Clinicopathological Features and Prognosis of Resected Pancreatic Ductal Adenocarcinoma Patients with Claudin-18 Overexpression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Immunohistochemistry
2.3. Histological Assessment
2.4. Ethics
2.5. Statistical Analysis
3. Results
3.1. Demographic and Clinicopathological Patient Characteristics
3.2. CLND18 Expression in PDAC
3.3. CLDN18 Expression and Clinicopathological Features
3.4. CLDN18 Expression and Survival Outcomes
3.5. CLDN18 Expression and Patterns of Recurrence or Metastasis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ilic, M.; Ilic, I. Epidemiology of pancreatic cancer. World J. Gastroenterol. 2016, 22, 9694. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M. Pancreatic cancer. N. Engl. J. Med. 2010, 362, 1605–1617. [Google Scholar] [CrossRef] [PubMed]
- Rawla, P.; Sunkara, T.; Gaduputi, V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J. Oncol. 2019, 10, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Cokkinides, V.; Albano, J.; Samuels, A.; Ward, M.; Thum, J. American Cancer Society: Cancer Facts and Figures; American Cancer Society: Atlanta, GA, USA, 2005. [Google Scholar]
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; et al. Increased Survival in Pancreatic Cancer with nab-Paclitaxel plus Gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef]
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.-L.; Gourgou-Bourgade, S.; De La Fouchardière, C.; et al. FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef]
- Moore, M.J.; Goldstein, D.; Hamm, J.; Figer, A.; Hecht, J.R.; Gallinger, S.; Au, H.J.; Murawa, P.; Walde, D.; Wolff, R.A.; et al. Erlotinib Plus Gemcitabine Compared with Gemcitabine Alone in Patients with Advanced Pancreatic Cancer: A Phase III Trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 2007, 25, 1960–1966. [Google Scholar] [CrossRef]
- Golan, T.; Hammel, P.; Reni, M.; Van Cutsem, E.; Macarulla, T.; Hall, M.J.; Park, J.-O.; Hochhauser, D.; Arnold, D.; Oh, D.-Y.; et al. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. N. Engl. J. Med. 2019, 381, 317–327. [Google Scholar] [CrossRef]
- Hong, D.S.; DuBois, S.G.; Kummar, S.; Farago, A.F.; Albert, C.M.; Rohrberg, K.S.; van Tilburg, C.M.; Nagasubramanian, R.; Berlin, J.D.; Federman, N.; et al. Larotrectinib in patients with TRK fusion-positive solid tumours: A pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020, 21, 531–540. [Google Scholar] [CrossRef]
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef]
- Morin, P.J. Claudin Proteins in Human Cancer: Promising New Targets for Diagnosis and Therapy. Cancer Res. 2005, 65, 9603–9606. [Google Scholar] [CrossRef]
- Angelow, S.; Ahlstrom, R.; Yu, A.S. Biology of claudins. Am. J. Physiol.-Ren. Physiol. 2008, 295, F867–F876. [Google Scholar] [CrossRef]
- Swisshelm, K.; Macek, R.; Kubbies, M. Role of claudins in tumorigenesis. Adv. Drug Deliv. Rev. 2005, 57, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Krämer, F.; White, K.; Kubbies, M.; Swisshelm, K.; Weber, B.H.F. Genomic organization of claudin-1 and its assessment in hereditary and sporadic breast cancer. Hum. Genet. 2000, 107, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Resnick, M.B.; Konkin, T.; Routhier, J.; Sabo, E.; Pricolo, V.E. Claudin-1 is a strong prognostic indicator in stage II colonic cancer: A tissue microarray study. Mod. Pathol. 2005, 18, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Rangel, L.B.; Agarwal, R.; D’Souza, T.; Pizer, E.S.; Alo, P.L.; Lancaster, W.D.; Gregoire, L.; Schwartz, D.R.; Cho, K.R.; Morin, P.J. Tight junction proteins claudin-3 and claudin-4 are frequently overexpressed in ovarian cancer but not in ovarian cystade-nomas. Clin. Cancer Res. 2003, 9, 2567–2575. [Google Scholar]
- Kominsky, S.L.; Vali, M.; Korz, D.; Gabig, T.G.; Weitzman, S.A.; Argani, P.; Sukumar, S. Clostridium perfringens Enterotoxin Elicits Rapid and Specific Cytolysis of Breast Carcinoma Cells Mediated through Tight Junction Proteins Claudin 3 and 4. Am. J. Pathol. 2004, 164, 1627–1633. [Google Scholar] [CrossRef]
- Nichols, L.S.; Ashfaq, R.; Iacobuzio-Donahue, C.A. Claudin 4 protein expression in primary and metastatic pancreatic cancer: Support for use as a therapeutic target. Am. J. Clin. Pathol. 2004, 121, 226–230. [Google Scholar] [CrossRef]
- Niimi, T.; Nagashima, K.; Ward, J.M.; Minoo, P.; Zimonjic, D.B.; Popescu, N.C.; Kimura, S. Claudin-18, a novel downstream target gene for the T/EBP/NKX2. 1 homeodomain transcription factor, encodes lung-and stomach-specific isoforms through alternative splicing. Mol. Cell. Biol. 2001, 21, 7380–7390. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, K.S.; Kim, T.-J.; Hong, S.P.; Song, S.Y.; Chung, J.B.; Park, S.W. Immunohistochemical analysis of claudin expression in pancreatic cystic tumors. Oncol. Rep. 2011, 25, 971–978. [Google Scholar] [CrossRef]
- Wöll, S.; Schlitter, A.M.; Dhaene, K.; Roller, M.; Esposito, I.; Sahin, U.; Türeci, Ö. Claudin 18.2 is a target for IMAB362 antibody in pancreatic neoplasms. Int. J. Cancer 2014, 134, 731–739. [Google Scholar] [CrossRef]
- Karanjawala, Z.E.; Illei, P.B.; Ashfaq, R.; Infante, J.R.; Murphy, K.; Pandey, A.; Schulick, R.; Winter, J.; Sharma, R.; Maitra, A.M.; et al. New Markers of Pancreatic Cancer Identified Through Differential Gene Expression Analyses: Claudin 18 and Annexin A8. Am. J. Surg. Pathol. 2008, 32, 188. [Google Scholar] [CrossRef]
- Singh, P.; Toom, S.; Huang, Y. Anti-claudin 18.2 antibody as new targeted therapy for advanced gastric cancer. J. Hematol. Oncol. 2017, 10, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Sahin, U.; Türeci, Ö.; Manikhas, G.; Lordick, F.; Rusyn, A.; Vynnychenko, I.; Dudov, A.; Bazin, I.; Bondarenko, I.; Melichar, B.; et al. FAST: A randomised phase II study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18.2-positive gastric and gastro-oesophageal adenocarcinoma. Ann. Oncol. 2021, 32, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Chun, Y.S.; Pawlik, T.M.; Vauthey, J.N. 8th Edition of the AJCC Cancer Staging Manual: Pancreas and Hepatobiliary Cancers. Ann. Surg. Oncol. 2018, 25, 845–847. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, S.R.; Aaltonen, L.A. Pathology and Genetics of Tumours of the Digestive System; IARC Press: Lyon, France, 2000; Volume 2. [Google Scholar]
- Park, W.; O’Reilly, E.M.; Furuse, J.; Kunieda, F.; Jie, F.; Kindler, H.L. Phase II, open-label, randomized study of first-line zolbetuximab plus gemcitabine and nab-paclitaxel (GN) in Claudin 18.2–positive metastatic pancreatic cancer (mPC). Am. Soc. J. Clin. Oncol. 2020, 38, TPS4667. [Google Scholar] [CrossRef]
- Qi, C.; Gong, J.; Li, J.; Liu, D.; Qin, Y.; Ge, S.; Zhang, M.; Peng, Z.; Zhou, J.; Cao, Y.; et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: Phase 1 trial interim results. Nat. Med. 2022, 28, 1189–1198. [Google Scholar] [CrossRef]
- Tanaka, M.; Shibahara, J.; Fukushima, N.; Shinozaki, A.; Umeda, M.; Ishikawa, S.; Kokudo, N.; Fukayama, M. Claudin-18 Is an Early-Stage Marker of Pancreatic Carcinogenesis. J. Histochem. Cytochem. 2011, 59, 942–952. [Google Scholar] [CrossRef]
- Soini, Y.; Takasawa, A.; Eskelinen, M.; Juvonen, P.; Kärjä, V.; Hasegawa, T.; Murata, M.; Tanaka, S.; Kojima, T.; Sawada, N. Expression of claudins 7 and 18 in pancreatic ductal adenocarcinoma: Association with features of differentiation. J. Clin. Pathol. 2012, 65, 431–436. [Google Scholar] [CrossRef]
- Oshima, T.; Shan, J.; Okugawa, T.; Chen, X.; Hori, K.; Tomita, T.; Fukui, H.; Watari, J.; Miwa, H. Down-Regulation of Claudin-18 Is Associated with the Proliferative and Invasive Potential of Gastric Cancer at the Invasive Front. PLoS ONE 2013, 8, e74757. [Google Scholar] [CrossRef]
- Psaila, B.; Lyden, D. The metastatic niche: Adapting the foreign soil. Nat. Rev. Cancer 2009, 9, 285–293. [Google Scholar] [CrossRef]
Variables | Total (n = 130) | CLDN18 Negative (n = 89) | CLDN18 Positive (n = 41) | p Value |
---|---|---|---|---|
Age, Median (Range) | 68 (36–86) | 68 (36–81) | 63 (39–86) | 0.219 |
Gender, n (%) | 0.421 | |||
Male | 67 (51.5) | 48 (71.6) | 19 (28.4) | |
Female | 63 (48.5) | 41 (65.1) | 22 (34.9) | |
Tumor location, n (%) | 0.542 | |||
Head | 97 (74.6) | 65 (67.0) | 32 (33.0) | |
Body/Tail | 33 (25.4) | 24 (72.7) | 9 (27.3) | |
Histologic grading, n (%) | <0.001 | |||
Grade 1 | 31 (23.8) | 13 (41.9) | 18 (58.1) | |
Grade 2/3 | 99 (76.2) | 76 (76.8) | 23 (23.2) | |
Tumor stage, n (%) | 0.542 | |||
T1–2 | 97 (74.6) | 65 (67.0) | 32 (33.0) | |
T3 | 33 (25.4) | 24 (72.7) | 9 (27.3) | |
Node stage, n (%) | 0.045 | |||
N0 | 41 (31.5) | 23 (56.1) | 18 (43.9) | |
N1–2 | 89 (68.5) | 66 (74.2) | 23 (25.8) | |
TNM stage *, n (%) | 0.015 | |||
Stage I | 33 (25.4) | 17 (51.5) | 16 (48.5) | |
Stage II/III/IV | 97 (74.6) | 72 (74.2) | 25 (25.8) | |
Lymphatic invasion, n (%) | 0.902 | |||
No | 39 (30.0) | 27 (69.2) | 12 (30.8) | |
Yes | 91 (70.0) | 62 (68.1) | 29 (31.9) | |
Vascular invasion, n (%) | 0.031 | |||
No | 55 (42.3) | 32 (58.2) | 23 (41.8) | |
Yes | 75 (57.7) | 57 (76.0) | 18 (24.0) | |
Perineural invasion, n (%) | 0.979 | |||
No | 16 (12.3) | 11 (68.8) | 5 (31.2) | |
Yes | 114 (87.7) | 78 (68.4) | 36 (31.6) | |
Lymph node ratio, n (%) | 0.038 | |||
≤0.1 | 71 (54.6) | 43 (60.6) | 28 (39.4) | |
>0.1 | 59 (45.4) | 46 (78.0) | 13 (22.0) | |
Received adjuvant CTx, n (%) ** | 0.338 | |||
No | 39 (31.7) | 24 (61.5) | 15 (38.5) | |
Yes | 84 (68.3) | 59 (70.2) | 25 (29.8) | |
Regimen of adjuvant CTx, n (%) † | 0.709 | |||
Gemcitabine | 19 (22.6) | 14 (73.7) | 5 (26.3) | |
5-FU/Leucovorin | 65 (77.4) | 45 (69.2) | 20 (30.8) | |
Preoperative CA19-9 level, n (%) | 0.737 | |||
Within normal (<40 U/mL) | 39 (30.0) | 26 (66.7) | 13 (33.3) | |
Above normal (≥40 U/mL) | 76 (58.5) | 53 (69.7) | 23 (30.3) | |
Missing data | 15 (11.5) |
RFS | ||||
---|---|---|---|---|
Variables | Univariate Analysis | Multivariate Analysis | ||
HR (95% CI) | p Value | HR (95% CI) | p Value | |
Age ≥ 65 (vs. <65 year) | 0.93 (0.64–1.36) | 0.705 | ||
Histologic grade 2–3 (vs. grade 1) | 2.06 (1.30–3.27) | 0.002 | 2.08 (1.30–3.33) | 0.002 |
Received adjuvant chemotherapy (vs. none) | 0.48 (0.31–0.73) | 0.001 | 0.29 (0.18–0.46) | <0.001 |
Stage II (vs. Stage I) | 1.68 (1.06–2.67) | 0.027 | 1.26 (0.74–2.13) | 0.391 |
Stage III (vs. Stage I) | 2.46 (1.39–4.35) | 0.002 | 1.56 (0.71–3.44) | 0.272 |
Lymphatic invasion (vs. none) | 1.49 (0.98–2.27) | 0.064 | ||
Vascular invasion (vs. none) | 1.62 (1.10–2.40) | 0.015 | 1.40 (0.93–2.11) | 0.109 |
Perineural invasion (vs. none) | 1.97 (1.10–3.54) | 0.022 | 2.56 (1.32–4.95) | 0.005 |
LNR > 0.1 (vs. ≤0.1) | 1.70 (1.16–2.50) | 0.007 | 1.30 (0.75–2.24) | 0.352 |
CLDN18-positive (vs. negative) | 0.90 (0.60–1.33) | 0.589 |
OS | ||||
---|---|---|---|---|
Variables | Univariate Analysis | Multivariate Analysis | ||
HR (95% CI) | p Value | HR (95% CI) | p Value | |
Age ≥ 65 (vs. <65 year) | 1.01 (0.68–1.49) | 0.968 | ||
Histologic grade 2–3 (vs. grade 1) | 1.91 (1.19–3.07) | 0.007 | 1.75 (1.07–2.84) | 0.025 |
Received adjuvant chemotherapy (vs. none) | 0.71 (0.46–1.09) | 0.118 | 0.62 (0.40–0.98) | 0.040 |
Stage II (vs. Stage I) | 1.39 (0.86–2.23) | 0.179 | 1.09 (0.66–1.78) | 0.743 |
Stage III (vs. Stage I) | 2.23 (1.25–3.97) | 0.007 | 1.75 (0.94–3.27) | 0.077 |
Lymphatic invasion (vs. none) | 1.58 (1.03–2.42) | 0.036 | 0.98 (0.59–1.61) | 0.923 |
Vascular invasion (vs. none) | 1.89 (1.26–2.82) | 0.002 | 1.78 (1.15–2.77) | 0.010 |
Perineural invasion (vs. none) | 2.21 (1.17–4.15) | 0.014 | 1.96 (0.97–3.84) | 0.051 |
LNR > 0.1 (vs. ≤0.1) | 1.42 (0.96–2.10) | 0.076 | ||
CLDN18-positive (vs. negative) | 1.06 (0.70–1.61) | 0.770 |
Variables | Total (n = 116) | CLDN18 Negative (n = 79) | CLDN18 Positive (n = 37) | p Value |
---|---|---|---|---|
Site of recurrence, n (%) | 0.732 | |||
Local only | 26 (22.4) | 19 (24.1) | 7 (18.9) | |
Distant only | 63 (54.3) | 43 (54.4) | 20 (54.1) | |
Local and distant | 27 (23.3) | 17 (21.5) | 10 (27.0) | |
Number of metastatic sites, n (%) | 0.279 | |||
Oligometastatic | 71 (61.2) | 51 (64.6) | 20 (54.1) | |
Polymetastatic | 45 (38.8) | 28 (35.4) | 17 (45.9) | |
Metastatic burden, n (%) | 0.523 | |||
0–2 | 80 (69.0) | 53 (67.1) | 27 (73.0) | |
≥3 | 36 (31.0) | 26 (32.9) | 10 (27.0) | |
Liver metastasis, n (%) | 0.506 | |||
No | 74 (63.8) | 52 (65.8) | 22 (59.5) | |
Yes | 42 (36.2) | 27 (34.2) | 15 (40.5) | |
Lung metastasis, n (%) | 0.088 | |||
No | 100 (86.2) | 65 (82.3) | 35 (94.6) | |
Yes | 16 (13.8) | 14 (17.7) | 2 (5.4) | |
Peritoneal metastasis, n (%) | 0.591 | |||
No | 84 (72.4) | 56 (70.9) | 28 (75.7) | |
Yes | 32 (27.6) | 23 (29.1) | 9 (24.3) | |
Distant nodal metastasis, n (%) | 0.011 | |||
No | 81 (69.8) | 61 (77.2) | 20 (54.1) | |
Yes | 35 (30.2) | 18 (22.8) | 17 (45.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Shin, K.; Kim, I.-H.; Hong, T.; Kim, Y.; Suh, J.; Lee, M. Clinicopathological Features and Prognosis of Resected Pancreatic Ductal Adenocarcinoma Patients with Claudin-18 Overexpression. J. Clin. Med. 2023, 12, 5394. https://doi.org/10.3390/jcm12165394
Park S, Shin K, Kim I-H, Hong T, Kim Y, Suh J, Lee M. Clinicopathological Features and Prognosis of Resected Pancreatic Ductal Adenocarcinoma Patients with Claudin-18 Overexpression. Journal of Clinical Medicine. 2023; 12(16):5394. https://doi.org/10.3390/jcm12165394
Chicago/Turabian StylePark, Sejun, Kabsoo Shin, In-Ho Kim, Taeho Hong, Younghoon Kim, Jahee Suh, and Myungah Lee. 2023. "Clinicopathological Features and Prognosis of Resected Pancreatic Ductal Adenocarcinoma Patients with Claudin-18 Overexpression" Journal of Clinical Medicine 12, no. 16: 5394. https://doi.org/10.3390/jcm12165394
APA StylePark, S., Shin, K., Kim, I.-H., Hong, T., Kim, Y., Suh, J., & Lee, M. (2023). Clinicopathological Features and Prognosis of Resected Pancreatic Ductal Adenocarcinoma Patients with Claudin-18 Overexpression. Journal of Clinical Medicine, 12(16), 5394. https://doi.org/10.3390/jcm12165394