Congenital Zika Syndrome: Genetic Avenues for Diagnosis and Therapy, Possible Management and Long-Term Outcomes
Abstract
:1. Introduction
2. Materials and Methods
3. Pathogenesis
4. Genetic Risk Factors
5. Reverse Genetics and Recombinant ZIKV
6. Prenatal Diagnosis
7. Clinical Signs
8. Neuroimaging
9. Long-Term Developmental Outcomes
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Vries, L.S. Viral Infections and the Neonatal Brain. Semin. Pediatr. Neurol. 2019, 32, 100769. [Google Scholar] [CrossRef]
- Schirmer, D.A.; Kawwass, J.F. Epidemiology, Virology, and Pathogenesis of the Zika Virus: From Neglected Tropical Disease to a Focal Point of International Attention. Semin. Reprod. Med. 2016, 34, 261–265. [Google Scholar] [CrossRef]
- Mehrjardi, M.Z. Is Zika Virus an Emerging TORCH Agent? An Invited Commentary. Virology 2017, 8, 1178122X17708993. [Google Scholar] [CrossRef]
- Eloundou, S.N.; Sheffield, J.S. Prenatal Effects of Zika Virus and Management of the Pregnant Woman. Semin. Reprod. Med. 2016, 34, 280–284. [Google Scholar] [CrossRef]
- Duttine, A.; Smythe, T.; Ribiero Calheiro de Sá, M.; Ferrite, S.; Zuurmond, M.; Moreira, M.E.; Collins, A.; Milner, K.; Kuper, H. Congenital Zika Syndrome—Assessing the Need for a Family Support Programme in Brazil. Int. J. Environ. Res. Public Health 2020, 17, 3559. [Google Scholar] [CrossRef]
- Zuurmond, M.; Nyante, G.; Baltussen, M.; Seeley, J.; Abanga, J.; Shakespeare, T.; Collumbien, M.; Bernays, S. A Support Programme for Caregivers of Children with Disabilities in Ghana: Understanding the Impact on the Wellbeing of Caregivers. Child Care Health Dev. 2019, 45, 45–53. [Google Scholar] [CrossRef]
- Kuper, H.; Lyra, T.M.; Moreira, M.E.L.; de Albuquerque, M.D.S.V.; de Araújo, T.V.B.; Fernandes, S.; Jofre-Bonet, M.; Larson, H.; Lopes de Melo, A.P.; Mendes, C.H.F.; et al. Social and Economic Impacts of Congenital Zika Syndrome in Brazil: Study Protocol and Rationale for a Mixed-Methods Study. Wellcome Open Res. 2019, 3, 127. [Google Scholar] [CrossRef]
- Kuper, H.; Lopes Moreira, M.E.; Barreto de Araújo, T.V.; Valongueiro, S.; Fernandes, S.; Pinto, M.; Lyra, T.M. The Association of Depression, Anxiety, and Stress with Caring for a Child with Congenital Zika Syndrome in Brazil; Results of a Cross-Sectional Study. PLoS Negl. Trop. Dis. 2019, 13, e0007768. [Google Scholar] [CrossRef]
- Dos Santos Costa, A.C.; Hasan, M.M.; Xenophontos, E.; Mohanan, P.; Bassey, E.E.; Hashim, H.T.; Ahmad, S.; Essar, M.Y. COVID-19 and Zika: An Emerging Dilemma for Brazil. J. Med. Virol. 2021, 93, 4124–4126. [Google Scholar] [CrossRef]
- Pergolizzi, J.; LeQuang, J.A.; Umeda-Raffa, S.; Fleischer, C.; Pergolizzi, J.; Pergolizzi, C.; Raffa, R.B. The Zika Virus: Lurking behind the COVID-19 Pandemic? J. Clin. Pharm. Ther. 2021, 46, 267–276. [Google Scholar] [CrossRef]
- Parasa, S.; Desai, M.; Thoguluva Chandrasekar, V.; Patel, H.K.; Kennedy, K.F.; Roesch, T.; Spadaccini, M.; Colombo, M.; Gabbiadini, R.; Artifon, E.L.A.; et al. Prevalence of Gastrointestinal Symptoms and Fecal Viral Shedding in Patients with Coronavirus Disease 2019: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2020, 3, e2011335. [Google Scholar] [CrossRef]
- Phadke, R.; Mohan, A.; Çavdaroğlu, S.; Dapke, K.; dos Santos Costa, A.C.; Riaz, M.M.A.; Hashim, H.T.; Essar, M.Y.; Ahmad, S. Dengue amidst COVID-19 in India: The Mystery of Plummeting Cases. J. Med. Virol. 2021, 93, 4120–4121. [Google Scholar] [CrossRef]
- Lokida, D.; Lukman, N.; Salim, G.; Butar-Butar, D.P.; Kosasih, H.; Wulan, W.N.; Naysilla, A.M.; Djajady, Y.; Sari, R.A.; Arlinda, D.; et al. Diagnosis of COVID-19 in a Dengue-Endemic Area. Am. J. Trop. Med. Hyg. 2020, 103, 1220–1222. [Google Scholar] [CrossRef]
- Pacheco, O.; Beltrán, M.; Nelson, C.A.; Valencia, D.; Tolosa, N.; Farr, S.L.; Padilla, A.V.; Tong, V.T.; Cuevas, E.L.; Espinosa-Bode, A.; et al. Zika Virus Disease in Colombia—Preliminary Report. N. Engl. J. Med. 2020, 383, e44. [Google Scholar] [CrossRef] [Green Version]
- Coyne, C.B.; Lazear, H.M. Zika Virus—Reigniting the TORCH. Nat. Rev. Microbiol. 2016, 14, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Gouilly, J.; Ferrat, Y.J.; Espino, A.; Glaziou, Q.; Cartron, G.; El Costa, H.; Al-Daccak, R.; Jabrane-Ferrat, N. Metabolic Reprogramming by Zika Virus Provokes Inflammation in Human Placenta. Nat. Commun. 2020, 11, 2967. [Google Scholar] [CrossRef]
- Weisblum, Y.; Oiknine-Djian, E.; Vorontsov, O.M.; Haimov-Kochman, R.; Zakay-Rones, Z.; Meir, K.; Shveiky, D.; Elgavish, S.; Nevo, Y.; Roseman, M.; et al. Zika Virus Infects Early- and Midgestation Human Maternal Decidual Tissues, Inducing Distinct Innate Tissue Responses in the Maternal-Fetal Interface. J. Virol. 2017, 91, e01905-16. [Google Scholar] [CrossRef] [Green Version]
- Frenkel, L.D.; Gomez, F.; Sabahi, F. The Pathogenesis of Microcephaly Resulting from Congenital Infections: Why Is My Baby’s Head so Small? Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 209–226. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, L.; Yu, D.; Huang, H.; Ji, H.; Mo, X. Molecular and Cellular Insights into Zika Virus-Related Neuropathies. J. Neurovirol. 2017, 23, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Nithiyanantham, S.F.; Badawi, A. Maternal Infection with Zika Virus and Prevalence of Congenital Disorders in Infants: Systematic Review and Meta-Analysis. Can. J. Public Health 2019, 110, 638–648. [Google Scholar] [CrossRef]
- Gomes, J.A.; Sgarioni, E.; Boquett, J.A.; Terças-Trettel, A.C.P.; da Silva, J.H.; Ribeiro, B.F.R.; Galera, M.F.; de Oliveira, T.M.; Carvalho de Andrade, M.D.F.; Carvalho, I.F.; et al. Association between Genetic Variants in NOS2 and TNF Genes with Congenital Zika Syndrome and Severe Microcephaly. Viruses 2021, 13, 325. [Google Scholar] [CrossRef]
- Li, G.; Poulsen, M.; Fenyvuesvolgyi, C.; Yashiroda, Y.; Yoshida, M.; Simard, J.M.; Gallo, R.C.; Zhao, R.Y. Characterization of Cytopathic Factors through Genome-Wide Analysis of the Zika Viral Proteins in Fission Yeast. Proc. Natl. Acad. Sci. USA 2017, 114, E376–E385. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.-W.; Wang, H.; Liu, J.; Ma, L.; Hua, R.-H.; Bu, Z.-G. Generation of A Stable GFP-Reporter Zika Virus System for High-Throughput Screening of Zika Virus Inhibitors. Virol. Sin. 2021, 36, 476–489. [Google Scholar] [CrossRef]
- Li, Y.; Muffat, J.; Omer Javed, A.; Keys, H.R.; Lungjangwa, T.; Bosch, I.; Khan, M.; Virgilio, M.C.; Gehrke, L.; Sabatini, D.M.; et al. Genome-Wide CRISPR Screen for Zika Virus Resistance in Human Neural Cells. Proc. Natl. Acad. Sci. USA 2019, 116, 9527–9532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piergentili, R.; Del Rio, A.; Signore, F.; Umani Ronchi, F.; Marinelli, E.; Zaami, S. CRISPR-Cas and Its Wide-Ranging Applications: From Human Genome Editing to Environmental Implications, Technical Limitations, Hazards and Bioethical Issues. Cells 2021, 10, 969. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, P.; Wichit, S.; Cordel, N.; Missé, D. Human Host Genetics and Susceptibility to ZIKV Infection. Infect. Genet. Evol. 2021, 95, 105066. [Google Scholar] [CrossRef]
- Borda, V.; da Silva Francisco Junior, R.; Carvalho, J.B.; Morais, G.L.; Duque Rossi, Á.; Pezzuto, P.; Azevedo, G.S.; Schamber-Reis, B.L.; Portari, E.A.; Melo, A.; et al. Whole-Exome Sequencing Reveals Insights into Genetic Susceptibility to Congenital Zika Syndrome. PLoS Negl. Trop. Dis. 2021, 15, e0009507. [Google Scholar] [CrossRef] [PubMed]
- Garry, P.S.; Ezra, M.; Rowland, M.J.; Westbrook, J.; Pattinson, K.T.S. The Role of the Nitric Oxide Pathway in Brain Injury and Its Treatment—From Bench to Bedside. Exp. Neurol. 2015, 263, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, S.S.; Mastropaolo, L.A.; Murchie, R.; Griffiths, C.; Thöni, C.; Elkadri, A.; Xu, W.; Mack, A.; Walters, T.; Guo, C.; et al. Higher Activity of the Inducible Nitric Oxide Synthase Contributes to Very Early Onset Inflammatory Bowel Disease. Clin. Transl. Gastroenterol. 2014, 5, e46. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Kartawy, M.; Amal, H. The Role of Nitric Oxide in Brain Disorders: Autism Spectrum Disorder and Other Psychiatric, Neurological, and Neurodegenerative Disorders. Redox Biol. 2020, 34, 101567. [Google Scholar] [CrossRef] [PubMed]
- Hung, S.-J.; Huang, S.-W. Contributions of Genetic Evolution to Zika Virus Emergence. Front. Microbiol. 2021, 12, 655065. [Google Scholar] [CrossRef] [PubMed]
- Carbaugh, D.L.; Zhou, S.; Sanders, W.; Moorman, N.J.; Swanstrom, R.; Lazear, H.M. Two Genetic Differences between Closely Related Zika Virus Strains Determine Pathogenic Outcome in Mice. J. Virol. 2020, 94, e00618-20. [Google Scholar] [CrossRef]
- Haddow, A.D.; Schuh, A.J.; Yasuda, C.Y.; Kasper, M.R.; Heang, V.; Huy, R.; Guzman, H.; Tesh, R.B.; Weaver, S.C. Genetic Characterization of Zika Virus Strains: Geographic Expansion of the Asian Lineage. PLoS Negl. Trop. Dis. 2012, 6, e1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguiar, R.S.; Pohl, F.; Morais, G.L.; Nogueira, F.C.S.; Carvalho, J.B.; Guida, L.; Arge, L.W.P.; Melo, A.; Moreira, M.E.L.; Cunha, D.P.; et al. Molecular Alterations in the Extracellular Matrix in the Brains of Newborns with Congenital Zika Syndrome. Sci. Signal. 2020, 13, eaay6736. [Google Scholar] [CrossRef] [PubMed]
- Strottmann, D.M.; Zanluca, C.; Mosimann, A.L.P.; Koishi, A.C.; Auwerter, N.C.; Faoro, H.; Cataneo, A.H.D.; Kuczera, D.; Wowk, P.F.; Bordignon, J.; et al. Genetic and Biological Characterisation of Zika Virus Isolates from Different Brazilian Regions. Mem. Inst. Oswaldo Cruz 2019, 114, e190150. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, J.; Du, S.; Shan, C.; Nie, K.; Zhang, R.; Li, X.-F.; Zhang, R.; Wang, T.; Qin, C.-F.; et al. Evolutionary Enhancement of Zika Virus Infectivity in Aedes Aegypti Mosquitoes. Nature 2017, 545, 482–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Shan, C.; Zou, J.; Muruato, A.E.; Bruno, D.N.; de Almeida Medeiros Daniele, B.; Vasconcelos, P.F.C.; Rossi, S.L.; Weaver, S.C.; Xie, X.; et al. A CDNA Clone-Launched Platform for High-Yield Production of Inactivated Zika Vaccine. EBioMedicine 2017, 17, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.-Y.; Lin, C.-S.; Lai, H.-C.; Yu, Y.-W.; Liao, C.-Y.; Su, W.-C.; Ko, B.-H.; Chang, Y.-S.; Huang, S.-H.; Lin, C.-W. The Rescue and Characterization of Recombinant, Microcephaly-Associated Zika Viruses as Single-Round Infectious Particles. Viruses 2019, 11, 1005. [Google Scholar] [CrossRef] [Green Version]
- Kümmerer, B.M. Establishment and Application of Flavivirus Replicons. Adv. Exp. Med. Biol. 2018, 1062, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Komoto, S.; Fukuda, S.; Murata, T.; Taniguchi, K. Human Rotavirus Reverse Genetics Systems to Study Viral Replication and Pathogenesis. Viruses 2021, 13, 1791. [Google Scholar] [CrossRef]
- Gao, J.; Chen, J.; Lu, W.; Cai, J.; Shi, L.; Zhao, W.; Zhang, B. Construction of an Infectious Clone of Zika Virus Stably Expressing an EGFP Marker in a Eukaryotic Expression System. Virol. J. 2021, 18, 151. [Google Scholar] [CrossRef]
- Ávila-Pérez, G.; Nogales, A.; Martín, V.; Almazán, F.; Martínez-Sobrido, L. Reverse Genetic Approaches for the Generation of Recombinant Zika Virus. Viruses 2018, 10, 597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, Z.; Chen, Y.; Yu, J.; He, X.; Liu, X.; Zhu, L.; Wu, Q.; Wan, C.; Zhang, B.; Zhao, W. Rapid Construction of an Infectious Clone of the Zika Virus, Strain ZKC2. Front. Microbiol. 2021, 12, 752578. [Google Scholar] [CrossRef] [PubMed]
- Eppes, C.; Rac, M.; Dunn, J.; Versalovic, J.; Murray, K.O.; Suter, M.A.; Sanz Cortes, M.; Espinoza, J.; Seferovic, M.D.; Lee, W.; et al. Testing for Zika Virus Infection in Pregnancy: Key Concepts to Deal with an Emerging Epidemic. Am. J. Obstet. Gynecol. 2017, 216, 209–225. [Google Scholar] [CrossRef] [Green Version]
- Sarno, M.; Aquino, M.; Pimentel, K.; Cabral, R.; Costa, G.; Bastos, F.; Brites, C. Progressive Lesions of Central Nervous System in Microcephalic Fetuses with Suspected Congenital Zika Virus Syndrome. Ultrasound Obstet. Gynecol. 2017, 50, 717–722. [Google Scholar] [CrossRef] [Green Version]
- Walker, C.L.; Little, M.-T.E.; Roby, J.A.; Armistead, B.; Gale, M.; Rajagopal, L.; Nelson, B.R.; Ehinger, N.; Mason, B.; Nayeri, U.; et al. Zika Virus and the Nonmicrocephalic Fetus: Why We Should Still Worry. Am. J. Obstet. Gynecol. 2019, 220, 45–56. [Google Scholar] [CrossRef]
- Rasmussen, S.A.; Meaney-Delman, D.M.; Petersen, L.R.; Jamieson, D.J. Studying the Effects of Emerging Infections on the Fetus: Experience with West Nile and Zika Viruses. Birth Defects Res. 2017, 109, 363–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, D.A.; Souza-Santos, R.; Carvalho, L.M.A.; Barros, W.B.; Neves, L.M.; Brasil, P.; Wakimoto, M.D. Congenital Zika Syndrome: A Systematic Review. PLoS ONE 2020, 15, e0242367. [Google Scholar] [CrossRef] [PubMed]
- Araujo Júnior, E.; Carvalho, F.H.C.; Tonni, G.; Werner, H. Prenatal Imaging Findings in Fetal Zika Virus Infection. Curr. Opin. Obstet. Gynecol. 2017, 29, 95–105. [Google Scholar] [CrossRef]
- de Fatima Vasco Aragao, M.; van der Linden, V.; Brainer-Lima, A.M.; Coeli, R.R.; Rocha, M.A.; Sobral da Silva, P.; Durce Costa Gomes de Carvalho, M.; van der Linden, A.; Cesario de Holanda, A.; Valenca, M.M. Clinical Features and Neuroimaging (CT and MRI) Findings in Presumed Zika Virus Related Congenital Infection and Microcephaly: Retrospective Case Series Study. BMJ 2016, 353, i1901. [Google Scholar] [CrossRef] [Green Version]
- Pires, P.; Jungmann, P.; Galvão, J.M.; Hazin, A.; Menezes, L.; Ximenes, R.; Tonni, G.; Araujo Júnior, E. Neuroimaging Findings Associated with Congenital Zika Virus Syndrome: Case Series at the Time of First Epidemic Outbreak in Pernambuco State, Brazil. Childs Nerv. Syst. 2018, 34, 957–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Lima Petribu, N.C.; Aragao, M.D.F.V.; van der Linden, V.; Parizel, P.; Jungmann, P.; Araújo, L.; Abath, M.; Fernandes, A.; Brainer-Lima, A.; Holanda, A.; et al. Follow-up Brain Imaging of 37 Children with Congenital Zika Syndrome: Case Series Study. BMJ 2017, 359, j4188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, B.; Guida, J.P.; Costa, M.L.; Mysorekar, I.U. Host and Viral Mechanisms of Congenital Zika Syndrome. Virulence 2019, 10, 768–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierson, T.C.; Diamond, M.S. The Emergence of Zika Virus and Its New Clinical Syndromes. Nature 2018, 560, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Lazear, H.M.; Diamond, M.S. Zika Virus: New Clinical Syndromes and Its Emergence in the Western Hemisphere. J. Virol. 2016, 90, 4864–4875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diogo, M.C.; Glatter, S.; Binder, J.; Kiss, H.; Prayer, D. The MRI Spectrum of Congenital Cytomegalovirus Infection. Prenat. Diagn. 2020, 40, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Mlakar, J.; Korva, M.; Tul, N.; Popović, M.; Poljšak-Prijatelj, M.; Mraz, J.; Kolenc, M.; Resman Rus, K.; Vesnaver Vipotnik, T.; Fabjan Vodušek, V.; et al. Zika Virus Associated with Microcephaly. N. Engl. J. Med. 2016, 374, 951–958. [Google Scholar] [CrossRef]
- Martines, R.B.; Bhatnagar, J.; de Oliveira Ramos, A.M.; Davi, H.P.F.; Iglezias, S.D.; Kanamura, C.T.; Keating, M.K.; Hale, G.; Silva-Flannery, L.; Muehlenbachs, A.; et al. Pathology of Congenital Zika Syndrome in Brazil: A Case Series. Lancet 2016, 388, 898–904. [Google Scholar] [CrossRef] [Green Version]
- Maia, C.Q.; Lima, W.G.; Nizer, W.S.D.C.; Ferreira, J.M.S. Epilepsy in Children with Congenital Zika Syndrome: A Systematic Review and Meta-analysis. Epilepsia 2021, 62, 1193–1207. [Google Scholar] [CrossRef] [PubMed]
- Ostrander, B.; Bale, J.F. Congenital and Perinatal Infections. Handb. Clin. Neurol. 2019, 162, 133–153. [Google Scholar] [CrossRef] [PubMed]
- Gordon-Lipkin, E.; Peacock, G. The Spectrum of Developmental Disability with Zika Exposure: What Is Known, What Is Unknown, and Implications for Clinicians. J. Dev. Behav. Pediatr. 2019, 40, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, A.C.; Toth, D.; Ridenour, T.; Lima Nóbrega, L.; Borba Firmino, R.; Marques da Silva, C.; Carvalho, P.; Marques, D.; Okoniewski, K.; Ventura, L.O.; et al. Developmental Outcomes Among Young Children With Congenital Zika Syndrome in Brazil. JAMA Netw. Open 2020, 3, e204096. [Google Scholar] [CrossRef] [PubMed]
- Einspieler, C.; Utsch, F.; Brasil, P.; Panvequio Aizawa, C.Y.; Peyton, C.; Hydee Hasue, R.; Françoso Genovesi, F.; Damasceno, L.; Moreira, M.E.; Adachi, K.; et al. Association of Infants Exposed to Prenatal Zika Virus Infection With Their Clinical, Neurologic, and Developmental Status Evaluated via the General Movement Assessment Tool. JAMA Netw. Open 2019, 2, e187235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertolli, J.; Attell, J.E.; Rose, C.; Moore, C.A.; Melo, F.; Staples, J.E.; Kotzky, K.; Krishna, N.; Satterfield-Nash, A.; Pereira, I.O.; et al. Functional Outcomes among a Cohort of Children in Northeastern Brazil Meeting Criteria for Follow-Up of Congenital Zika Virus Infection. Am. J. Trop. Med. Hyg. 2020, 102, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Cranston, J.S.; Tiene, S.F.; Nielsen-Saines, K.; Vasconcelos, Z.; Pone, M.V.; Pone, S.; Zin, A.; Salles, T.S.; Pereira, J.P.; Orofino, D.; et al. Association Between Antenatal Exposure to Zika Virus and Anatomical and Neurodevelopmental Abnormalities in Children. JAMA Netw. Open 2020, 3, e209303. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, A.; van der Linden, V.; Yeargin-Allsopp, M.; Carvalho, M.D.C.G.; Ribeiro, E.M.; Van Naarden Braun, K.; Durkin, M.S.; Pastula, D.M.; Moore, J.T.; Moore, C.A. Motor Abnormalities and Epilepsy in Infants and Children with Evidence of Congenital Zika Virus Infection. Pediatrics 2018, 141, S167–S179. [Google Scholar] [CrossRef] [Green Version]
Diagnosis | Exam Timing | Morphological Features | Further Remarks |
---|---|---|---|
ZIKV infection | Polymerase Chain Reaction analysis of amniotic fluid best period to perform an amniocentesis is between the 21st and 22nd week | Around 6–9 weeks are required after maternal infection for the virus to be eliminated in the fetal urine in amounts detectable in the amniotic fluid | |
Anti-CMV IgM antibodies Virus-specific IgM antibodies may be detectable >3 days after onset of illness | Blood exam | No detectable virus-specific IgM antibodies in serum collected within 7 days of illness onset | IgM testing should be repeated on a convalescent-phase sample to rule out infection in the mother with a clinical syndrome suggestive of ZIKV infection. IgM antibodies are only present in 70% infected babies |
Microcephaly | Neurosonographic approaches for the detection of malformations | Head circumference < 2SDS | An estimated 1% to 13% risk of microcephaly is associated with maternal infection in the first trimester of pregnancy |
Ventriculomegaly | Ultrasound examination | Atrial diameter ≥ 10 mm on prenatal ultrasound | Roughly 5% of cases of mild to moderate ventriculomegaly reportedly arise from congenital fetal infections, such as CMV, toxoplasmosis and ZIKV |
Brain calcifications Posterior fossa destruction lesions | Ultrasound examination; MRI | More visible in II-III trimester | Punctate calcifications between the cortex and subcortical white matter |
Disproportion in fetal growth | Ultrasound | Femur-sparing profile of growth restriction | Infection in the first trimester is linked to the highest risk of structural and developmental anomalies |
Germinolytic cysts (GLC) and lenticulostriate vasculopathy (LSV) | Transvaginal scan | Found in up to 37% of newborns exposed to ZIKV in utero, might constitute potential risk factors for worse early neurodevelopmental outcomes | |
Cerebellar hypoplasia and migrational disorders such as polymicrogyria (PMG) | MRI | Polymicrogyria and pachygyria mostly detected in the frontal lobes |
CT 1 and MRI 2 Findings in Congenital Zika Syndrome |
---|
Punctate calcifications (basal ganglia > thalami) |
Severe ventriculomegaly |
Global delayed or hypo-myelination |
Pachygyria or polymicrogyria (mostly in the frontal lobes) |
Hypoplasia of the cerebellum and the brainstem. |
Enlarged cisterna magna |
Abnormalities of corpus callosum (hypoplasia/hypogenesis) |
Cysts/Pseudocysts (mainly in the occipital area) |
MRI Findings in Congenital CMV 1 Infection |
---|
White matter hyperintensities |
Ventriculomegaly |
Ventriculitis |
Calcifications |
Cysts/Pseudocysts |
Congenital Zika Syndrome Clinical Signs |
---|
Microcephaly |
Hydrocephalus |
Cerebral Palsy |
Epilepsy |
Neurodevelopmental disorders |
Ear and Eye abnormalities |
Cardiac malformations |
Growth delay |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gullo, G.; Scaglione, M.; Cucinella, G.; Riva, A.; Coldebella, D.; Cavaliere, A.F.; Signore, F.; Buzzaccarini, G.; Spagnol, G.; Laganà, A.S.; et al. Congenital Zika Syndrome: Genetic Avenues for Diagnosis and Therapy, Possible Management and Long-Term Outcomes. J. Clin. Med. 2022, 11, 1351. https://doi.org/10.3390/jcm11051351
Gullo G, Scaglione M, Cucinella G, Riva A, Coldebella D, Cavaliere AF, Signore F, Buzzaccarini G, Spagnol G, Laganà AS, et al. Congenital Zika Syndrome: Genetic Avenues for Diagnosis and Therapy, Possible Management and Long-Term Outcomes. Journal of Clinical Medicine. 2022; 11(5):1351. https://doi.org/10.3390/jcm11051351
Chicago/Turabian StyleGullo, Giuseppe, Marco Scaglione, Gaspare Cucinella, Arianna Riva, Davide Coldebella, Anna Franca Cavaliere, Fabrizio Signore, Giovanni Buzzaccarini, Giulia Spagnol, Antonio Simone Laganà, and et al. 2022. "Congenital Zika Syndrome: Genetic Avenues for Diagnosis and Therapy, Possible Management and Long-Term Outcomes" Journal of Clinical Medicine 11, no. 5: 1351. https://doi.org/10.3390/jcm11051351
APA StyleGullo, G., Scaglione, M., Cucinella, G., Riva, A., Coldebella, D., Cavaliere, A. F., Signore, F., Buzzaccarini, G., Spagnol, G., Laganà, A. S., Noventa, M., & Zaami, S. (2022). Congenital Zika Syndrome: Genetic Avenues for Diagnosis and Therapy, Possible Management and Long-Term Outcomes. Journal of Clinical Medicine, 11(5), 1351. https://doi.org/10.3390/jcm11051351