The Trochlear Bisector as a New Landmark for Kinematic Alignment in Total Knee Arthroplasty: A Radiographic Study
Abstract
:1. Introduction
2. Materials and Methods
- Two lines are drawn tangentially to the medial and later aspects of the trochlear groove, starting from the radiographic apical midpoint of the inter-condylar groove. The trochlear groove angle (TGA) is measured as an angle subtended by these two lines (see Figure 1B, orange lines);
- The TGB is drawn as the line that bisects the TGA and passes through the radiographic apical midpoint of the inter-condylar groove (see Figure 1B, green line);
- The bisector angle (BA) is measured as the medial angle between the TGB and the distal femur joint line, which is defined as the line passing through the two most prominent points of the medial and lateral condyles (refer to Figure 1C, respectively, the green angle, blue line, and blue dots).
Statistical Method
3. Results
4. Discussion
5. Conclusions
- A natural mechanical lateral distal femoral angle (mLDFA);
- The positioning of the femoral component that meets the principles of kinematic alignment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Insall, J.; Scott, W.N.; Ranawat, C.S. The Total Condylar Knee Prosthesis. A Report of Two Hundred and Twenty Cases. J. Bone Jt. Surg.—Ser. A 1979, 61, 173–180. [Google Scholar] [CrossRef]
- Berend, M.E.; Ritter, M.A.; Meding, J.B.; Faris, P.M.; Keating, E.M.; Redelman, R.; Faris, G.W.; Davis, K.E. The Chetranjan Ranawat Award: Tibial Component Failure Mechanisms in Total Knee Arthroplasty. Clin. Orthop. Relat. Res. 2004, 428, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Ritter, M.A.; Faris, P.M.; Keating, E.M.; Meding, J.B. Postoperative Alignment of Total Knee Replacement. Its Effect on Survival. Clin. Orthop. Relat. Res. 1994, 299, 153–156. [Google Scholar] [CrossRef]
- Eckhoff, D.G.; Dwyer, T.F.; Bach, J.M.; Spitzer, V.M.; Reinig, K.D. Three-Dimensional Morphology of the Distal Part of the Femur Viewed in Virtual Reality. J. Bone Jt. Surg.—Ser. A 2001, 83, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Luyckx, T.; Vanhoorebeeck, F.; Bellemans, J. Should We Aim at Undercorrection When Doing a Total Knee Arthroplasty? Knee surgery, Sport. Traumatol. Arthrosc. Off. J. ESSKA 2015, 23, 1706–1712. [Google Scholar] [CrossRef] [PubMed]
- Baker, P.N.; van der Meulen, J.H.; Lewsey, J.; Gregg, P.J. The Role of Pain and Function in Determining Patient Satisfaction after Total Knee Replacement. Data from the National Joint Registry for England and Wales. J. Bone Jt. Surg.—Ser. B 2007, 89, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Bourne, R.B.; Chesworth, B.M.; Davis, A.M.; Mahomed, N.N.; Charron, K.D.J. Patient Satisfaction after Total Knee Arthroplasty: Who Is Satisfied and Who Is Not? Clin. Orthop. Relat. Res. 2010, 468, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Churchill, D.L.; Incavo, S.J.; Johnson, C.C.; Beynnon, B.D. The Transepicondylar Axis Approximates the Optimal Flexion Axis of the Knee. Clin. Orthop. Relat. Res. 1998, 356, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Eckhoff, D.; Hogan, C.; DiMatteo, L.; Robinson, M.; Bach, J. An ABJS Best Paper: Difference between the Epicondylar and Cylindrical Axis of the Knee. Clin. Orthop. Relat. Res. 2007, 461, 238–244. [Google Scholar] [CrossRef]
- Hollister, A.M.; Jatana, S.; Singh, A.K.; Sullivan, W.W.; Lupichuk, A.G. The Axes of Rotation of the Knee. Clin. Orthop. Relat. Res. 1993, 290, 259–268. [Google Scholar] [CrossRef]
- Coughlin, K.M.; Incavo, S.J.; Churchill, D.L.; Beynnon, B.D. Tibial Axis and Patellar Position Relative to the Femoral Epicondylar Axis during Squatting. J. Arthroplasty 2003, 18, 1048–1055. [Google Scholar] [CrossRef] [PubMed]
- Elias, S.G.; Freeman, M.A.; Gokcay, E.I. A Correlative Study of the Geometry and Anatomy of the Distal Femur. Clin. Orthop. Relat. Res. 1990, 260, 98–103. [Google Scholar] [CrossRef]
- Howell, S.M.; Roth, J.D.; Hull, M.L. Kinematic Alignment in Total Knee Arthroplasty Definition, History, Principle, Surgical Technique, and Results of an Alignment Option for TKA. Arthropaedia 2014, 1, 44–53. [Google Scholar]
- Dossett, H.G.; Swartz, G.J.; Estrada, N.A.; LeFevre, G.W.; Kwasman, B.G. Kinematically Versus Mechanically Aligned Total Knee Arthroplasty. Orthopedics 2012, 35, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Schiraldi, M.; Bonzanini, G.; Chirillo, D.; de Tullio, V. Mechanical and Kinematic Alignment in Total Knee Arthroplasty. Ann. Transl. Med. 2016, 4, 130. [Google Scholar] [CrossRef] [PubMed]
- Nisar, S.; Palan, J.; Rivière, C.; Emerton, M.; Pandit, H. Kinematic Alignment in Total Knee Arthroplasty. EFORT Open Rev. 2020, 5, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Gale, T.; Anderst, W. Asymmetry in Healthy Adult Knee Kinematics Revealed through Biplane Radiography of the Full Gait Cycle. J. Orthop. Res. 2019, 37, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Luís, N.M.; Varatojo, R.; Marques Luís, N.; Varatojo, R.; Luís, N.M.; Varatojo, R. Radiological Assessment of Lower Limb Alignment. EFORT Open Rev. 2021, 6, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Christensen, H.S.; Borgbjerg, J.; Børty, L.; Bøgsted, M. On Jones et Al.’s Method for Extending Bland-Altman Plots to Limits of Agreement with the Mean for Multiple Observers. BMC Med. Res. Methodol. 2020, 20, 304. [Google Scholar] [CrossRef]
- Jones, M.; Dobson, A.; O’Brian, S. A Graphical Method for Assessing Agreement with the Mean between Multiple Observers Using Continuous Measures. Int. J. Epidemiol. 2011, 40, 1308–1313. [Google Scholar] [CrossRef]
- Martin Bland, J.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Bellemans, J.; Colyn, W.; Vandenneucker, H.; Victor, J. The Chitranjan Ranawat Award: Is Neutral Mechanical Alignment Normal for All Patients?: The Concept of Constitutional Varus. Clin. Orthop. Relat. Res. 2012, 470, 45–53. [Google Scholar] [CrossRef]
- Liu, D.W.; Martinez Martos, S.; Dai, Y.; Beller, E.M. The Femoral Intercondylar Notch Is an Accurate Landmark for the Resection Depth of the Distal Femur in Total Knee Arthroplasty. Knee Surg. Relat. Res. 2022, 34, 32. [Google Scholar] [CrossRef]
- Oswald, M.H.; Jakob, R.P.; Schneider, E.; Hoogewoud, H.M.; Schneider, E. Radiological Analysis of Normal Axial Alignment of Femur and Tibia in View of Total Knee Arthroplasty. J. Arthroplasty 1993, 8, 419–426. [Google Scholar] [CrossRef]
- Kayani, B.; Konan, S.; Ayuob, A.; Onochie, E.; Al-Jabri, T.; Haddad, F.S. Robotic Technology in Total Knee Arthroplasty: A Systematic Review. EFORT Open Rev. 2019, 4, 611–617. [Google Scholar] [CrossRef]
- Innocenti, B.; Bilgen, Ö.F.; Labey, L.; van Lenthe, G.H.; Vander Sloten, J.; Catani, F. Load Sharing and Ligament Strains in Balanced, Overstuffed and Understuffed UKA. A Validated Finite Element Analysis. J. Arthroplasty 2014, 29, 1491–1498. [Google Scholar] [CrossRef]
- Innocenti, B.; Bellemans, J.; Catani, F. Deviations From Optimal Alignment in TKA: Is There a Biomechanical Difference Between Femoral or Tibial Component Alignment? J. Arthroplasty 2016, 31, 295–301. [Google Scholar] [CrossRef]
Summary | Laterality | Sex | Age (y/o) | |||||
---|---|---|---|---|---|---|---|---|
X-rays | Patients | Unilateral | Bilateral | Male | Female | Min | Max | Mean |
110 | 59 | 8 | 51 | 62.7% (37) | 37.3% (22) | 19 | 38 | 28.9 |
Observer 1 | Observer 2 | Observer 3 | |
---|---|---|---|
BA (SD) | 89.5° (±1.25) | 89.3 (±0.96) | 89.2 (±1.1) |
Observer 1-Time 1 | Observer 1-Time 2 | Observer 1-Time 3 | |
---|---|---|---|
BA (SD) | 89.6° (±1) | 89.5 (±0.96) | 89.5 (±1.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iacono, F.; Bonanzinga, T.; Di Matteo, B.; Iacomella, A.; Delmedico, M.; Gambaro, F.M.; Favaro, A.; Marcacci, M. The Trochlear Bisector as a New Landmark for Kinematic Alignment in Total Knee Arthroplasty: A Radiographic Study. J. Clin. Med. 2024, 13, 3548. https://doi.org/10.3390/jcm13123548
Iacono F, Bonanzinga T, Di Matteo B, Iacomella A, Delmedico M, Gambaro FM, Favaro A, Marcacci M. The Trochlear Bisector as a New Landmark for Kinematic Alignment in Total Knee Arthroplasty: A Radiographic Study. Journal of Clinical Medicine. 2024; 13(12):3548. https://doi.org/10.3390/jcm13123548
Chicago/Turabian StyleIacono, Francesco, Tommaso Bonanzinga, Berardo Di Matteo, Alberto Iacomella, Michelangelo Delmedico, Francesco Manlio Gambaro, Alberto Favaro, and Maurilio Marcacci. 2024. "The Trochlear Bisector as a New Landmark for Kinematic Alignment in Total Knee Arthroplasty: A Radiographic Study" Journal of Clinical Medicine 13, no. 12: 3548. https://doi.org/10.3390/jcm13123548
APA StyleIacono, F., Bonanzinga, T., Di Matteo, B., Iacomella, A., Delmedico, M., Gambaro, F. M., Favaro, A., & Marcacci, M. (2024). The Trochlear Bisector as a New Landmark for Kinematic Alignment in Total Knee Arthroplasty: A Radiographic Study. Journal of Clinical Medicine, 13(12), 3548. https://doi.org/10.3390/jcm13123548