Association of Echocardiographic Diastolic Dysfunction with Discordance of Invasive Intracoronary Pressure Indices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Echocardiographic Evaluation of Left Ventricular Diastolic Function
2.4. iFR and FFR Physiological Assessment of Coronary Arteries
2.5. Data Gathering and Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. iFR/FFR Discordance
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tonino, P.A.; De Bruyne, B.; Pijls, N.H.; Siebert, U.; Ikeno, F.; van’t Veer, M.; Klauss, V.; Manoharan, G.; Engstrøm, T.; Oldroyd, K.G.; et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N. Engl. J. Med. 2009, 360, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Lv, S.; Song, X.; Yuan, F.; Xu, F.; Zhang, M.; Yan, S.; Cao, X. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention: A meta-analysis. Heart 2015, 101, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Maini, R.; Moscona, J.; Katigbak, P.; Fernandez, C.; Sidhu, G.; Saleh, Q.; Irimpen, A.; Samson, R.; LeJemtel, T. Instantaneous wave-free ratio as an alternative to fractional flow reserve in assessment of moderate coronary stenoses: A meta-analysis of diagnostic accuracy studies. Cardiovasc. Revascularization Med. 2018, 19, 613–620. [Google Scholar] [CrossRef]
- Christou, M.A.; Siontis, G.C.; Katritsis, D.G.; Ioannidis, J.P. Meta-analysis of fractional flow reserve versus quantitative coronary angiography and noninvasive imaging for evaluation of myocardial ischemia. Am. J. Cardiol. 2007, 99, 450–456. [Google Scholar] [CrossRef]
- Van de Hoef, T.P.; Lee, J.M.; Echavarria-Pinto, M.; Koo, B.-K.; Matsuo, H.; Patel, M.R.; Davies, J.E.; Escaned, J.; Piek, J.J. Non-hyperaemic coronary pressure measurements to guide coronary interventions. Nat. Rev. Cardiol. 2020, 17, 629–640. [Google Scholar] [CrossRef]
- Sen, S.; Escaned, J.; Malik, I.S.; Mikhail, G.W.; Foale, R.A.; Mila, R.; Tarkin, J.; Petraco, R.; Broyd, C.; Jabbour, R.; et al. Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: Results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) study. J. Am. Coll. Cardiol. 2012, 59, 1392–1402. [Google Scholar] [CrossRef] [Green Version]
- Jeremias, A.; Maehara, A.; Généreux, P.; Asrress, K.N.; Berry, C.; De Bruyne, B.; Davies, J.E.; Escaned, J.; Fearon, W.F.; Gould, K.L.; et al. Multicenter core laboratory comparison of the instantaneous wave-free ratio and resting Pd/Pa with fractional flow reserve: The RESOLVE study. J. Am. Coll. Cardiol. 2014, 63, 1253–1261. [Google Scholar] [CrossRef] [Green Version]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., III; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, G.N.; Bates, E.R.; Blankenship, J.C.; Bailey, S.R.; Bittl, J.A.; Cercek, B.; Chambers, C.E.; Ellis, S.G.; Guyton, R.A.; Hollenberg, S.M.; et al. 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation 2011, 124, e574–e651. [Google Scholar]
- Li, J.; Elrashidi, M.Y.; Flammer, A.J.; Lennon, R.J.; Bell, M.R.; Holmes, D.R.; Bresnahan, J.F.; Rihal, C.S.; Lerman, L.O.; Lerman, A. Long-term outcomes of fractional flow reserve-guided vs. angiography-guided percutaneous coronary intervention in contemporary practice. Eur. Heart J. 2013, 34, 1375–1383. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.E.; Sen, S.; Dehbi, H.-M.; Al-Lamee, R.; Petraco, R.; Nijjer, S.S.; Bhindi, R.; Lehman, S.J.; Walters, D.; Sapontis, J.; et al. Use of the instantaneous wave-free ratio or fractional flow reserve in PCI. N. Eng. J. Med. 2017, 376, 1824–1834. [Google Scholar] [CrossRef] [Green Version]
- Götberg, M.; Christiansen, E.H.; Gudmundsdottir, I.J.; Sandhall, L.; Danielewicz, M.; Jakobsen, L.; Olsson, S.-E.; Öhagen, P.; Olsson, H.; Omerovic, E.; et al. Instantaneous wave-free ratio versus fractional flow reserve to guide PCI. N. Eng. J. Med. 2017, 376, 1813–1823. [Google Scholar] [CrossRef] [Green Version]
- Escaned, J.; Echavarría-Pinto, M.; Garcia-Garcia, H.M.; van de Hoef, T.P.; de Vries, T.; Kaul, P.; Raveendran, G.; Altman, J.D.; Kurz, H.I.; Brechtken, J.; et al. Prospective Assessment of the Diagnostic Accuracy of Instantaneous Wave-Free Ratio to Assess Coronary Stenosis Relevance: Results of ADVISE II International, Multicenter Study (ADenosine Vasodilator Independent Stenosis Evaluation II). JACC Cardiovasc. Interv. 2015, 8, 824–833. [Google Scholar] [CrossRef] [Green Version]
- Kerut, E.K.; McIlwain, E.; Nishimura, R.A. Grade I diastolic dysfunction and elevated left ventricular end-diastolic pressure: Mitral Doppler inflow, pulmonary vein atrial reversal, and the M-mode mitral B-bump. Echocardiography 2017, 34, 1371–1373. [Google Scholar] [CrossRef]
- Leonardi, R.A.; Townsend, J.C.; Patel, C.A.; Wolf, B.J.; Todoran, T.M.; Fernandes, V.L.; Nielsen, C.D.; Steinberg, D.H.; Powers, E.R. Left ventricular end-diastolic pressure affects measurement of fractional flow reserve. Cardiovasc. Revascularization Med. 2013, 14, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Tahir, H.; Livesay, J.; Fogelson, B.; Baljepally, R. Effect of Elevated Left Ventricular End Diastolic Pressure on Instantaneous Wave-Free Ratio and Fractional Flow Reserve Discordance. Cardiol. Res. 2021, 12, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.J.; Lam, C.S.P.; Svedlund, S.; Saraste, A.; Hage, C.; Tan, R.S.; Beussink-Nelson, M.L.; Faxén, U.L.; Fermer, M.L.; Broberg, M.A.; et al. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur. Heart J. 2018, 39, 3439–3450. [Google Scholar] [CrossRef]
- Kim, I.; Hwang, J.; Lee, C.; Cho, Y.; Park, H.; Chung, J.; Yoon, H.; Kim, H.; Han, S.; Hur, S.; et al. Correlation of coronary microvascular function and diastolic dysfunction. Eur. Heart J. 2020, 41 (Suppl. 2). [Google Scholar] [CrossRef]
- Kawata, T.; Daimon, M.; Miyazaki, S.; Ichikawa, R.; Maruyama, M.; Chiang, S.-J.; Ito, C.; Sato, F.; Watada, H.; Daida, H. Coronary microvascular function is independently associated with left ventricular filling pressure in patients with type 2 diabetes mellitus. Cardiovasc. Diabetol. 2015, 14, 98. [Google Scholar] [CrossRef] [Green Version]
- Ri, T.; Arashi, H.; Yamaguchi, J.; Shibahashi, E.; Itani, R.; Shimazaki, K.; Otsuki, H.; Haruki, S.; Nakao, M.; Kamishima, K.; et al. The Impact of Left Ventricular Diastolic Dysfunction on Instantaneous Wave-Free Ratio in Intermediate Coronary Stenosis. Circulation 2015, 132 (suppl. 3), A11996. [Google Scholar]
- Arashi, H.; Yamaguchi, J.; Ri, T.; Otsuki, H.; Nakao, M.; Kamishima, K.; Jujo, K.; Minami, Y.; Ogawa, H.; Hagiwara, N. The impact of tissue Doppler index E/e′ ratio on instantaneous wave-free ratio. J. Cardiol. 2018, 71, 237–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.M.; Lee, S.H.; Hwang, D.; Rhee, T.-M.; Choi, K.H.; Kim, J.; Park, J.; Kim, H.Y.; Jung, H.W.; Cho, Y.-K.; et al. Long-Term Clinical Outcomes of Nonhyperemic Pressure Ratios: Resting Full-Cycle Ratio, Diastolic Pressure Ratio, and Instantaneous Wave-Free Ratio. J. Am. Heart Assoc. 2020, 9, e016818. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Choi, K.H.; Lee, J.M.; Hwang, D.; Rhee, T.-M.; Park, J.; Kim, H.K.; Cho, Y.-K.; Yoon, H.-J.; Park, J.; et al. Physiologic Characteristics and Clinical Outcomes of Patients With Discordance Between FFR and iFR. JACC Cardiovasc. Interv. 2019, 12, 2018–2031. [Google Scholar] [CrossRef] [PubMed]
Characteristics | All (n = 100) | Normal Diastolic Function (n = 69) | Diastolic Dysfunction (n = 31) | p-Value |
---|---|---|---|---|
Age (Yrs) | 66.22 ± 10.02 | 65.68 ± 10.23 | 67.42 ± 9.43 | 0.43 |
Male | 73 (73%) | 52 (75.36%) | 21 (67.74%) | 0.42 |
Medical history | ||||
Diabetes mellitus | 33 (33%) | 23 (33.33%) | 10 (32.25%) | 0.92 |
Hypertension | 85 (85%) | 57 (82.61%) | 28 (90.32) | 0.26 |
Hyperlipidemia | 62 (62%) | 46 (66.66%) | 16 (51.61%) | 0.15 |
Current Smoker | 21 (21%) | 11 (15.94%) | 10 (32.26%) | 0.06 |
Chronic HFrEF | 19 (19%) | 8 (11.59%) | 11 (35.48%) | 0.005 |
Chronic kidney disease | 6 (6%) | 3 (4.35%) | 3 (9.68%) | 0.29 |
Previous PCI | 33 (33%) | 19 (27.53%) | 14 (45.16%) | 0.08 |
Previous MI | 16 (16%) | 9 (13.04%) | 7 (22.58%) | 0.23 |
Previous CABG | 6 (6%) | 3 (4.34%) | 3 (9.7%) | 0.29 |
BMI (kg/m2) | 30.46 ± 6.23 | 30.43 ± 6.41 | 30.53 ± 5.8 | 0.94 |
Echocardiographic findings | ||||
Left ventricular ejection fraction (%) | 53.47 ± 10.47 | 55.93 ± 7.69 | 49.03 ± 12.88 | 0.05 |
Diastolic dysfunction grades | ||||
Grade 1 | 23 (23%) | 23 (74.19%) | N/A | |
Grade 2 | 6 (6%) | 6 (19.35%) | N/A | |
Grade 3 | 2 (2%) | 2 (6.45%) | N/A | |
Clinical presentation | ||||
Stable angina | 70 (70%) | 50 (72.46%) | 20 (64.51%) | 0.42 |
Acute coronary syndrome | 30 (30%) | 19 (27.54%) | 11 (35.48%) | 0.42 |
Pressure flow indices | ||||
iFR | 0.92 ± 0.02 | 0.92 ± 0.02 | 0.92 ± 0.02 | 0.97 |
FFR | 0.84 ± 0.07 | 0.84 ± 0.06 | 0.83 ± 0.07 | 0.71 |
LVEDP (mmHg) | 17.5 ± 7.08 | 14.1 ± 2.14 | 19.8 ± 7.21 | 0.05 |
Echocardiographic Parameters | Odds Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
E/e′ > 14 | 2.0 | 1.56–2.63 | 0.02 |
LAVI > 34 mL/m2 | 0.88 | 0.08–7.58 | 0.91 |
TR velocity > 2.8 m/s | 1.21 | 0.12–10.16 | 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahir, H.; Livesay, J.; Fogelson, B.; Baljepally, R. Association of Echocardiographic Diastolic Dysfunction with Discordance of Invasive Intracoronary Pressure Indices. J. Clin. Med. 2021, 10, 3670. https://doi.org/10.3390/jcm10163670
Tahir H, Livesay J, Fogelson B, Baljepally R. Association of Echocardiographic Diastolic Dysfunction with Discordance of Invasive Intracoronary Pressure Indices. Journal of Clinical Medicine. 2021; 10(16):3670. https://doi.org/10.3390/jcm10163670
Chicago/Turabian StyleTahir, Hassan, James Livesay, Benjamin Fogelson, and Raj Baljepally. 2021. "Association of Echocardiographic Diastolic Dysfunction with Discordance of Invasive Intracoronary Pressure Indices" Journal of Clinical Medicine 10, no. 16: 3670. https://doi.org/10.3390/jcm10163670
APA StyleTahir, H., Livesay, J., Fogelson, B., & Baljepally, R. (2021). Association of Echocardiographic Diastolic Dysfunction with Discordance of Invasive Intracoronary Pressure Indices. Journal of Clinical Medicine, 10(16), 3670. https://doi.org/10.3390/jcm10163670