Do Age and Sex Play a Role in the Intraocular Pressure Changes after Acrobatic Gymnastics?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
Intraocular Pressure and Central Corneal Thickness
2.3. Statistical Analysis
3. Results
3.1. Between-Group Comparisons
3.2. Regression Analyses
4. Discussion
Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Z.-Z.; Chang, K.; Wei, X. Intraocular Pressure Fluctuation and the Risk of Glaucomatous Damage Deterioration: A Meta-Analysis. Int. J. Ophthalmol. 2019, 12, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Caprioli, J. Intraocular Pressure Fluctuation: Is It Important? J. Ophthalmic Vis. Res. 2018, 13, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.W.; Park, K.H. Exogenous Influences on Intraocular Pressure. Br. J. Ophthalmol. 2019, 103, 1209–1216. [Google Scholar] [CrossRef] [Green Version]
- McMonnies, C.W. Intraocular Pressure and Glaucoma: Is Physical Exercise Beneficial or a Risk? J. Optom. 2016, 9, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Wylęgała, A. The Effects of Physical Exercises on Ocular Physiology: A Review. J. Glaucoma 2016, 25, e843–e849. [Google Scholar] [CrossRef]
- Wong, T.T.; Wong, T.Y.; Foster, P.J.; Crowston, J.G.; Fong, C.-W.; Aung, T. The Relationship of Intraocular Pressure with Age, Systolic Blood Pressure, and Central Corneal Thickness in an Asian Population. Investig. Ophthalmol. Vis. Sci. 2009, 50, 4097–4102. [Google Scholar] [CrossRef] [Green Version]
- Caprioli, J.; Coleman, A.L. Intraocular Pressure Fluctuation: A Risk Factor for Visual Field Progression at Low Intraocular Pressures in the Advanced Glaucoma Intervention Study. Ophthalmology 2008, 115, 1123–1129. [Google Scholar] [CrossRef]
- Zhu, M.M.; Lai, J.S.M.; Choy, B.N.K.; Shum, J.W.H.; Lo, A.C.Y.; Ng, A.L.K.; Chan, J.C.H.; So, K.F. Physical Exercise and Glaucoma: A Review on the Roles of Physical Exercise on Intraocular Pressure Control, Ocular Blood Flow Regulation, Neuroprotection and Glaucoma-Related Mental Health. Acta Ophthalmol. 2018, 96, e676–e691. [Google Scholar] [CrossRef] [Green Version]
- Tribble, J.R.; Hui, F.; Jöe, M.; Bell, K.; Chrysostomou, V.; Crowston, J.G.; Williams, P.A. Targeting Diet and Exercise for Neuroprotection and Neurorecovery in Glaucoma. Cells 2021, 10, 295. [Google Scholar] [CrossRef]
- Gene-Morales, J.; Gené-Sampedro, A.; Salvador, R.; Colado, J.C. Adding the Load Just above the Sticking Point Using Elastic Bands Optimizes Squat Performance, Perceived Effort Rate, and Cardiovascular Responses. J. Sports Sci. Med. 2020, 19, 735–744. [Google Scholar]
- Roddy, G.; Curnier, D.; Ellemberg, D. Reductions in Intraocular Pressure after Acute Aerobic Exercise: A Meta-Analysis. Clin. J. Sport Med. 2014, 24, 364–372. [Google Scholar] [CrossRef]
- Yuan, Y.; Lin, T.P.H.; Gao, K.; Zhou, R.; Radke, N.V.; Lam, D.S.C.; Zhang, X. Aerobic Exercise Reduces Intraocular Pressure and Expands Schlemm’s Canal Dimensions in Healthy and Primary Open-Angle Glaucoma Eyes. Indian J. Ophthalmol. 2021, 69, 1127–1134. [Google Scholar] [CrossRef]
- Vera, J.; Jiménez, R.; Redondo, B.; Perez-Castilla, A.; García-Ramos, A. Effects of Wearing the Elevation Training Mask during Low-Intensity Cycling Exercise on Intraocular Pressure. J. Glaucoma 2021, 30, e193–e197. [Google Scholar] [CrossRef]
- Rüfer, F.; Schiller, J.; Klettner, A.; Lanzl, I.; Roider, J.; Weisser, B. Comparison of the Influence of Aerobic and Resistance Exercise of the Upper and Lower Limb on Intraocular Pressure. Acta Ophthalmol. 2014, 92, 249–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, H.-Y.; Jeoung, S.-M.; Im, J.-S.; Lee, E.; Kwon, J.-D. The effect of positional changes during heavy weight lifting on intraocular pressure. J. Korean Ophthalmol. Soc. 2009, 50, 1831–1839. [Google Scholar] [CrossRef] [Green Version]
- Vera, J.; Jiménez, R.; Redondo, B.; Torrejón, A.; De Moraes, C.G.V.; García-Ramos, A. Effect of the Level of Effort during Resistance Training on Intraocular Pressure. Eur. J. Sport Sci. 2018, 19, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Vera, J.; Jiménez, R.; Redondo, B.; Torrejón, A.; De Moraes, C.G.V.; García-Ramos, A. Impact of Resistance Training Sets Performed until Muscular Failure with Different Loads on Intraocular Pressure and Ocular Perfusion Pressure. Eur. J. Ophthalmol. 2019, 30, 1342–1348. [Google Scholar] [CrossRef]
- Vera, J.; García-Ramos, A.; Jiménez, R.; Cárdenas, D. The Acute Effect of Strength Exercises at Different Intensities on Intraocular Pressure. Graefes Arch. Clin. Exp. Ophthalmol. 2017, 255, 2211–2217. [Google Scholar] [CrossRef]
- Vieira, G.M.; Oliveira, H.B.; de Andrade, D.T.; Bottaro, M.; Ritch, R. Intraocular Pressure Variation during Weight Lifting. Arch. Ophthalmol. 2006, 124, 1251–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaghefi, E.; Shon, C.; Reading, S.; Sutherland, T.; Borges, V.; Phillips, G.; Niederer, R.L.; Danesh-Meyer, H. Intraocular Pressure Fluctuation during Resistance Exercise. BMJ Open Ophthalmol. 2021, 6, e000723. [Google Scholar] [CrossRef] [PubMed]
- Avunduk, A.M.; Yilmaz, B.; Şahin, N.; Kapicioglu, Z.; Dayanır, V. The Comparison of Intraocular Pressure Reductions after Isometric and Isokinetic Exercises in Normal Individuals. Ophthalmologica 1999, 213, 290–294. [Google Scholar] [CrossRef]
- Chromiak, J.A.; Abadie, B.R.; Braswell, R.A.; Koh, Y.S.; Chilek, D.R. Resistance Training Exercises Acutely Reduce Intraocular Pressure in Physically Active Men and Women. J. Strength Cond. Res. 2003, 17, 715–720. [Google Scholar] [PubMed]
- Conte, M.; Scarpi, M.J.; Rossin, R.A.; Beteli, H.R.; Lopes, R.G.; Marcos, H.L. Intraocular pressure variation after submaximal strength test in resistance training. Arq. Bras. Oftalmol. 2009, 72, 351–354. [Google Scholar] [CrossRef] [Green Version]
- Conte, M.; Ciolac, E.G.; Rosa, M.R.R.; Cozza, H.; Baldin, A.D. Efeito agudo do exercicio resistido, aerobico continuo e intervalado na pressao intraocular de individuos fisicamente ativos. Ens. Ciênc 2012, 16, 27–37. [Google Scholar]
- Conte, M.; Scarpi, M.J. A Comparison of the Intraocular Pressure Response between Two Different Intensities and Volumes of Resistance Training. Rev. Bras. Oftalmol. 2014, 73, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Soares, A.S.; Caldara, A.A.; Storti, L.R.; Teixeira, L.F.M.; Terzariol, J.G.T.; Conte, M. Variation of Intraocular Pressure in Resistance Exercise Performed in Two Different Positions. Rev. Bras. Oftalmol. 2015, 74, 160–163. [Google Scholar] [CrossRef] [Green Version]
- Tamura, S.D.; Caldara, A.A.; Soares, A.S.; Storti, L.R.; Teixeira, L.F.M.; Conte, M. Association between Plasma Lactate Concentrations after Resistance Exercise with Intraocular Pressure. Perspect. Med. 2013, 24, 5–10. [Google Scholar] [CrossRef]
- Teixeira, L.F.M.; Tamura, S.D.; Possebom, H.M.; Conte, M. Effect of Resistance Training Session on Intraocular Pressure in Patients with Open Angle Glaucoma. Med. Sci. Sports Exerc. 2019, 51, 988. [Google Scholar] [CrossRef]
- Vieira, G.M.; Penna, E.P.; Marques, M.B.; Bezerra, R.F. The Accute Effects of Resistance Exercise on Intraocular Pressure. Arq. Bras. Oftalmol. 2003, 66, 431–435. [Google Scholar] [CrossRef]
- Gene-Morales, J.; Gené-Sampedro, A.; Salvador, R.; Colado, J.C. Effects of Squatting with Elastic Bands or Conventional Resistance-Training Equipment at Different Effort Levels in the Post-Exercise Intraocular Pressure of Healthy Men. Biol. Sport. 2022, 39. in press. [Google Scholar]
- Taboada-Iglesias, Y.; Santana, M.V.; Gutiérrez-Sánchez, Á. Anthropometric Profile in Different Event Categories of Acrobatic Gymnastics. J. Hum. Kinet. 2017, 57, 169–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taboada-Iglesias, Y.; Gutiérrez-Sánchez, Á.; Vernetta Santana, M. Anthropometric Profile of Elite Acrobatic Gymnasts and Prediction of Role Performance. J. Sports Med. Phys. Fitness 2016, 56, 433–442. [Google Scholar] [PubMed]
- Fédération Internationale de Gymnastique World Age Group Competition Rules. Acrobatic Gymnastics. 2017–2020. 2016. Available online: https://www.gymnastics.sport/publicdir/rules/files/en_ACRO%20WAGC%20Rules%202017-2020%20(with%20videos).pdf (accessed on 26 July 2021).
- Fédération Internationale de Gymnastique Technical Regulations 2020. Section 1 General Regulations. 2020. Available online: https://www.gymnastics.sport/publicdir/rules/files/en_Technical%20Regulations%202021%20with%20changes.pdf (accessed on 26 July 2021).
- Fédération Internationale de Gymnastique Acrobatic Gymnastics. Available online: https://www.gymnastics.sport/site/pages/disciplines/pres-acro.php (accessed on 5 October 2021).
- Höög, S.; Andersson, E.P. Sex and Age-Group Differences in Strength, Jump, Speed, Flexibility, and Endurance Performances of Swedish Elite Gymnasts Competing in TeamGym. Front. Sports Act. Living 2021, 3, 653503. [Google Scholar] [CrossRef]
- Hutchinson, D. World Medical Association Declaration of Helsinki, Edinburgh 2000; Canary Publications: Guildford, UK, 2002. [Google Scholar]
- Bonnie, R.J.; Stroud, C.; Breiner, H.; Committee on Improving the Health, Safety, and Well-Being of Young Adults; Board on Children, Youth, and Families; Institute of Medicine; National Research Council. Investing in the Health and Well-Being of Young Adults; National Academies Press (US): Washington, DC, USA, 2015. [Google Scholar]
- Wong, T.Y.; Klein, B.E.K.; Klein, R.; Knudtson, M.; Lee, K.E. Refractive Errors, Intraocular Pressure, and Glaucoma in a White Population. Ophthalmology 2003, 110, 211–217. [Google Scholar] [CrossRef]
- Vera, J.; Jiménez, R.; García, J.A.; Cárdenas, D. Intraocular Pressure Is Sensitive to Cumulative and Instantaneous Mental Workload. Appl. Ergon. 2017, 60, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Lau, W.; Pye, D.C. Associations between Diurnal Changes in Goldmann Tonometry, Corneal Geometry, and Ocular Response Analyzer Parameters. Cornea 2012, 31, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Kocamis, O.; Kilic, R. Repeatability, Reproducibility and Agreement of Central Corneal Thickness Measurements by Two Noncontact Pachymetry Devices. Med. Hypothesis Discov. Innov. Ophthalmol. 2019, 8, 34–39. [Google Scholar]
- Lakens, D. Calculating and Reporting Effect Sizes to Facilitate Cumulative Science: A Practical Primer for t-Tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [Green Version]
- Cumming, G. The New Statistics: Why and How. Psychol. Sci. 2014, 25, 7–29. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN 978-0-8058-0283-2. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchel, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Ariza-Gracia, M.A.; Piñero, D.P.; Rodriguez, J.F.; Pérez-Cambrodí, R.J.; Calvo, B. Interaction between Diurnal Variations of Intraocular Pressure, Pachymetry, and Corneal Response to an Air Puff: Preliminary Evidence. JCRS Online Case Rep. 2015, 3, 12–15. [Google Scholar] [CrossRef]
- Nouri-Mahdavi, K.; Hoffman, D.; Coleman, A.L.; Liu, G.; Li, G.; Gaasterland, D.; Caprioli, J. Predictive Factors for Glaucomatous Visual Field Progression in the Advanced Glaucoma Intervention Study. Ophthalmology 2004, 111, 1627–1635. [Google Scholar] [CrossRef]
- Dane, Ş.; Aslankurt, M.; Yazici, A.T.; Gümüştekin, K. Sex-Related Difference in Intraocular Pressure in Healthy Young Subjects. Percept. Mot. Skills 2003, 96, 1314–1316. [Google Scholar] [CrossRef]
- Simcoe, M.J.; Khawaja, A.P.; Mahroo, O.A.; Hammond, C.J.; Hysi, P.G. The Role of Chromosome X in Intraocular Pressure Variation and Sex-Specific Effects. Investig. Ophthalmol. Vis. Sci. 2020, 61, 20. [Google Scholar] [CrossRef]
- Vajaranant, T.S.; Nayak, S.; Wilensky, J.T.; Joslin, C.E. Gender and Glaucoma: What We Know and What We Need to Know. Curr. Opin. Ophthalmol. 2010, 21, 91–99. [Google Scholar] [CrossRef]
- Esfahani, M.A.; Gharipour, M.; Fesharakinia, H. Changes in Intraocular Pressure after Exercise Test. Oman J. Ophthalmol. 2017, 10, 17–20. [Google Scholar] [CrossRef]
- Vera, J.; Raimundo, J.; García-Durán, B.; Pérez-Castilla, A.; Redondo, B.; Delgado, G.; Koulieris, G.-A.; García-Ramos, A. Acute Intraocular Pressure Changes during Isometric Exercise and Recovery: The Influence of Exercise Type and Intensity, and Participant’s Sex. J. Sports Sci. 2019, 37, 2213–2219. [Google Scholar] [CrossRef] [PubMed]
- Era, P.; Pärssinen, O.; Kallinen, M.; Suominen, H. Effect of Bicycle Ergometer Test on Intraocular Pressure in Elderly Athletes and Controls. Acta Ophthalmol. 1993, 71, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Jeelani, M.; Taklikar, R.; Taklikar, A.; Itagi, V.; Bennal, A. Variation of Intraocular Pressure with Age and Gender. Natl. J. Physiol. Pharm. Pharmacol. 2014, 4, 57. [Google Scholar] [CrossRef] [Green Version]
- Mori, K.; Ando, F.; Nomura, H.; Sato, Y.; Shimokata, H. Relationship between Intraocular Pressure and Obesity in Japan. Int. J. Epidemiol. 2000, 29, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, I.A. Intraocular Pressure: A Comparative Analysis in Two Sexes. Clin. Physiol. 1997, 17, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Son, J.; Koh, H.; Son, J. The Association between Intraocular Pressure and Different Combination of Metabolic Syndrome Components. BMC Ophthalmol. 2016, 16, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.-C.; Wang, S.Y.; Pasquale, L.R.; Singh, K.; Lin, S.C. The Relation between Exercise and Glaucoma in a South Korean Population-Based Sample. PLoS ONE 2017, 12, e0171441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vera, J.; Jiménez, R.; Redondo, B.; Torrejón, A.; Koulieris, G.-A.; De Moraes, C.G.V.; García-Ramos, A. Investigating the Immediate and Cumulative Effects of Isometric Squat Exercise for Different Weight Loads on Intraocular Pressure: A Pilot Study. Sports Health 2019, 11, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.U.; Kee, C.; Suh, W. Longitudinal Analysis of Age-Related Changes in Intraocular Pressure in South Korea. Eye 2015, 29, 625–629. [Google Scholar] [CrossRef] [Green Version]
- Rochtchina, E.; Mitchell, P.; Wang, J.J. Relationship between Age and Intraocular Pressure: The Blue Mountains Eye Study. Clin. Exp. Ophthalmol. 2002, 30, 173–175. [Google Scholar] [CrossRef] [PubMed]
- Machiele, R.; Motlagh, M.; Patel, B.C. Intraocular Pressure. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Qureshi, I.A. Age and Intraocular Pressure: How Are They Correlated? J. Pak. Med. Assoc. 1995, 45, 150–152. [Google Scholar]
- Jiang, X.; Johnson, E.; Cepurna, W.; Lozano, D.; Men, S.; Wang, R.K.; Morrison, J. The Effect of Age on the Response of Retinal Capillary Filling to Changes in Intraocular Pressure Measured by Optical Coherence Tomography Angiography. Microvasc. Res. 2018, 115, 12–19. [Google Scholar] [CrossRef]
- Tojo, N.; Abe, S.; Miyakoshi, M.; Hayashi, A. Correlation between Short-Term and Long-Term Intraocular Pressure Fluctuation in Glaucoma Patients. Clin. Ophthalmol. 2016, 10, 1713–1717. [Google Scholar] [CrossRef] [Green Version]
- Ashkenazi, I.; Melamed, S.; Blumenthal, M. The Effect of Continuous Strenuous Exercise on Intraocular Pressure. Investig. Ophthalmol. Vis. Sci. 1992, 33, 2874–2877. [Google Scholar]
- Leighton, D.A.; Phillips, C.I. Effect of Moderate Exercise on the Ocular Tension. Br. J. Ophthalmol. 1970, 54, 599–605. [Google Scholar] [CrossRef] [Green Version]
- Najmanova, E.; Pluhacek, F.; Botek, M. Intraocular Pressure Response to Moderate Exercise during 30-Min Recovery. Optom. Vis. Sci. 2016, 93, 281–285. [Google Scholar] [CrossRef]
- Najmanova, E.; Pluhacek, F.; Botek, M. Intraocular Pressure Response to Maximal Exercise Test during Recovery. Optom. Vis. Sci. 2018, 95, 136–142. [Google Scholar] [CrossRef]
- Price, E.L.; Gray, L.S.; Humphries, L.; Zweig, C.; Button, N.F. Effect of Exercise on Intraocular Pressure and Pulsatile Ocular Blood Flow in a Young Normal Population. Optom. Vis. Sci. 2003, 80, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Castro, E.F.S.; Mostarda, C.T.; Rodrigues, B.; Moraes-Silva, I.C.; Feriani, D.J.; De Angelis, K.; Irigoyen, M.C. Exercise Training Prevents Increased Intraocular Pressure and Sympathetic Vascular Modulation in an Experimental Model of Metabolic Syndrome. Braz. J. Med. Biol. Res. 2015, 48, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Chrysostomou, V.; Kezic, J.M.; Trounce, I.A.; Crowston, J.G. Forced Exercise Protects the Aged Optic Nerve against Intraocular Pressure Injury. Neurobiol. Aging 2014, 35, 1722–1725. [Google Scholar] [CrossRef]
- Risner, D.; Ehrlich, R.; Kheradiya, N.S.; Siesky, B.; McCranor, L.; Harris, A. Effects of Exercise on Intraocular Pressure and Ocular Blood Flow: A Review. J. Glaucoma 2009, 18, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Gale, J.; Wells, A.P.; Wilson, G. Effects of Exercise on Ocular Physiology and Disease. Surv. Ophthalmol. 2009, 54, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Martin, B.; Harris, A.; Hammel, T.; Malinovsky, V. Mechanism of Exercise-Induced Ocular Hypotension. Investig. Ophthalmol. Vis. Sci. 1999, 40, 1011–1015. [Google Scholar]
- Kato, Y.; Nakakura, S.; Matsuo, N.; Yoshitomi, K.; Handa, M.; Tabuchi, H.; Kiuchi, Y. Agreement among Goldmann Applanation Tonometer, ICare, and Icare PRO Rebound Tonometers; Non-Contact Tonometer; and Tonopen XL in Healthy Elderly Subjects. Int. Ophthalmol. 2018, 38, 687–696. [Google Scholar] [CrossRef] [Green Version]
- Radhakrishnan, B.; Hemapriya, S.; Ghouse, N.F.; Rajagopalan, A. Comparison of Intraocular Pressure Measurement with Non-Contact Tonometry and Applanation Tonometry among Various Central Corneal Thickness Groups. J. Evid. Based Med. Healthc. 2018, 5, 531–536. [Google Scholar] [CrossRef]
- Kim, Y.W.; Kim, M.J.; Park, K.H.; Jeoung, J.W.; Kim, S.H.; Jang, C.I.; Lee, S.H.; Kim, J.H.; Lee, S.; Kang, J.Y. Preliminary Study on Implantable Inductive-Type Sensor for Continuous Monitoring of Intraocular Pressure. Clin. Exp. Ophthalmol. 2015, 43, 830–837. [Google Scholar] [CrossRef] [PubMed]
Variable | Mean | Standard Deviation | 95% Confidence Interval | |
---|---|---|---|---|
Lower | Upper | |||
Age (years) | 27.67 | 7.10 | 25.66 | 29.69 |
M (D) | −0.86 | 1.62 | −1.32 | −0.41 |
J0 (D) | −0.01 | 0.31 | −0.09 | 0.08 |
J45 (D) | −0.03 | 0.15 | −0.07 | 0.02 |
Pre-Exercise | Post-Exercise | Δ% | p-Value | Cohen’s dunb | |
---|---|---|---|---|---|
IOP (mmHg) | 15.28 ± 0.95 [14.78–15.83] | 14.30 ± 1.61 [13.93–14.97] | −6.27 | <0.001 | 0.73 |
CCT (microns) | 557.34 ± 35.51 [544.78–566.05] | 557.91 ± 35.23 [545.98–566.94] | 0.19 | 0.229 | 0.03 |
Group | Pre-Exercise | Post-Exercise | Δ% | p-Value | Cohen’s dunb | |
---|---|---|---|---|---|---|
IOP (mmHg) | Male | 15.60 ± 1.31 * [15.28–16.04] | 13.82 ± 2.29 * [13.06–14.38] | −11.41 ** | <0.001 | 1.02 |
Female | 14.91 ± 1.04 [15.11–15.71] | 14.73 ± 1.81 [14.66–15.70] | −1.20 | 0.312 | 0.15 | |
CCT (microns) | Male | 546.94 ± 57.95 [526.11–559.51] | 546.66 ± 57.13 [526.93–559.85] | 0.09 | 0.395 | 0.01 |
Female | 568.02 ± 45.73 [554.84–581.20] | 569.53 ± 45.09 [556.54–582.52] | 0.27 | 0.007 | 0.03 |
Group | Pre-Exercise | Post-Exercise | Δ% | p-Value | Cohen’s dunb | |
---|---|---|---|---|---|---|
IOP (mmHg) | Young adults | 15.27 ± 1.30 [14.89–15.64] | 14.88 ± 2.21 * [14.25–15.52] | −2.55 | 0.154 | 0.21 |
Adults | 15.25 ± 1.39 [14.84–15.65] | 13.71 ± 2.37 [13.03–14.40] | −10.10 | <0.001 | 0.78 | |
CCT (microns) | Young adults | 564.62 ± 58.28 [547.78–581.46] | 564.95 ± 57.74 [548.27–581.64] | 0.06 | 0.605 | 0.00 |
Adults | 550.05 ± 62.57 [531.97–569.13] | 550.87 ± 62.00 [532.95–568.78] | 0.15 | 0.243 | 0.01 |
Group | Pre-Exercise | Post-Exercise | Δ% | p-Value | Cohen’s dunb | |
---|---|---|---|---|---|---|
IOP (mmHg) | Low | 13.42 ± 1.43 ** [13.00–13.83] | 12.91 ± 2.50 ** [12.19–13.63] | −3.80 3 | 0.114 | 0.25 |
Medium | 15.75 ± 1.44 ** [15.33–16.17] | 14.56 ± 2.53 * [13.83–15.29] | −7.56 | 0.001 | 0.57 | |
High | 17.44 ± 1.46 [17.02–17.86] | 15.88 ± 2.56 [15.14–16.61] | −8.95 | <0.001 | 0.74 | |
CCT (microns) | Low | 551.58 ± 63.13 [533.39–569.77] | 552.70 ± 62.24 [534.77–570.63] | 0.20 | 0.136 | 0.02 |
Medium | 552.03 ± 63.86 [533.63–570.42] | 553.24 ± 62.97 [535.10–571.38] | 0.22 | 0.111 | 0.02 | |
High | 562.65 ± 64.79 [543.98–581.31] | 563.44 ± 63.88 [545.03–581.84] | 0.14 | 0.303 | 0.01 |
Model | Predictor | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Adj. R2 | △R2 | Durbin-Watson | |
---|---|---|---|---|---|---|---|---|---|
B | S.E. | β | |||||||
1 | (Constant) | −2.799 | 1.035 | −2.704 | 0.010 | 0.358 | 0.284 | 1.975 | |
Age | −0.036 | 0.026 | −0.164 | −1.392 | 0.171 | ||||
Sex | 1.800 | 0.372 | 0.569 | 4.835 | 0.000 | ||||
2 * | (Constant) | −0.606 | 3.059 | −0.198 | 0.844 | 0.433 | 0.096 | ||
Age | −0.035 | 0.024 | −0.158 | −1.429 | 0.160 | ||||
Sex | 1.430 | 0.383 | 0.452 | 3.730 | 0.001 | ||||
Baseline IOP | −0.270 | 0.096 | −0.322 | −2.817 | 0.007 | ||||
Baseline CCT | 0.005 | 0.005 | 0.104 | 0.892 | 0.377 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gene-Morales, J.; Gené-Sampedro, A.; Martín-Portugués, A.; Bueno-Gimeno, I. Do Age and Sex Play a Role in the Intraocular Pressure Changes after Acrobatic Gymnastics? J. Clin. Med. 2021, 10, 4700. https://doi.org/10.3390/jcm10204700
Gene-Morales J, Gené-Sampedro A, Martín-Portugués A, Bueno-Gimeno I. Do Age and Sex Play a Role in the Intraocular Pressure Changes after Acrobatic Gymnastics? Journal of Clinical Medicine. 2021; 10(20):4700. https://doi.org/10.3390/jcm10204700
Chicago/Turabian StyleGene-Morales, Javier, Andrés Gené-Sampedro, Alba Martín-Portugués, and Inmaculada Bueno-Gimeno. 2021. "Do Age and Sex Play a Role in the Intraocular Pressure Changes after Acrobatic Gymnastics?" Journal of Clinical Medicine 10, no. 20: 4700. https://doi.org/10.3390/jcm10204700
APA StyleGene-Morales, J., Gené-Sampedro, A., Martín-Portugués, A., & Bueno-Gimeno, I. (2021). Do Age and Sex Play a Role in the Intraocular Pressure Changes after Acrobatic Gymnastics? Journal of Clinical Medicine, 10(20), 4700. https://doi.org/10.3390/jcm10204700