Patterns of Dickkopf-3 Serum and Urine Levels at Different Stages of Chronic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Laboratory Measurements and Ardiovascular Status Assessment
2.3. Dkk3 Measurements
2.4. Definitions
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zewinger, S.; Rauen, T.; Rudnicki, M.; Federico, G.; Wagner, M. Dickkopf-3 (DKK3) in Urine Identifies Patients with Short-Term Risk of eGFR Loss. J. Am. Soc. Nephrol. 2018, 29, 2722–2733. [Google Scholar] [CrossRef] [PubMed]
- Boor, P.; Ostendorf, T.; Floege, J. Renal fibrosis: Novel insights into mechanisms and therapeutic targets. Nat. Rev. Nephrol. 2010, 6, 643–656. [Google Scholar] [CrossRef] [PubMed]
- Schunk, S.J.; Speer, T.; Petrakis, I.; Fliser, D. Dickkopf 3—A novel biomarker of the ‘kidney injury continuum’. Nephrol. Dial. Transplant. 2021, 36, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Falodia, J.; Singla, M.K. CKD epidemiology and risk factors. Clin. Queries Nephrol. 2012, 1, 249–252. [Google Scholar] [CrossRef]
- Schunk, S.J.; Floege, J.; Fliser, D.; Speer, T. WNT–β-catenin signaling—A versatile player in kidney injury and repair. Nature 2021, 17, 172–184. [Google Scholar]
- Lipphardt, M.; Dihazi, H.; Jeon, N.L.; Dadafarin, S.; Ratliff, B.B.; Rowe, D.W.; Müller, G.A.; Goligorsky, M.S. Dickkopf-3 in aberrant endothelial secretome triggers renal fibroblast activation and endothelial–mesenchymal transition. Nephrol. Dial. Transplant. 2019, 34, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Hu, J.; Chen, Y.; Shen, W.; Ke, B. Dickkopf-3: Current Knowledge in Kidney Diseases. Front. Physiol. 2020, 11, 533344. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.W.L.; Yiu, W.H.; Wu, H.J.; Li, R.X.; Liu, Y.; Chan, K.W.; Leung, J.C.K.; Chan, L.Y.Y.; Lai, K.N.; Tang, S.C.W. Downregulation of renal tubular Wnt/β-catenin signaling by Dickkopf-3 induces tubular cell death in proteinuric nephropathy. Cell Death Dis. 2016, 7, e2155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Shi, S.; Senthilnathan, S.; Yu, J.; Wu, E.; Bergmann, C.; Zerres, K.; Bogdanova, N.; Coto, E.; Deltas, C.; et al. Genetic variation of DKK3 may modify renal disease severity in ADPKD. J. Am. Soc. Nephrol. 2010, 21, 1510–1520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Liu, X.; Li, X.; Zhao, Y.; Wang, Q.; Zhong, H.; Liu, D.; Yuan, C.; Zheng, T. Dickkopf1 (Dkk1) Alleviates Vascular Calcification by Regulating the Degradation of Phospholipase D1 (PLD1). J. Cardiovasc. Trans. Res. 2022, 15, 1327–1339. [Google Scholar] [CrossRef] [PubMed]
- Niehrs, C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 2006, 25, 7469–7481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Federico, G.; Meister, M.; Mathow, D.; Heine, G.H.; Moldenhauer, G.; Popovic, Z.H.; Nordström, V.; Kopp-Schneider, A.; Hielscher, T.; Nelson, P.J.; et al. Tubular Dickkopf-3 promotes the development of renal atrophy and fibrosis. JCI Insight 2016, 1, e84916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, W.L.; Yang, Y.; Zhang, X.J.; Guo, J.; Gong, J.; Gong, F.H.; She, Z.K.; Huang, Z.; Xia, H.; Li, H. Dickkopf-3 Ablation Attenuates the Development of Atherosclerosis in ApoE-Deficient Mice. J. Am. Heart Assoc. 2017, 6, e004690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sciascia, S.; Barinotti, A.; Radin, M.; Cecchi, I.; Menegatti, E.; Terzolo, E.; Rossi, D.; Baldovino, S.; Fenoglio, R.; Roccatello, D. Dickkopf Homolog 3 (DKK3) as a Prognostic Marker in Lupus Nephritis: A Prospective Monocentric Experience. J. Clin. Med. 2022, 11, 2977. [Google Scholar] [CrossRef] [PubMed]
- Satrapova, V.; Sparding, N.; Genovese, F.; Karsdal, M.A.; Bartonova, L.; Frausova, D.; Honsova, E.; Kollar, M.; Suchanek, M.; Koprivova, H.; et al. Biomarkers of fibrosis, kidney tissue injury and inflammation may predict severity and outcome of renal ANCA–associated vasculitis. Front. Immunol. 2023, 14, 1101. [Google Scholar] [CrossRef] [PubMed]
- Nankivell, B.J.; Borrows, R.J.; Fung, C.L.S.; O’Connell, P.J.; Allen, R.D.; Chapman, J.R. The natural history of chronic allograft nephropathy. N. Engl. J. Med. 2003, 349, 2326–2333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eknoyan, G.; Lameire, N.; Eckardt, K.; Kasiske, B.; Wheeler, D.; Levin, A.; Coresh, J.J.K.I.; Abboud, O.I.; Adler, S.; Agarwal, R.; et al. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013, 3, 5–14. [Google Scholar]
- Ix, J.H.; Shlipak, M.G. The promise of tubule biomarkers in kidney disease: A review. Am. J. Kidney Dis. 2021, 78, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Gröne, E.F.; Federico, G.; Nelson, P.J.; Arnold, B.; Gröne, H.J. The hormetic functions of Wnt pathways in tubular injury. Arch.-Eur. J. Physiol. 2017, 469, 899–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piek, A.; Smit, L.; Suthahar, N.; Bakker, S.J.L.; de Boer, R.A.; Silljé, H.H.W. The emerging plasma biomarker Dickkopf-3 (DKK3) and its association with renal and cardiovascular disease in the general population. Sci. Rep. 2021, 11, 8642. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | G1 | G2 | G3 | G4 | G5 | p-Value |
---|---|---|---|---|---|---|---|
Age | [years] | 30.5 (28.0; 38.0) | 56.0 (39.0; 63.0) | 69.1 ± 11.0 | 59.3 ± 14.3 | 50.5 ± 12.3 | <0.001 & |
Weight | [kg] | 71.0 ± 13.6 | 83.7 ± 12.5 | 82.5 ± 15.4 | 75.9 ±12.7 | 77.4 ± 12.8 | 0.026 |
BMI | [kg/m2] | 24.3 ± 3.7 | 27.0 ± 4.0 | 28.7 (26.4; 31.2) | 26.1 (23.9; 28.5) | 26.9 ± 3.2 | 0.003 $ |
SBP | [mmHg] | 122 ± 8 | 141 ± 20 | 144 ± 17 | 145 ± 20 | 133 ± 15 | <0.001 & |
DBP | [mmHg] | 77 (70; 85) | 86 ± 13 | 84 ± 12 | 81 ± 12 | 83 (80; 90) | 0.068 |
HR | [beats/min] | 75.4 ± 10.1 | 78.0 (70.0; 81.0) | 75.7 ± 13.2 | 78.0 (76.0; 80.0) | 76.8 ± 7.9 | 0.596 |
PWV | [m/s] | 7.57 ± 1.27 | 8.54 ± 1.80 | 11.56 ± 1.77 | 8.30 (7.65; 9.45) | 9.41 ± 2.13 | <0.001 & |
Total Cholesterol | [mg/dL] | 179 ± 28 | 212 (184; 259) | 169 ± 40 | 148 ± 29 | 171 ± 33 | <0.001 & |
LDL | [mg/dL] | 104 ± 32 | 143 (112; 178) | 102 ± 27 | 87 ± 29 | 84 ± 23 | <0.001 & |
HDL | [mg/dL] | 64 ± 17 | 56 (46; 67) | 52 ± 12 | 45 ± 16 | 65 ± 19 | 0.005 # |
Triglycerides | [mg/dL] | 101 ± 38 | 160 (94; 184) | 138 (112; 191) | 168 ± 71 | 139 (127; 169) | 0.003 $ |
Creatinine | [mg/dL] | 0.85 ± 0.11 | 0.90 (0.80; 1.00) | 1.70 (1.30; 2.25) | 8.22 ± 2.71 | 1.00 (0.90; 1.03) | <0.001 & |
eGFR | [ml/min] | 86.7 (79.0; 97.5) | 85.7 ± 23.7 | 32.8 ± 11.3 | 6.3 (4.7; 8.3) | 69.4 (62.6; 82.9) | <0.001 & |
Urea | [mg/dL] | 26.9 ± 6.2 | 36.2 ± 11.5 | 60.5 (54.3; 94.5) | 118.1 ± 36.5 | 36.5 ± 7.5 | <0.001 & |
UACR | [mg/g] | 2.7 (1.3; 2.7) | 960.6 (369.3; 2238.1) | 13.3 (3.5; 556.6) | - | 3.5 (1.3; 5.3) | <0.001 & |
Troponin T | [ng/mL] | 0.0040 (0.0030; 0.0043) | 0.0080 (0.0048; 0.014) | 0.016 (0.009; 0.033) | 0.053 (0.036; 0.083) | 0.009 (0.007; 0.014) | <0.001 & |
CK-MB | [U/L] | 12.5 (11.0; 16.3) | 14.0 (12.0; 17.0) | 14.0 (12.0; 18.3) | 11.58 ± 3.20 | 17.6 ± 5.6 | 0.002 $ |
NT-proBNP | [pg/mL] | 40 ± 19 | 95 (38; 261) | 457 (237; 2896) | 6420 (3317; 14,187) | 141 (107; 164) | <0.001 & |
sDkk3 | [ng/mL] | 133 ± 117 | 34 (30; 39) | 40 (30; 81) | 50 (42; 98) | 46 (36; 70) | 0.016 * |
uDkk3 | [ng/mL] | 3.33 ± 0.90 | 4.16 ± 0.66 | 4.57 (4.19; 5.10) | - | 4.11 ± 0.44 | <0.001 & |
uDkk3/creat. | [pg/mg] | 2650 (1730; 8940) | 2470 (1840; 4280) | 7050 (5090; 11,730) | - | 5710 (3230; 11,680) | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziamałek-Macioszczyk, P.; Winiarska, A.; Pawłowska, A.; Wojtacha, P.; Stompór, T. Patterns of Dickkopf-3 Serum and Urine Levels at Different Stages of Chronic Kidney Disease. J. Clin. Med. 2023, 12, 4705. https://doi.org/10.3390/jcm12144705
Dziamałek-Macioszczyk P, Winiarska A, Pawłowska A, Wojtacha P, Stompór T. Patterns of Dickkopf-3 Serum and Urine Levels at Different Stages of Chronic Kidney Disease. Journal of Clinical Medicine. 2023; 12(14):4705. https://doi.org/10.3390/jcm12144705
Chicago/Turabian StyleDziamałek-Macioszczyk, Paulina, Agata Winiarska, Anna Pawłowska, Paweł Wojtacha, and Tomasz Stompór. 2023. "Patterns of Dickkopf-3 Serum and Urine Levels at Different Stages of Chronic Kidney Disease" Journal of Clinical Medicine 12, no. 14: 4705. https://doi.org/10.3390/jcm12144705
APA StyleDziamałek-Macioszczyk, P., Winiarska, A., Pawłowska, A., Wojtacha, P., & Stompór, T. (2023). Patterns of Dickkopf-3 Serum and Urine Levels at Different Stages of Chronic Kidney Disease. Journal of Clinical Medicine, 12(14), 4705. https://doi.org/10.3390/jcm12144705