Association between Fibrinogen-to-Albumin Ratio and Prognosis in Patients Admitted to an Intensive Care Unit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Curation & Study Population
2.2. Definitions & Study Endpoints
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ridley, S.A. Uncertainty and scoring systems. Anaesthesia 2002, 57, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Keegan, M.T.; Soares, M. What every intensivist should know about prognostic scoring systems and risk-adjusted mortality. Rev. Bras. Ter. Intensiv. 2016, 28, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Unertl, K.; Kottler, B.M. Prognostic scores in intensive care. Anaesthesist 1997, 46, 471–480. [Google Scholar] [CrossRef]
- Bouch, D.C.; Thompson, J.P. Severity scoring systems in the critically ill. Contin. Educ. Anaesth. Crit. Care Pain 2008, 8, 181–185. [Google Scholar] [CrossRef]
- Ferreira, F.L.; Bota, D.P.; Bross, A.; Mélot, C.; Vincent, J.L. Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA 2001, 286, 1754–1758. [Google Scholar] [CrossRef] [PubMed]
- Bender, M.; Haferkorn, K.; Friedrich, M.; Uhl, E.; Stein, M. Impact of Early C-Reactive Protein/Albumin Ratio on Intra-Hospital Mortality Among Patients with Spontaneous Intracerebral Hemorrhage. J. Clin. Med. 2020, 9, 1236. [Google Scholar] [CrossRef]
- Jang, J.H.; Hong, S.; Ryu, J.A. Prognostic Value of C-Reactive Protein and Albumin in Neurocritically Ill Patients with Acute Stroke. J. Clin. Med. 2022, 11, 5067. [Google Scholar] [CrossRef]
- Duan, Z.; Luo, C.; Fu, B.; Han, D. Association between fibrinogen-to-albumin ratio and the presence and severity of coronary artery disease in patients with acute coronary syndrome. BMC Cardiovasc. Disord. 2021, 21, 588. [Google Scholar] [CrossRef]
- Lee, L.E.; Pyo, J.Y.; Ahn, S.S.; Song, J.J.; Park, Y.B.; Lee, S.W. Fibrinogen to albumin ratio reflects the activity of antineutrophil cytoplasmic antibody-associated vasculitis. J. Clin. Lab. Anal. 2021, 35, e23731. [Google Scholar] [CrossRef]
- Liu, X.; Yu, Z.; Wen, D.; Ma, L.; You, C. Prognostic value of albumin-fibrinogen ratio in subarachnoid hemorrhage patients. Medicine 2021, 100, e25764. [Google Scholar] [CrossRef]
- Tai, H.; Zhu, Z.; Mei, H.; Sun, W.; Zhang, W. Albumin-to-Fibrinogen Ratio Independently Predicts 28-Day Mortality in Patients with Peritonitis-Induced Sepsis. Mediat. Inflamm. 2020, 2020, 7280708. [Google Scholar] [CrossRef]
- Fang, L.; Yan, F.H.; Liu, C.; Chen, J.; Wang, D.; Zhang, C.H.; Lou, C.J.; Lian, J.; Yao, Y.; Wang, B.J.; et al. Systemic Inflammatory Biomarkers, Especially Fibrinogen to Albumin Ratio, Predict Prognosis in Patients with Pancreatic Cancer. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2021, 53, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Hu, M.; Song, J.; Xu, X.; Liu, H.; Qiu, L.; Zhu, H.; Xu, M.; Geng, D.; Yang, L.; et al. High Fibrinogen to Albumin Ratio: A Novel Marker for Risk of Stroke-Associated Pneumonia? Front. Neurol. 2021, 12, 747118. [Google Scholar] [CrossRef]
- Meng, Z.; Zhao, Y.; He, Y. Fibrinogen Level Predicts Outcomes in Critically Ill Patients with Acute Exacerbation of Chronic Heart Failure. Dis. Markers 2021, 2021, 6639393. [Google Scholar] [CrossRef]
- Tang, X.; Shao, L.; Dou, J.; Zhou, Y.; Chen, M.; Cui, Y.; Zhang, Y.; Wang, C. Fibrinogen as a Prognostic Predictor in Pediatric Patients with Sepsis: A Database Study. Mediat. Inflamm. 2020, 2020, 9153620. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Yang, J.; Han, X. Fibrinogen-to-Albumin Ratio is Associated with All-Cause Mortality in Cancer Patients. Int. J. Gen. Med. 2021, 14, 4867–4875. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Schisterman, E.F.; Perkins, N.J.; Liu, A.; Bondell, H. Optimal cut-point and its corresponding Youden Index to discriminate individuals using pooled blood samples. Epidemiology 2005, 16, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Ruopp, M.D.; Perkins, N.J.; Whitcomb, B.W.; Schisterman, E.F. Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom. J. 2008, 50, 419–430. [Google Scholar] [CrossRef]
- Austin, P.C.; Stuart, E.A. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat. Med. 2015, 34, 3661–3679. [Google Scholar] [CrossRef] [Green Version]
- Austin, P.C. Using the Standardized Difference to Compare the Prevalence of a Binary Variable Between Two Groups in Observational Research. Commun. Stat.-Simul. Comput. 2009, 38, 1228–1234. [Google Scholar] [CrossRef]
- Khalaf, K.; Johnell, K.; Austin, P.C.; Tyden, P.; Midlov, P.; Perez-Vicente, R.; Merlo, J. Low adherence to statin treatment during the 1st year after an acute myocardial infarction is associated with increased 2nd-year mortality risk-an inverse probability of treatment weighted study on 54,872 patients. Eur. Heart J.—Cardiovasc. Pharmacother. 2021, 7, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Latouche, A.; Porcher, R.; Chevret, S. Sample size formula for proportional hazards modelling of competing risks. Stat. Med. 2004, 23, 3263–3274. [Google Scholar] [CrossRef] [PubMed]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Halabi, S.; Owzar, K. The importance of identifying and validating prognostic factors in oncology. Semin. Oncol. 2010, 37, e9–e18. [Google Scholar] [CrossRef]
- Sibbald, R.; Downar, J.; Hawryluck, L. Perceptions of “futile care” among caregivers in intensive care units. Cmaj 2007, 177, 1201–1208. [Google Scholar] [CrossRef]
- Levi, M.; van der Poll, T. Inflammation and coagulation. Crit. Care Med. 2010, 38, S26–S34. [Google Scholar] [CrossRef]
- Niederwanger, C.; Bachler, M.; Hell, T.; Linhart, C.; Entenmann, A.; Balog, A.; Auer, K.; Innerhofer, P. Inflammatory and coagulatory parameters linked to survival in critically ill children with sepsis. Ann. Intensive Care 2018, 8, 111. [Google Scholar] [CrossRef]
- Doweik, L.; Maca, T.; Schillinger, M.; Budinsky, A.; Sabeti, S.; Minar, E. Fibrinogen predicts mortality in high risk patients with peripheral artery disease. Eur. J. Vasc. Endovasc. Surg. 2003, 26, 381–386. [Google Scholar] [CrossRef]
- Sui, J.; Noubouossie, D.F.; Gandotra, S.; Cao, L. Elevated Plasma Fibrinogen Is Associated With Excessive Inflammation and Disease Severity in COVID-19 Patients. Front. Cell. Infect. Microbiol. 2021, 11, 734005. [Google Scholar] [CrossRef]
- Inaba, K.; Karamanos, E.; Lustenberger, T.; Schöchl, H.; Shulman, I.; Nelson, J.; Rhee, P.; Talving, P.; Lam, L.; Demetriades, D. Impact of fibrinogen levels on outcomes after acute injury in patients requiring a massive transfusion. J. Am. Coll. Surg. 2013, 216, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Afşin, A.; Tibilli, H.; Hoşoğlu, Y.; Asoğlu, R.; Süsenbük, A.; Markirt, S.; Tuna, V.D. Fibrinogen-to-albumin ratio predicts mortality in COVID-19 patients admitted to the intensive care unit. Adv. Respir. Med. 2021, 89, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Bender, M.; Haferkorn, K.; Tajmiri-Gondai, S.; Uhl, E.; Stein, M. Fibrinogen to Albumin Ratio as Early Serum Biomarker for Prediction of Intra-Hospital Mortality in Neurosurgical Intensive Care Unit Patients with Spontaneous Intracerebral Hemorrhage. J. Clin. Med. 2022, 11, 4214. [Google Scholar] [CrossRef] [PubMed]
1st Tertile < 6.41 (n = 6189) | 2nd Tertile < 10.59 (n = 6182) | 3rd Tertile (n = 6191) | p-Value | |
---|---|---|---|---|
Fibrinogen/albumin ratio | 4.9 ± 1.1 | 8.1 ± 1.2 | 17.6 ± 6.3 | <0.001 |
Fibrinogen, mg/dL | 163.6 ± 48.7 | 259.5 ± 62.8 | 494.0 ± 161.6 | <0.001 |
Albumin, g/L | 33.1 ± 6.5 | 32.0 ± 6.6 | 28.8 ± 5.9 | <0.001 |
SOFA score at ICU admission | 5.4 ± 3.9 | 4.4 ± 3.8 | 4.7 ± 3.9 | <0.001 |
Apache score at ICU admission | 17.1 ± 5.7 | 15.5 ± 6.4 | 15.1 ± 6.8 | <0.001 |
Age | 57.6 ± 14.3 | 62.5 ± 13.5 | 63.2 ± 14.6 | <0.001 |
Male | 3788 (61.2) | 4033 (65.2) | 3956 (63.9) | <0.001 |
Comorbidities | ||||
Hypertension | 3804 (61.2) | 4048 (65.3) | 3925 (63.8) | <0.001 |
Malignancy | 532 (8.6) | 794 (12.8) | 1233 (19.9) | <0.001 |
Diabetes mellitus | 1368 (22.1) | 1920 (31.1) | 1972 (31.9) | <0.001 |
Chronic kidney disease | 133 (2.1) | 314 (5.1) | 406 (6.6) | <0.001 |
Chronic liver disease | 975 (15.8) | 391 (6.3) | 295 (4.8) | <0.001 |
Chronic obstructive pulmonary disease | 151 (2.4) | 191 (3.1) | 235 (3.8) | <0.001 |
Stroke | 289 (4.7) | 410 (6.6) | 356 (5.8) | <0.001 |
Heart failure | 131 (2.1) | 212 (3.4) | 161 (2.6) | <0.001 |
Tuberculosis | 204 (3.3) | 271 (4.4) | 422 (6.8) | <0.001 |
Coronary artery disease | 351 (5.7) | 663 (10.7) | 547 (8.8) | <0.001 |
Habitual risk factors | ||||
Current smoker | 738 (11.9) | 802 (13.0) | 707 (11.4) | 0.026 |
Alcohol intake | 1517 (24.5) | 1437 (23.2) | 1132 (18.3) | <0.001 |
Cause of ICU admission | ||||
Severe trauma | 33 (0.5) | 20 (0.3) | 23 (0.4) | 0.160 |
Perioperative management | 4641 (75.0) | 3948 (63.9) | 1758 (28.4) | <0.001 |
Post-cardiac arrest syndrome | 74 (1.2) | 87 (1.4) | 122 (2.0) | 0.001 |
Neurological disorder | 101 (1.6) | 144 (2.3) | 121 (2.0) | 0.020 |
Respiratory distress | 212 (3.4) | 403 (6.5) | 1821 (29.4) | <0.001 |
Cardiovascular disease | 573 (9.3) | 1048 (17.0) | 1407 (22.7) | <0.001 |
Abdominal disorder | 264 (4.3) | 159 (2.6) | 238 (3.8) | <0.001 |
Others | 291 (4.7) | 373 (6.0) | 701 (11.3) | <0.001 |
ICU management | ||||
Mechanical ventilation | 2417 (39.1) | 2252 (36.4) | 2811 (45.4) | <0.001 |
Continuous renal replacement therapy | 386 (6.2) | 346 (5.6) | 574 (9.3) | <0.001 |
Extracorporeal membrane oxygenation | 397 (6.4) | 387 (6.3) | 496 (8.0) | <0.001 |
Use of vasopressor | 2786 (45.0) | 2300 (37.2) | 2138 (34.5) | <0.001 |
Clinical outcomes | ||||
One-year mortality | 713 (11.5) | 820 (13.3) | 2213 (35.7) | <0.001 |
30-day mortality | 499 (8.1) | 447 (7.2) | 1161 (18.8) | <0.001 |
Length of hospital stay, hour | 560 (9.0) | 527 (8.5) | 1324 (21.4) | <0.001 |
During ICU stay, hour | 344 (5.6) | 268 (4.3) | 679 (11.0) | <0.001 |
Low Group (n = 12,533) | High Group (n = 6029) | Before IPW | After IPW | ||
---|---|---|---|---|---|
p-Value | ASD | ASD | |||
Fibrinogen/albumin ratio | 6.6 ± 2.0 | 17.7 ± 6.2 | |||
Fibrinogen, mg/dL | 213.0 ± 74.9 | 498.4 ± 161.1 | |||
Albumin, g/L | 323.6 ± 6.6 | 28.8 ± 5.8 | |||
SOFA score at ICU admission | 4.9 ± 3.9 | 4.8 ± 3.9 | 0.010 | 4.2 | 2.6 |
Apache score at ICU admission | 16.3 ± 6.1 | 16.0 ± 6.9 | <0.001 | 18.0 | 7.9 |
Age | 60.1 ± 14.1 | 63.2 ± 14.6 | <0.001 | 21.3 | 0.2 |
Male | 7929 (63.3) | 3848 (63.8) | 0.470 | 1.2 | 0.6 |
Comorbidities | |||||
Hypertension | 5333 (42.6) | 2824 (46.8) | <0.001 | 8.6 | 1.5 |
Malignancy | 1352 (10.8) | 1207 (20.0) | <0.001 | 25.8 | 0.5 |
Diabetes mellitus | 3341 (26.7) | 1919 (31.8) | <0.001 | 11.4 | 1.6 |
Chronic kidney disease | 456 (3.6) | 397 (6.6) | <0.001 | 13.4 | 0.1 |
Chronic liver disease | 1373 (11.0) | 288 (4.8) | <0.001 | 23.1 | 1.3 |
Chronic obstructive pulmonary disease | 347 (2.8) | 230 (3.8) | <0.001 | 5.9 | 0.3 |
Stroke | 709 (5.7) | 346 (5.7) | 0.850 | 0.4 | <0.1 |
Heart failure | 349 (2.8) | 155 (2.6) | 0.430 | 1.3 | 0.2 |
Tuberculosis | 483 (3.9) | 414 (6.9) | <0.001 | 13.4 | 0.4 |
Coronary artery disease | 1038 (8.3) | 523 (8.7) | 0.380 | 1.4 | 1.8 |
Habitual risk factors | |||||
Current smoker | 1557 (12.4) | 690 (11.4) | 0.060 | 3.0 | 2.8 |
Alcohol intake | 2988 (23.8) | 1098 (18.2) | <0.001 | 13.8 | 3.2 |
Cause of ICU admission | |||||
Severe trauma | 53 (0.4) | 23 (0.4) | 0.770 | 0.7 | 0.1 |
Perioperative management | 8686 (69.3) | 1661 (27.6) | <0.001 | 0.9 | 2.7 |
Post-cardiac arrest syndrome | 162 (1.3) | 121 (2.0) | <0.001 | 5.6 | 0.6 |
Neurological disorder | 249 (2.0) | 117 (1.9) | 0.880 | 0.3 | 1.2 |
Respiratory distress | 628 (5.0) | 1808 (30.0) | <0.001 | 69.6 | 0.3 |
Cardiovascular disease | 1655 (13.2) | 1373 (22.8) | <0.001 | 25.1 | 2.3 |
Abdominal disorder | 426 (3.4) | 235 (3.9) | 0.090 | 2.7 | 0.2 |
Others | 674 (5.4) | 691 (11.5) | <0.001 | 22.0 | 0.6 |
ICU management | |||||
Mechanical ventilation | 4720 (37.7) | 2760 (45.8) | <0.001 | 16.5 | 0.4 |
Continuous renal replacement therapy | 742 (5.9) | 564 (9.4) | <0.001 | 13.0 | 0.5 |
Extracorporeal membrane oxygenation | 793 (6.3) | 487 (8.1) | <0.001 | 6.8 | 1.9 |
Use of vasopressor | 5138 (41.0) | 2086 (34.6) | <0.001 | 13.2 | 2.8 |
Low Group | High Group | Unadjusted HR (95% CI) | p Value | IPW Adjusted HR (95% CI) | p Value | |
---|---|---|---|---|---|---|
(n = 12,533) | (n = 6029) | |||||
One-year mortality | 1551 (12.4) | 2195 (36.4) | 3.47 (3.25–3.70) | <0.001 | 1.72 (1.59–1.86) | <0.001 |
30-day mortality | 955 (7.6) | 1152 (19.1) | 2.68 (2.46–2.92) | <0.001 | 1.32 (1.19–1.46) | <0.001 |
In-hospital mortality | 1098 (8.8) | 1313 (21.8) | 2.74 (2.52–2.96) | <0.001 | 1.33 (1.21–1.47) | <0.001 |
ICU mortality | 614 (4.9) | 677 (11.2) | 2.42 (2.17–2.70) | <0.001 | 1.10 (0.97–1.26) | 0.140 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.-S.; Oh, A.-R.; Park, J.; Ryu, J.-A. Association between Fibrinogen-to-Albumin Ratio and Prognosis in Patients Admitted to an Intensive Care Unit. J. Clin. Med. 2023, 12, 1407. https://doi.org/10.3390/jcm12041407
Kim K-S, Oh A-R, Park J, Ryu J-A. Association between Fibrinogen-to-Albumin Ratio and Prognosis in Patients Admitted to an Intensive Care Unit. Journal of Clinical Medicine. 2023; 12(4):1407. https://doi.org/10.3390/jcm12041407
Chicago/Turabian StyleKim, Keun-Soo, Ah-Ran Oh, Jungchan Park, and Jeong-Am Ryu. 2023. "Association between Fibrinogen-to-Albumin Ratio and Prognosis in Patients Admitted to an Intensive Care Unit" Journal of Clinical Medicine 12, no. 4: 1407. https://doi.org/10.3390/jcm12041407
APA StyleKim, K.-S., Oh, A.-R., Park, J., & Ryu, J.-A. (2023). Association between Fibrinogen-to-Albumin Ratio and Prognosis in Patients Admitted to an Intensive Care Unit. Journal of Clinical Medicine, 12(4), 1407. https://doi.org/10.3390/jcm12041407