google Scholar] [CrossRef]
- Lee Chuy, K.; Drill, E.; Yang, J.C.; Landau, H.; Hassoun, H.; Nahhas, O.; Chen, C.L.; Yu, A.F.; Steingart, R.M.; Liu, J.E. Incremental Value of Global Longitudinal Strain for Predicting Survival in Patients With Advanced AL Amyloidosis. JACC CardioOncol. 2020, 2, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Hu, K.; Herrmann, S.; Cikes, M.; Ertl, G.; Weidemann, F.; Störk, S.; Nordbeck, P. Value of tissue Doppler-derived Tei index and two-dimensional speckle tracking imaging derived longitudinal strain on predicting outcome of patients with light-chain cardiac amyloidosis. Int. J. Cardiovasc. Imaging 2017, 33, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Barros-Gomes, S.; Williams, B.; Nhola, L.F.; Grogan, M.; Maalouf, J.F.; Dispenzieri, A.; Pellikka, P.A.; Villarraga, H.R. Prognosis of Light Chain Amyloidosis With Preserved LVEF: Added Value of 2D Speckle-Tracking Echocardiography to the Current Prognostic Staging System. JACC Cardiovasc. Imaging 2017, 10, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Buss, S.J.; Emami, M.; Mereles, D.; Korosoglou, G.; Kristen, A.V.; Voss, A.; Schellberg, D.; Zugck, C.; Galuschky, C.; Giannitsis, E.; et al. Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis: Incremental value compared with clinical and biochemical markers. J. Am. Coll. Cardiol. 2012, 60, 1067–1076. [Google Scholar] [CrossRef]
- Hu, M.; Shen, Y.; Yu, H.; Song, Y.; Zheng, T.; Hong, D.; Gong, L. Prognostic value of cardiac magnetic resonance imaging feature tracking technology in patients with light chain amyloidosis. Clin. Radiol. 2024, 79, e239–e246. [Google Scholar] [CrossRef]
- Clemmensen, T.S.; Eiskjaer, H.; Ladefoged, B.; Mikkelsen, F.; Sorensen, J.; Granstam, S.O.; Rosengren, S.; Flachskampf, F.A. Prognostic implications of left ventricular myocardial work indices in cardiac amyloidosis. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 695–704. [Google Scholar] [CrossRef]
- Roger-Rollé, A.; Cariou, E.; Rguez, K.; Fournier, P.; Lavie-Badie, Y.; Blanchard, V.; Roncalli, J.; Galinier, M.; Carrié, D.; Lairez, O. Toulouse Amyloidosis Research Network collaborators. Can myocardial work indices contribute to the exploration of patients with cardiac amyloidosis? Open Heart 2020, 7, e001346. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Wu, Y.; Wu, B.; Yu, D.; Chu, Y.; Yu, F.; Han, D.; Ye, T.; Tao, X.; Yang, J.; et al. Left ventricular myocardial work index and short-term prognosis in patients with light-chain cardiac amyloidosis: A retrospective cohort study. Quant. Imaging Med. Surg. 2023, 13, 133–144. [Google Scholar] [CrossRef]
- Geers, J.; Luchian, M.L.; Motoc, A.; De Winter, J.; Roosens, B.; Bjerke, M.; Van Eeckhaut, A.; Wittens, M.M.J.; Demeester, S.; Forsyth, R.; et al. Prognostic value of left ventricular global constructive work in patients with cardiac amyloidosis. Int. J. Cardiovasc. Imaging 2023, 39, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Rettl, R.; Wollenweber, T.; Duca, F.; Binder, C.; Cherouny, B.; Dachs, T.M.; Camuz Ligios, L.; Schrutka, L.; Dalos, D.; Beitzke, D.; et al. Monitoring tafamidis treatment with quantitative SPECT/CT in transthyretin amyloid cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 2023, 24, 1019–1030. [Google Scholar] [CrossRef]
- Rettl, R.; Duca, F.; Binder, C.; Dachs, T.M.; Cherouny, B.; Camuz Ligios, L.; Mann, C.; Schrutka, L.; Dalos, D.; Charwat-Resl, S.; et al. Impact of tafamidis on myocardial strain in transthyretin amyloid cardiomyopathy. Amyloid 2023, 30, 127–137. [Google Scholar] [CrossRef]
- Giblin, G.T.; Cuddy, S.A.M.; González-López, E.; Sewell, A.; Murphy, A.; Dorbala, S.; Falk, R.H. Effect of tafamidis on global longitudinal strain and myocardial work in transthyretin cardiac amyloidosis. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 1029–1039. [Google Scholar] [CrossRef]
- Wu, Y.A.; Yu, A.L.; Cheng, M.F.; Lin, L.C.; Lee, M.J.; Chou, C.H.; Shun, C.T.; Hsueh, H.W.; Juang, J.J.; Tseng, P.H.; et al. Tafamidis improves myocardial longitudinal strain in A97S transthyretin cardiac amyloidosis. Ther. Adv. Chronic Dis. 2024, 15, 20406223231222828. [Google Scholar] [CrossRef]
- Shah, S.J.; Fine, N.; Garcia-Pavia, P.; Klein, A.L.; Fernandes, F.; Weissman, N.J.; Maurer, M.S.; Boman, K.; Gundapaneni, B.; Sultan, M.B.; et al. Effect of Tafamidis on Cardiac Function in Patients With Transthyretin Amyloid Cardiomyopathy: A Post Hoc Analysis of the ATTR-ACT Randomized Clinical Trial. JAMA Cardiol. 2024, 9, 25–34. [Google Scholar] [CrossRef]
- Nishizawa, R.H.; Kawano, H.; Yoshimuta, T.; Eguchi, C.; Kojima, S.; Minami, T.; Sato, D.; Eguchi, M.; Okano, S.; Ikeda, S.; et al. Effects of tafamidis on the left ventricular and left atrial strain in patients with wild-type transthyretin cardiac amyloidosis. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 678–686. [Google Scholar] [CrossRef]
- Briasoulis, A.; Bampatsias, D.; Petropoulos, I.; Rempakos, A.; Patras, R.; Theodorakakou, F.; Makris, N.; Dimopoulos, M.A.; Stamatelopoulos, K.; Kastritis, E. Left Ventricular Myocardial Work Improves in Response to Treatment and is Associated with Survival Among Patients with Light-Chain Cardiac Amyloidosis. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Bak, M.; Kim, D.; Choi, J.O.; Kim, K.; Kim, S.J.; Jeon, E.S. Prognostic Implication of Longitudinal Changes of Left Ventricular Global Strain After Chemotherapy in Cardiac Light Chain Amyloidosis. Front. Cardiovasc. Med. 2022, 9, 904878. [Google Scholar]
- Porciani, M.C.; Capelli, F.; Perfetto, F.; Ciaccheri, M.; Castelli, G.; Ricceri, I.; Chiostri, M.; Franco, B.; Padeletti, L. Rotational mechanics of the left ventricle in AL amyloidosis. Echocardiography 2010, 27, 1061–1068. [Google Scholar] [CrossRef]
- Nucifora, G.; Muser, D.; Mrocutti, G.; Piccoli, G.; Zanuttini, D.; Gianfagna, P.; Proclemer, A. Disease-specific differences of left ventricular rotational mechanics between cardiac amyloidosis and hypertrophic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 2014, 307, H680–H688. [Google Scholar] [CrossRef]
- Capelli, F.; Porciani, M.C.; Bergesio, F.; Perfetto, F.; de Antoniis, F.; Cania, A.; Tronconi, F.; Ricceri, I.; Padeletti, L. Characteristics of left ventricular rotational mechanics in patients with systemic amyloidosis, systemic hypertension and normal left ventricular mass. Clin. Physiol. Funct. Imaging 2011, 31, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Mora, V.; Roldán, I.; Romero, E.; Saad, A.; Gil, C.; Contreras, M.B.; Trainini, J.; Escribano, P.; Gimeno, P.; Arbucci, R.; et al. Myocardial Wringing and Rigid Rotation in Cardiac Amyloidosis. CJC Open 2022, 5, 128–135. [Google Scholar] [CrossRef]
- Mora, V.; Roldán, I.; Bertolín, J.; Faga, V.; Pérez-Gil, M.D.M.; Saad, A.; Serrats, R.; Callizo, R.; Arbucci, R.; Lowenstein, J. Influence of Ventricular Wringing on the Preservation of Left Ventricular Ejection Fraction in Cardiac Amyloidosis. J. Am. Soc. Echocardiogr. 2021, 34, 767–774. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef]
- Hoit, B.D. Left atrial size and function: Role in prognosis. J. Am. Coll. Cardiol. 2014, 63, 493–505. [Google Scholar] [CrossRef]
- Badano, L.P.; Nour, A.; Muraru, D. Left atrium as a dynamic three-dimensional entity: Implications for echocardiographic assessment. Rev. Esp. Cardiol. 2013, 66, 1–4. [Google Scholar] [CrossRef]
- Nagueh, S.F. Left Atrial Function in Cardiac Amyloidosis. JACC Cardiovasc. Imaging 2023, 16, 1384–1386. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, G.; Capelli, F.; Licordari, R.; Piaggni, P.; Campisi, M.; Bellavia, D.; Minutoli, F.; Gentile, L.; Russo, M.; de Gregorio, C.; et al. Prevalence and diagnostic value of extra-left ventricle echocardiographic findings in transthyretin-related cardiac amyloidosis. Amyloid 2022, 29, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Yang, Z.; Tang, D.; Luo, Y.; Xiang, C.; Zhou, X.; Huang, L.; Xia, L. The correlation of left atrial dysfunction and amyloid load in patients with immunoglobulin light-chain cardiac amyloidosis: A 3T cardiac magnetic resonance study. Br. J. Radiol. 2023, 96, 20220985. [Google Scholar] [CrossRef]
- Versteylen, M.O.; Brons, M.; Teske, A.J.; Oerlemans, M.I.F.J. Restrictive atrial dysfunction in cardiac amyloidosis: Differences between immunoglobulin light chain and transthyretin cardiac amyloidosis patients. Biomedicines 2022, 10, 1768. [Google Scholar] [CrossRef] [PubMed]
- Aimo, A.; Fabiani, I.; Giannoni, A.; Mandoli, G.E.; Pastore, M.C.; Vergaro, G.; Spini, V.; Chubuchny, V.; Pasanisi, E.M.; Petersen, C.; et al. Multi-chamber speckle tracking imaging and diagnostic value of left atrial strain in cardiac amyloidosis. Eur. Heart J. Cardiovasc. Imaging 2022, 24, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Mattig, I.; Steudel, T.; Klingel, K.; Barzen, G.; Frumkin, D.; Spethmann, S.; Romero Dorta, E.; Stangl, K.; Heidecker, B.; Landmesser, U.; et al. Right heart and left atrial strain to differentiate cardiac amyloidosis and Fabry disease. Sci. Rep. 2024, 14, 2445. [Google Scholar] [CrossRef]
- Huntjens, P.R.; Zhang, K.W.; Soyama, Y.; Karmpalioti, M.; Lenihan, D.J.; Gorcsan, J., 3rd. Prognostic Utility of Echocardiographic Atrial and Ventricular Strain Imaging in Patients With Cardiac Amyloidosis. JACC Cardiovasc. Imaging 2021, 14, 1508–1519. [Google Scholar] [CrossRef] [PubMed]
- Koutroumpakis, E.; Niku, A.; Black, C.K.; Ali, A.; Sadaf, H.; Song, J.; Palaskas, N.; Iliescu, C.; Durand, J.B.; Yusuf, S.W.; et al. Evaluation of contemporary echocardiographic and histomorphology parameters in predicting mortality in patients with endomyocardial biopsy-proven cardiac AL amyloidosis. Front. Cardiovasc. Med. 2023, 9, 1073804. [Google Scholar] [CrossRef]
- Choi, Y.J.; Kim, D.; Rhee, T.M.; Lee, H.J.; Park, J.B.; Lee, S.P.; Chang, S.A.; Kim, Y.J.; Jeon, E.S.; Oh, J.K.; et al. Left atrial reservoir strain as a novel predictor of new-onset atrial fibrillation in light-chain-type cardiac amyloidosis. Eur. Heart J. Cardiovasc. Imaging 2023, 24, 751–758. [Google Scholar] [CrossRef]
- Henein, M.Y.; Suhr, O.B.; Arvidsson, S.; Pilebro, B.; Westermark, P.; Hörnsten, R.; Lindqvist, P. Reduced left atrial myocardial deformation irrespective of cavity size: A potential cause for atrial arrhythmia in hereditary transthyretin amyloidosis. Amyloid 2018, 25, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Dal-Bianco, J.P.; Levine, R.A. Anatomy of the mitral valve apparatus: Role of 2D and 3D echocardiography. Cardiol. Clin. 2013, 31, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Silbiger, J.J.; Bazaz, R. The anatomic substrate of mitral annular contraction. Int. J. Cardiol. 2020, 306, 158–161. [Google Scholar] [CrossRef] [PubMed]
- Mihaila, S.; Muraru, D.; Miglioranza, M.H.; Piasentini, E.; Peluso, D.; Cucchini, U.; Iliceto, S.; Vinereanu, D.; Badano, L.P. Normal mitral annulus dynamics and its relationships with left ventricular and left atrial function. Int. J. Cardiovasc. Imaging 2015, 31, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Hoigne, P.; Attenhofer Jost, C.H.; Duru, F.; Oechslin, E.N.; Seifert, B.; Widmer, U.; Frischknecht, B.; Jenni, R. Simple criteria for differentiation of Fabry disease from amyloid heart disease and other causes of left ventricular hypertrophy. Int. J. Cardiol. 2006, 111, 413–422. [Google Scholar] [CrossRef]
- Linhart, A.; Germain, D.P.; Olivotto, I.; Akhtar, M.M.; Anastasakis, A.; Hughes, D.; Namdar, M.; Pieroni, M.; Hagége, A.; Cecchi, F.; et al. An expert consensus document on the management of cardiovascular manifestations of Fabry disease. Eur. J. Heart Fail. 2020, 22, 1076–1096. [Google Scholar] [CrossRef]
- Niemann, M.; Liu, D.; Hu, K.; Herrmann, S.; Breunig, F.; Strotmann, J.; Störk, S.; Voelker, W.; Ertl, G.; Wanner, C.; et al. Prominent papillary muscles in Fabry disease: A diagnostic marker? Ultrasound Med. Biol. 2011, 37, 37–43. [Google Scholar] [CrossRef]
- Mattig, I.; Steudel, T.; Barzen, G.; Frumkin, D.; Spethmann, S.; Dorta, E.R.; Stangl, K.; Heidecker, B.; Landmesser, U.; Knebel, D.; et al. Diagnostic value of papillary muscle hypertrophy and mitral valve thickness to discriminate cardiac amyloidosis and Fabry disease. Int. J. Cardiol. 2024, 397, 131629. [Google Scholar] [CrossRef] [PubMed]
- Chacko, L.; Karia, N.; Venneri, L.; Bandera, F.; Passo, B.D.; Buonamici, L.; Lazari, J.; Ioannou, A.; Porcari, A.; Patel, R.; et al. Progression of echocardiographic parameters and prognosis in transthyretin cardiac amyloidosis. Eur. J. Heart Fail. 2022, 24, 1700–1712. [Google Scholar] [CrossRef]
- Kristen, A.V.; Schnabel, P.A.; Winter, B.; Helmke, B.M.; Longerich, T.; Hardt, S.; Koch, A.; Sack, F.U.; Katus, H.A.; Linke, R.P.; et al. High prevalence of amyloid in 150 surgically removed heart valves—A comparison of histological and clinical data reveals a correlation to atheroinflammatory conditions. Cardiovasc. Pathol. 2010, 19, 228–235. [Google Scholar] [CrossRef]
- Minga, I.; Kwak, E.; Hussain, K.; Wathen, L.; Gaznabi, S.; Singh, L.; Macrinici, V.; Wang, C.H.; Singulane, C.; Addetia, K.; et al. Prevalence of valvular heart disease in cardiac amyloidosis and impact on survival. Curr. Probl. Cardiol. 2024, 49, 102417. [Google Scholar] [CrossRef]
- Tomasoni, D.; Aimo, A.; Porcari, A.; Bonfioli, G.B.; Castiglione, V.; Saro, R.; Di Pasquale, M.; Franzini, M.; Fabiani, I.; Lombardi, C.M.; et al. Prevalence and clinical outcomes of isolated or combined moderate to severe mitral and tricuspid regurgitation in patients with cardiac amyloidosis. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
- Fagot, J.; Lavie-Badie, Y.; Blanchard, V.; Fournier, P.; Galinier, M.; Carrié, D.; Lairez, O.; Cariou, E. Toulouse Amyloidosis Research Network collaborators. Impact of tricuspid regurgitation on survival in patients with cardiac amyloidosis. ESC Heart Fail. 2021, 8, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Aimo, A.; Fabiani, I.; Maccarana, A.; Vergaro, G.; Chubuchny, V.; Pasanisi, E.A.; Petersen, C.; Poggianti, E.; Giannoni, A.; Spini, V.; et al. Valve disease in cardiac amyloidosis: An echocardiographic score. Int. J. Cardiovasc. Imaging 2023, 39, 1873–1887. [Google Scholar] [CrossRef] [PubMed]
- Mohty, D.; Pradel, S.; Magne, J.; Fadel, B.; Boulogne, C.; Petitalot, V.; Raboukhi, S.; Darodes, N.; Damy, T.; Aboyans, V.; et al. Prevalence and prognostic impact of left-sided valve thickening in systemic light-chain amyloidosis. Clin. Res. Cardiol. 2017, 106, 331–340. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Conte, M.; Poggio, P.; Monti, M.; Petraglia, L.; Cabaro, S.; Bruzzese, D.; Comentale, G.; Caruso, A.; Grimaldi, M.; Zampella, E.; et al. Isolated Valve Amyloid Deposition in Aortic Stenosis: Potential Clinical and Pathophysiological Relevance. Int. J. Mol. Sci. 2024, 25, 1171. [Google Scholar] [CrossRef]
- Aimo, A.; Camerini, L.; Fabiani, I.; Morfino, P.; Panichella, G.; Barison, A.; Pucci, A.; Castiglione, V.; Vergaro, G.; Sinagra, G.; et al. Valvular heart disease in patients with cardiac amyloidosis. Heart Fail. Rev. 2024, 29, 65–77. [Google Scholar] [CrossRef]
- Peskó, G.; Jelei, Z.; Varga, G.; Apor, A.; Vágó, H.; Czibor, S.; Prohászka, Z.; Masszi, T.; Pozsonyi, Z. Coexistence of aortic valve stenosis and cardiac amyloidosis: Echocardiographic and clinical significance. Cardiovasc. Ultrasound 2019, 17, 32. [Google Scholar] [CrossRef] [PubMed]
- Decotto, S.; Corna, G.; Villaneuva, E.; Pérez-de Arenaza, D.; Seropian, I.; Falconi, M.; Oberti, P.; Aguirre, M.A.; Posadas-Martínez, M.L.; Carretero, M.; et al. Prevalence of moderate-severe aortic stenosis in patients with cardiac amyloidosis in a referral center. Arch. Cardiol. Mex. 2024, 94, 71–78. [Google Scholar] [CrossRef]
- Beuthner, B.E.; Elkenani, M.; Evert, K.; Mustroph, J.; Jacob, C.F.; Paul, N.B.; Beißbarth, T.; Zeisberg, E.M.; Schnelle, M.; Puls, M.; et al. Histological assessment of cardiac amyloidosis in patients undergoing transcatheter aortic valve replacement. ESC Heart Fail. 2024, 11, 1636–1646. [Google Scholar] [CrossRef]
- Fatima, K.; Uddin, Q.S.; Tharwani, Z.H.; Kashif, M.A.B.; Javaid, S.S.; Kumar, P.; Zia, M.T.; Javed, M.; Butt, M.S.; Asim, Z. Concomitant transthyretin cardiac amyloidosis in patients undergoing TAVR for aortic stenosis: A systemic review and meta-analysis. Int. J. Cardiol. 2024, 402, 131854. [Google Scholar] [CrossRef] [PubMed]
- Shim, C.Y. Arterial-cardiac interaction: The concept and implications. J. Cardiovasc. Ultrasound 2011, 19, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Belz, G.G. Elastic properties and Windkessel function of the human aorta. Cardiovasc. Drugs Ther. 1995, 9, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Nemes, A.; Földeák, D.; Domsik, P.; Kalapos, A.; Kormányos, Á.; Borbényi, Z.; Forster, T. Cardiac amyloidosis is associated with increased aortic stiffness. J. Clin. Ultrasound 2018, 46, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Yamaji, T.; Kitagawa, T.; Nakano, Y.; Kajikawa, M.; Yoshimura, K.; Chayama, K.; Goto, C.; Tanigawa, S.; Mizobuchi, A.; et al. Endothelial Function Is Preserved in Patients with Wild-Type Transthyretin Amyloid Cardiomyopathy. J. Clin. Med. 2023, 12, 2534. [Google Scholar] [CrossRef] [PubMed]
- Stamatelopoulos, K.; Delialis, D.; Georgiopoulos, G.; Tselegkidi, M.I.; Theodorakakou, F.; Dialoupi, I.; Bambatsias, D.; Petropoulos, I.; Vergaro, G.; Ikonomidis, I.; et al. Determining patterns of vascular function and structure in wild-type transthyretin cardiac amyloidosis. A comparative study. Int. J. Cardiol. 2022, 363, 102–110. [Google Scholar] [CrossRef]
- Foale, R.; Nihoyannopoulos, P.; McKenna, W.; Kleinebenne, A.; Nadazdin, A.; Rowland, E.; Smith, G. Echocardiographic measurement of the normal adult right ventricle. Br. Heart J. 1986, 56, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.Y.; Nihoyannopoulos, P. Anatomy, echocardiography, and normal right ventricular dimensions. Heart 2006, 92 (Suppl. 1), i2–i13. [Google Scholar] [CrossRef]
- Haddad, F.; Hunt, S.A.; Rosenthal, D.N.; Murphy, D.J. Right ventricular function in cardiovascular disease, Part I. Anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 2008, 117, 1436–1448. [Google Scholar] [CrossRef]
- Rudski, L.G.; Lai, W.W.; Afilalo, J.; Hua, L.; Handschumacher, M.D.; Chandrasekaran, K.; Solomon, S.D.; Louie, E.K.; Schiller, N.B. Guidelines for the echocardiographic assessment of the right heart in adults: A report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 2010, 23, 685–713. [Google Scholar]
- Stacey, R.B.; Andersen, M.; Haag, J.; Hall, M.E.; McLeod, G.; Upadhya, B.; Hundley, W.G.; Thohan, V. Right ventricular morphology and systolic function in left ventricular noncompaction cardiomyopathy. Am. J. Cardiol. 2014, 113, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Usuku, H.; Yamamoto, E.; Sueta, D.; Noguchi, M.; Fujisaki, T.; Egashira, K.; Oike, F.; Fujisue, K.; Hanatani, S.; Arima, Y.; et al. Prognostic value of right ventricular global longitudinal strain in patients with immunoglobulin light-chain cardiac amyloidosis. Eur. Heart J. Open 2023, 3, oead048. [Google Scholar] [CrossRef]
- Usuku, H.; Takashio, S.; Yamamoto, E.; Yamada, T.; Egashira, K.; Morioka, M.; Nishi, M.; Komorita, T.; Oike, F.; Tabata, N.; et al. Prognostic value of right ventricular global longitudinal strain in transthyretin amyloid cardiomyopathy. J. Cardiol. 2022, 80, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Agudo, C.A.; Moñivas Palomero, V.; González López, E.; Mingo Santos, S. Prognostic value of exercise echocardiography in patients with wild-type transthyretin amyloidosis. Ups. J. Med. Sci. 2022, 127. [Google Scholar] [CrossRef]
- Porcari, A.; Fontana, M.; Canepa, M.; Biagini, E.; Cappelli, F.; Gagliardi, C.; Longhi, S.; Pagura, L.; Tini, G.; Dore, F.; et al. Clinical and Prognostic Implications of Right Ventricular Uptake on Bone Scintigraphy in Transthyretin Amyloid Cardiomyopathy. Circulation 2024, 149, 1157–1168. [Google Scholar] [CrossRef] [PubMed]
- Datar, Y.; Clerc, O.F.; Cuddy, S.A.M.; Kim, S.; Taylor, A.; Neri, J.C.; Benz, D.C.; Bianchi, G.; Yee, A.J.; Sanchorawala, V.; et al. Quantification of Right Ventricular Amyloid Burden with 18F-florbetapir PET/CT and its Association with Right Ventricular Dysfunction and Outcomes in Light-Chain Amyloidosis. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 687–697. [Google Scholar] [CrossRef]
- Tadic, M. The right atrium, a forgotten cardiac chamber: An updated review of multimodality imaging. J. Clin. Ultrasound 2015, 43, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Singulane, C.C.; Slivnick, J.A.; Addetia, K.; Asch, F.M.; Sarswat, N.; Soulat-Dufour, L.; Mor-Avi, V.; Lang, R.M. Prevalence of Right Atrial Impairment and Association with Outcomes in Cardiac Amyloidosis. J. Am. Soc. Echocardiogr. 2022, 35, 829–835.e1. [Google Scholar] [CrossRef]
- Usuku, H.; Yamamoto, E.; Sueta, D.; Shinriki, R.; Oike, F.; Tabata, N.; Ishii, M.; Hanatani, S.; Hoshiyama, T.; Kanazawa, H.; et al. A new staging system using right atrial strain in patients with immunoglobulin light-chain cardiac amyloidosis. ESC Heart Fail. 2024, 11, 1612–1624. [Google Scholar] [CrossRef]
- Eckstein, J.; Sciacca, V.; Körperich, H.; Paluszkiewicz, L.; Valdés, E.W.; Burchert, W.; Gerçek, M.; Farr, M.; Sommer, P.; Sohns, C.; et al. Cardiovascular Magnetic Resonance Imaging-Based Right Atrial Strain Analysis of Cardiac Amyloidosis. Biomedicines 2022, 10, 3004. [Google Scholar] [CrossRef]
- Nagano, N.; Yano, T.; Fujita, Y.; Kouzu, H.; Koyama, M.; Ikeda, H.; Yasui, K.; Muranaka, A.; Nishikawa, R.; Takahashi, R.; et al. Assessment of prognosis in immunoglobulin light chain amyloidosis patients with severe heart failure: A predictive value of right ventricular function. Heart Vessels 2020, 35, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Russo, C.; Green, P.; Maurer, M. The prognostic significance of central hemodynamics in patients with cardiac amyloidosis. Amyloid 2013, 20, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Dahou, A.; Levin, D.; Reisman, M.; Hahn, R.T. Anatomy and physiology of the tricuspid valve. JACC Cardiovasc. Imaging 2019, 12, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Cui, Y.; Shi, J.; Wang, L.; Zhou, Y.; Ye, T.; Ye, Z.; Yang, J.; Wang, X. Association between the TAPSE to PASP ratio and short-term outcome in patients with light-chain cardiac amyloidosis. Int. J. Cardiol. 2023, 15, 131108. [Google Scholar] [CrossRef] [PubMed]
- Kastritis, E.; Dimopoulos, M.A. Recent advances in the management of AL Amyloidosis. Br. J. Haematol. 2016, 72, 170–186. [Google Scholar] [CrossRef] [PubMed]
- Kado, Y.; Obokata, M.; Nagata, Y.; Ishizu, T.; Addetia, K.; Aonuma, K.; Kurabayashi, M.; Lang, R.M.; Takeuchi, M.; Otsuji, Y. Cumulative Burden of Myocardial Dysfunction in Cardiac Amyloidosis Assessed Using Four-Chamber Cardiac Strain. J. Am. Soc. Echocardiogr. 2016, 29, 1092–1099.e2. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemes, A. Myocardial Mechanics and Valvular and Vascular Abnormalities in Cardiac Amyloidosis. J. Clin. Med. 2024, 13, 4330. https://doi.org/10.3390/jcm13154330
Nemes A. Myocardial Mechanics and Valvular and Vascular Abnormalities in Cardiac Amyloidosis. Journal of Clinical Medicine. 2024; 13(15):4330. https://doi.org/10.3390/jcm13154330
Chicago/Turabian StyleNemes, Attila. 2024. "Myocardial Mechanics and Valvular and Vascular Abnormalities in Cardiac Amyloidosis" Journal of Clinical Medicine 13, no. 15: 4330. https://doi.org/10.3390/jcm13154330
APA StyleNemes, A. (2024). Myocardial Mechanics and Valvular and Vascular Abnormalities in Cardiac Amyloidosis. Journal of Clinical Medicine, 13(15), 4330. https://doi.org/10.3390/jcm13154330