What to Prefer in Patients with Multibracket Appliances? Digital vs. Conventional Full-Arch Impressions—A Reference Aid-Based In Vivo Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Sample
- -
- Age ≥ 16 years;
- -
- MBA treatment in the lower jaw ongoing for at least three months;
- -
- Buccal metal brackets Tip-Edge PLUS Stainless Steel Brackets (TP Orthodontics Inc., La Porte, IN, USA) on all lower teeth except molars;
- -
- Metal bands Unitek Victory Series First Molar Bands (3 M, St. Paul, MN, USA) cemented on the lower-right and left first molar adjacent to the premolars with glass ionomer luting cement Ketac Cem (3 M, St. Paul, MN, USA).
- -
- Exclusion criteria:
- -
- Lower teeth with restorations in metal color;
- -
- Spaces ≥ 2 mm in case of aplasia or extraction.
2.2. Reference Aid and Reference Dataset
2.3. Impression-Taking
- Primescan (“PRI”, version 5.1.3, Dentsply Sirona, Bensheim, Germany);
- Trios 4 POD wireless (“TIO“, version 21.2.0, 3Shape, Copenhagen, Denmark);
- Planmeca Emerald S (“EME”, version 6.2.1.25, Planmeca, Helsinki, Finland);
- Medit i700 (“MED”, version 1.7.4, Medit, Seoul, Republic of Korea).
2.4. Analysis of Transfer Accuracy
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Linear Distance | Impression Technique | PRI | TIO | EME | MED |
---|---|---|---|---|---|
D1_2 | TIO | 1.000 | - | - | - |
EME | 1.000 | 0.605 | - | - | |
MED | 1.000 | 1.000 | 1.000 | - | |
CAI | <0.001 | 0.009 | 0.007 | 0.001 | |
D1_3 | TIO | 0.458 | - | - | - |
EME | 0.401 | 1.000 | - | - | |
MED | 0.401 | 1.000 | 1.000 | - | |
CAI | 0.090 | 0.795 | 0.795 | 1.000 | |
D1_4 | TIO | 1.000 | - | - | - |
EME | 0.491 | 0.410 | - | - | |
MED | 0.216 | 0.136 | 1.000 | - | |
CAI | 1.000 | 1.000 | 0.288 | 0.064 | |
D2_3 | TIO | 0.099 | - | - | - |
EME | 0.504 | 0.003 | - | - | |
MED | 0.013 | 0.383 | 0.035 | - | |
CAI | 0.048 | 0.137 | <0.001 | 0.018 | |
D2_4 | TIO | 1.000 | - | - | - |
EME | 1.000 | 1.000 | - | - | |
MED | 0.321 | 0.212 | 1.000 | - | |
CAI | 0.164 | 0.092 | 1.000 | 1.000 | |
D3_4 | TIO | 1.000 | - | - | - |
EME | 1.000 | 1.000 | - | - | |
MED | 1.000 | 1.000 | 1.000 | - | |
CAI | 0.049 | 0.087 | 0.027 | 0.049 |
Angles | Impression Technique | PRI | TIO | EME | MED |
---|---|---|---|---|---|
A1_2 | TIO | 1.000 | - | - | - |
EME | 0.766 | 1.000 | - | - | |
MED | 1.000 | 1.000 | 0.766 | - | |
CAI | 1.000 | 0.766 | 0.393 | 1.000 | |
A1_3 | TIO | 1.000 | - | - | - |
EME | 0.758 | 1.000 | - | - | |
MED | 1.000 | 1.000 | 0.758 | - | |
CAI | 1.000 | 0.758 | 0.388 | 1.000 | |
A1_4 | TIO | 1.000 | - | - | - |
EME | 0.669 | 1.000 | - | - | |
MED | 1.000 | 1.000 | 0.669 | - | |
CAI | 1.000 | 0.669 | 0.359 | 1.000 | |
A2_3 | TIO | 1.000 | - | - | - |
EME | 0.668 | 1.000 | - | - | |
MED | 1.000 | 1.000 | 0.668 | - | |
CAI | 1.000 | 0.668 | 0.356 | 1.000 | |
A2_4 | TIO | 1.000 | - | - | - |
EME | 0.657 | 1.000 | - | - | |
MED | 1.000 | 1.000 | 0.657 | - | |
CAI | 1.000 | 0.657 | 0.373 | 1.000 | |
A3_4 | TIO | 1.000 | - | - | - |
EME | 0.731 | 1.000 | - | - | |
MED | 1.000 | 1.000 | 0.731 | - | |
CAI | 1.000 | 0.731 | 0.376 | 1.000 |
References
- Wriedt, S.; Foersch, M.; Muhle, J.D.; Schmidtmann, I.; Wehrbein, H. Multibracket appliance: Impression defaults and their reduction by blocking-out—A three-dimensional study. Clin. Oral Investig. 2016, 20, 365–372. [Google Scholar] [CrossRef]
- Mangano, F.; Gandolfi, A.; Luongo, G.; Logozzo, S. Intraoral scanners in dentistry: A review of the current literature. BMC Oral Health 2017, 17, 149. [Google Scholar] [CrossRef]
- Claus, D.; Radeke, J.; Zint, M.; Vogel, A.B.; Satravaha, Y.; Kilic, F.; Hibst, R.; Lapatki, B. Generation of 3D digital models of the dental arches using optical scanning techniques. Semin. Orthod. 2018, 24, 416–429. [Google Scholar] [CrossRef]
- Nguyen, T.; Cevidanes, L.; Franchi, L.; Ruellas, A.; Jackson, T. Three-dimensional mandibular regional superimposition in growing patients. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 747–754. [Google Scholar] [CrossRef]
- Christensen, L.R.; Cope, J.B. Digital technology for indirect bonding. Semin. Orthod. 2018, 24, 451–460. [Google Scholar] [CrossRef]
- Garino, F.; Garino, G.B.; Castroflorio, T. The iTero intraoral scanner in invisalign treatment: A two-year report. J. Clin. Orthod. 2014, 48, 98–106. [Google Scholar]
- Luu, N.S.; Nikolcheva, L.G.; Retrouvey, J.M.; Flores-Mir, C.; El-Bialy, T.; Carey, J.P.; Major, P.W. Linear measurements using virtual study models. Angle Orthod. 2012, 82, 1098–1106. [Google Scholar] [CrossRef]
- Aragon, M.L.; Pontes, L.F.; Bichara, L.M.; Flores-Mir, C.; Normando, D. Validity and reliability of intraoral scanners compared to conventional gypsum models measurements: A systematic review. Eur. J. Orthod. 2016, 38, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Camardella, L.T.; Breuning, H.; De Vasconcellos Vilella, O. Accuracy and reproducibility of measurements on plaster models and digital models created using an intraoral scanner. J. Orofac. Orthop. 2017, 78, 211–220. [Google Scholar] [CrossRef]
- Burzynski, J.A.; Firestone, A.R.; Beck, F.M.; Fields, H.W., Jr.; Deguchi, T. Comparison of digital intraoral scanners and alginate impressions: Time and patient satisfaction. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 534–541. [Google Scholar] [CrossRef]
- Yilmaz, H.; Aydin, M.N. Digital versus conventional impression method in children: Comfort, preference and time. Int. J. Paediatr. Dent. 2019, 29, 728–735. [Google Scholar] [CrossRef]
- Glisic, O.; Hoejbjerre, L.; Sonnesen, L. A comparison of patient experience, chair-side time, accuracy of dental arch measurements and costs of acquisition of dental models. Angle Orthod. 2019, 89, 868–875. [Google Scholar] [CrossRef]
- Mangano, A.; Beretta, M.; Luongo, G.; Mangano, C.; Mangano, F. Conventional vs digital impressions: Acceptability, treatment comfort and stress among young orthodontic patients. Open Dent. J. 2018, 12, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Choi, S.A.; Myung, J.Y.; Chun, Y.S.; Kim, M. Impact of Orthodontic Brackets on the Intraoral Scan Data Accuracy. Biomed. Res. Int. 2016, 2016, 5075182. [Google Scholar] [CrossRef]
- Jung, Y.R.; Park, J.M.; Chun, Y.S.; Lee, K.N.; Kim, M. Accuracy of four different digital intraoral scanners: Effects of the presence of orthodontic brackets and wire. Int. J. Comput. Dent. 2016, 19, 203–215. [Google Scholar] [PubMed]
- Song, J.; Kim, M. Accuracy on Scanned Images of Full Arch Models with Orthodontic Brackets by Various Intraoral Scanners in the Presence of Artificial Saliva. Biomed. Res. Int. 2020, 2020, 2920804. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Kim, S.H.; Choi, T.H.; Yen, E.H.; Zou, B.; Shin, Y.; Lee, N.K. Accuracy of intraoral scan images in full arch with orthodontic brackets: A retrospective in vivo study. Clin. Oral Investig. 2021, 25, 4861–4869. [Google Scholar] [CrossRef] [PubMed]
- Schlenz, M.A.; Klaus, K.; Schmidt, A.; Wöstmann, B.; Mersmann, M.; Ruf, S.; Bock, N.C. The transfer accuracy of digital and conventional full-arch impressions influenced by fixed orthodontic appliances: A reference aid-based in vitro study. Clin. Oral Investig. 2023, 27, 273–283. [Google Scholar] [CrossRef]
- Heo, H.; Kim, M. The Effects of Orthodontic Brackets on the Time and Accuracy of Digital Impression Taking. Int. J. Environ. Res. Public Health 2021, 18, 5282. [Google Scholar] [CrossRef]
- Grünheid, T.; Mccarthy, S.D.; Larson, B.E. Clinical use of a direct chairside oral scanner: An assessment of accuracy, time, and patient acceptance. Am. J. Orthod. Dentofac. Orthop. 2014, 146, 673–682. [Google Scholar] [CrossRef]
- O’toole, S.; Osnes, C.; Bartlett, D.; Keeling, A. Investigation into the accuracy and measurement methods of sequential 3D dental scan alignment. Dent. Mater. 2019, 35, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.; Billig, J.W.; Schlenz, M.A.; Wöstmann, B. Do different methods of digital data analysis lead to different results? Int. J. Comput. Dent. 2021, 24, 157–164. [Google Scholar] [PubMed]
- Güth, J.F.; Edelhoff, D.; Schweiger, J.; Keul, C. A new method for the evaluation of the accuracy of full-arch digital impressions in vitro. Clin. Oral Investig. 2016, 20, 1487–1494. [Google Scholar] [CrossRef]
- Kuhr, F.; Schmidt, A.; Rehmann, P.; Wöstmann, B. A new method for assessing the accuracy of full arch impressions in patients. J. Dent. 2016, 55, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.; Klussmann, L.; Wöstmann, B.; Schlenz, M.A. Accuracy of Digital and Conventional Full-Arch Impressions in Patients: An Update. J. Clin. Med. 2020, 9, 688. [Google Scholar] [CrossRef] [PubMed]
- Güth, J.F.; Runkel, C.; Beuer, F.; Stimmelmayr, M.; Edelhoff, D.; Keul, C. Accuracy of five intraoral scanners compared to indirect digitalization. Clin. Oral Investig. 2017, 21, 1445–1455. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, P.; Herrero-Climent, M.; Diaz-Castro, C.; Rios-Santos, J.V.; Padros, R.; Mur, J.G.; Falcao, C. Accuracy of Implant Casts Generated with Conventional and Digital Impressions-An In Vitro Study. Int. J. Environ. Res. Public Health 2018, 15, 1599. [Google Scholar] [CrossRef]
- Hayama, H.; Fueki, K.; Wadachi, J.; Wakabayashi, N. Trueness and precision of digital impressions obtained using an intraoral scanner with different head size in the partially edentulous mandible. J. Prosthodont. Res. 2018, 62, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.; Klussmann, L.; Schlenz, M.A.; Wöstmann, B. Elastic deformation of the mandibular jaw revisited-a clinical comparison between digital and conventional impressions using a reference. Clin. Oral Investig. 2021, 25, 4635–4642. [Google Scholar] [CrossRef]
- DIN 5401; Balls for Rolling Bearings and General Industrial Use. International Organization for Standardization: Geneva, Switzerland, 2002.
- ISO 3290-1; Rolling Bearings—Balls—Part I: Steel Balls. International Organization for Standardization: Geneva, Switzerland, 2014.
- Rehmann, P.; Sichwardt, V.; Wöstmann, B. Intraoral Scanning Systems: Need for Maintenance. Int. J. Prosthodont. 2017, 30, 27–29. [Google Scholar] [CrossRef]
- Müller, P.; Ender, A.; Joda, T.; Katsoulis, J. Impact of digital intraoral scan strategies on the impression accuracy using the TRIOS Pod scanner. Quintessence Int. 2016, 47, 343–349. [Google Scholar]
- Wöstmann, B.; Powers, J.M. Impressioning Compendium—A Guideline for Excellent Impressions in Theory and Practice; 3M Health Care Academy: Tonawanda, NY, USA, 2016. [Google Scholar]
- Heck, R.H.; Thomas, S.; Tabata, L. Multilevel Modeling of Categorical Outcomes Using IBM SPSS, 1st ed.; Routledge: London, UK, 2012. [Google Scholar]
- ISO 5725-1:1994; Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 1: General Principles and Definitions. International Organization for Standardization: Geneva, Switzerland, 1994; pp. 1–17.
- Kang, S.J.; Kee, Y.J.; Lee, K.C. Effect of the presence of orthodontic brackets on intraoral scans. Angle Orthod. 2021, 91, 98–104. [Google Scholar] [CrossRef]
- Amaral Vargas, E.O.; Otero Amaral Vargas, D.; Da Silva Coqueiro, R.; Franzotti Sant’anna, E.; Melo Pithon, M. Impact of orthodontic brackets on intraoral and extraoral scans. Am. J. Orthod. Dentofac. Orthop. 2022, 162, 208–213. [Google Scholar] [CrossRef]
- Kwon, M.; Cho, Y.; Kim, D.W.; Kim, M.; Kim, Y.J.; Chang, M. Full-arch accuracy of five intraoral scanners: In vivo analysis of trueness and precision. Korean J. Orthod. 2021, 51, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Liczmanski, K.; Stamm, T.; Sauerland, C.; Blanck-Lubarsch, M. Accuracy of intraoral scans in the mixed dentition: A prospective non-randomized comparative clinical trial. Head Face Med. 2020, 16, 11. [Google Scholar] [CrossRef] [PubMed]
- Schlenz, M.A.; Stillersfeld, J.M.; Wöstmann, B.; Schmidt, A. Update on the Accuracy of Conventional and Digital Full-Arch Impressions of Partially Edentulous and Fully Dentate Jaws in Young and Elderly Subjects: A Clinical Trial. J. Clin. Med. 2022, 11, 3723. [Google Scholar] [CrossRef] [PubMed]
Linear Distance | Mean (Trueness) [µm] ± SD (Precision) [µm] | ||||
---|---|---|---|---|---|
PRI | TIO | EME | MED | CAI | |
Pooled data | 42 ± 41 | 47 ± 44 | 57 ± 64 | 60 ± 56 | 71 ± 65 |
D1_2 | 23 ± 20 | 20 ± 17 | 29 ± 27 | 25 ± 23 | 58 ± 40 |
D1_3 | 43 ± 29 | 59 ± 39 | 67 ± 59 | 60 ± 38 | 83 ± 81 |
D1_4 | 88 ± 62 | 84 ± 62 | 123 ± 101 | 125 ± 70 | 80 ± 59 |
D2_3 | 26 ± 20 | 43 ± 32 | 37 ± 31 | 48 ± 32 | 62 ± 69 |
D2_4 | 48 ± 34 | 45 ± 35 | 59 ± 48 | 73 ± 62 | 74 ± 52 |
D3_4 | 27 ± 22 | 30 ± 36 | 24 ± 18 | 28 ± 20 | 69 ± 81 |
Angle | Mean (Trueness) [°] ± SD (Precision) [°] | ||||
---|---|---|---|---|---|
PRI | TIO | EME | MED | CAI | |
Pooled data | 0.19 ± 0.17 | 0.14 ± 0.18 | 0.12 ± 0.15 | 0.19 ± 0.20 | 0.28 ± 0.43 |
A1_2 | 0.12 ± 0.10 | 0.09 ± 0.11 | 0.08 ± 0.10 | 0.13 ± 0.12 | 0.18 ± 0.27 |
A1_3 | 0.23 ± 0.19 | 0.18 ± 0.21 | 0.15 ± 0.19 | 0.24 ± 0.23 | 0.36 ± 0.52 |
A1_4 | 0.24 ± 0.20 | 0.19 ± 0.22 | 0.15 ± 0.19 | 0.25 ± 0.24 | 0.37 ± 0.53 |
A2_3 | 0.17 ± 0.14 | 0.13 ± 0.15 | 0.11 ± 0.13 | 0.17 ± 0.17 | 0.25 ± 0.37 |
A2_4 | 0.23 ± 0.19 | 0.18 ± 0.21 | 0.15 ± 0.19 | 0.24 ± 0.23 | 0.35 ± 0.52 |
A3_4 | 0.12 ± 0.10 | 0.09 ± 0.11 | 0.08 ± 0.10 | 0.12 ± 0.12 | 0.18 ± 0.27 |
Impression Technique | PRI 80 ± 20 s | TIO 102 ± 29 s | EME 136 ± 31 s | MED 116 ± 36 s |
---|---|---|---|---|
TIO 102 ± 29 s | 0.004 | - | - | - |
EME 136 ± 31 s | <0.001 | 0.063 | - | - |
MED 116 ± 36 s | 0.024 | 0.202 | 0.057 | - |
CAI 122 ± 11 s | <0.001 | 0.004 | 0.052 | 0.410 |
CAI + CPC 349 ± 40 s | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bock, N.C.; Klaus, K.; Liebel, M.M.; Ruf, S.; Wöstmann, B.; Schlenz, M.A. What to Prefer in Patients with Multibracket Appliances? Digital vs. Conventional Full-Arch Impressions—A Reference Aid-Based In Vivo Study. J. Clin. Med. 2023, 12, 3071. https://doi.org/10.3390/jcm12093071
Bock NC, Klaus K, Liebel MM, Ruf S, Wöstmann B, Schlenz MA. What to Prefer in Patients with Multibracket Appliances? Digital vs. Conventional Full-Arch Impressions—A Reference Aid-Based In Vivo Study. Journal of Clinical Medicine. 2023; 12(9):3071. https://doi.org/10.3390/jcm12093071
Chicago/Turabian StyleBock, Niko Christian, Katharina Klaus, Moritz Maximilian Liebel, Sabine Ruf, Bernd Wöstmann, and Maximiliane Amelie Schlenz. 2023. "What to Prefer in Patients with Multibracket Appliances? Digital vs. Conventional Full-Arch Impressions—A Reference Aid-Based In Vivo Study" Journal of Clinical Medicine 12, no. 9: 3071. https://doi.org/10.3390/jcm12093071
APA StyleBock, N. C., Klaus, K., Liebel, M. M., Ruf, S., Wöstmann, B., & Schlenz, M. A. (2023). What to Prefer in Patients with Multibracket Appliances? Digital vs. Conventional Full-Arch Impressions—A Reference Aid-Based In Vivo Study. Journal of Clinical Medicine, 12(9), 3071. https://doi.org/10.3390/jcm12093071