Clinical Characteristics, Exercise Capacity and Pulmonary Function in Post-COVID-19 Competitive Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Spirometry
2.3. Echocardiography
2.4. CPET
2.5. Statistical Analysis
3. Results
3.1. Clinical and Instrumental Findings in COVID-19 Athletes
3.2. Comparison between COVID-19 and Healthy Controls (HC)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19. 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19 (accessed on 11 March 2020).
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef]
- Starekova, J.; Bluemke, D.A.; Bradham, W.S.; Eckhardt, L.L.; Grist, T.M.; Kusmirek, J.E.; Purtell, C.S.; Schiebler, M.L.; Reeder, S.B. Evaluation for Myocarditis in Competitive Student Athletes Recovering from Coronavirus Disease 2019 with Cardiac Magnetic Resonance Imaging. JAMA Cardiol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Gervasi, S.F.; Pengue, L.; Damato, L.; Monti, R.; Pradella, S.; Pirronti, T.; Bartoloni, A.; Epifani, F.; Saggese, A.; Cuccaro, F.; et al. Is extensive cardiopulmonary screening useful in athletes with previous asymptomatic or mild SARS-CoV-2 infection? Br. J. Sports Med. 2021, 55, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Mo, X.; Jian, W.; Su, Z.; Chen, M.; Peng, H.; Peng, P.; Lei, C.; Chen, R.; Zhong, N.; Li, S. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. Eur. Respir. J. 2020, 55. [Google Scholar] [CrossRef]
- Frija-Masson, J.; Debray, M.P.; Gilbert, M.; Lescure, F.X.; Travert, F.; Borie, R.; Khalil, A.; Crestani, B.; d’Ortho, M.P.; Bancal, C. Functional characteristics of patients with SARS-CoV-2 pneumonia at 30 days post-infection. Eur. Respir. J. 2020, 56. [Google Scholar] [CrossRef]
- Wu, X.; Liu, X.; Zhou, Y.; Yu, H.; Li, R.; Zhan, Q.; Ni, F.; Fang, S.; Lu, Y.; Ding, X.; et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: A prospective study. Lancet Respir. Med. 2021. [Google Scholar] [CrossRef]
- Udelson, J.E.; Rowin, E.J.; Maron, B.J. Return to Play for Athletes After COVID-19 Infection: The Fog Begins to Clear. JAMA Cardiol. 2021, 27. [Google Scholar] [CrossRef]
- Peterson, D.F.; Kucera, K.; Thomas, L.C.; Maleszewski, J.; Siebert, D.; Lopez-Anderson, M.; Zigman, M.; Schattenkerk, J.; Harmon, K.G.; Drezner, J.A. Aetiology and incidence of sudden cardiac arrest and death in young competitive athletes in the USA: A 4-year prospective study. Br. J. Sports Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kiel, R.J.; Smith, F.E.; Chason, J.; Khatib, R.; Reyes, M.P. Coxsackievirus B3 myocarditis in C3H/HeJ mice: Description of an inbred model and the effect of exercise on virulence. Eur. J. Epidemiol. 1989, 5, 348–350. [Google Scholar] [CrossRef] [PubMed]
- Society, A.T. Standardization of spirometry. Am. J. Respir. Crit. Care Med. 1995, 152, 1107–1136. [Google Scholar]
- Pellegrino, R.; Viegi, G.; Brusasco, V.; Crapo, R.O.; Burgos, F.; Casaburi, R.; Coates, A.; van der Grinten, C.P.; Gustafsson, P.; Hankinson, J.; et al. Interpretative strategies for lung function tests. Eur. Respir. J. 2005, 26, 948–968. [Google Scholar] [CrossRef]
- Quanjer, P.H. Standardization of lung function tests. Report of working party. Bull. Eur. Physiopathol. Respir. 1983, 19, 1–95. [Google Scholar]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 16, 233–271. [Google Scholar]
- Mezzani, A. Cardiopulmonary Exercise Testing: Basics of Methodology and Measurements. Ann. Am. Thorac. Soc. 2017, 14, S3–S11. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical basis of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Wasserman, K.; Hansen, J.E.; Sue, D.Y.; Stringer, W.W.; Whipp, B.J. Principles of Exercise Testing and Interpretation. Including Pathophysiology and Clinical Applications. Med. Sci. Sports Exerc. 2012, 37, 1249. [Google Scholar]
- Guazzi, M.; Arena, R.; Halle, M.; Piepoli, M.F.; Myers, J.; Lavie, C.J. 2016 Focused Update: Clinical Recommendations for Cardiopulmonary Exercise Testing Data Assessment in Specific Patient Populations. Circulation 2016, 133, e694–e711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, M.C.; Geoghegan, L.; Arbyn, M.; Mohammed, Z.; McGuinness, L.; Clarke, E.L.; Wade, R.G. The prevalence of symptoms in 24,410 adults infected by the novel coronavirus (SARS-CoV-2; COVID-19): A systematic review and meta-analysis of 148 studies from 9 countries. PLoS ONE 2020, 15, e0234765. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Gomez-Ochoa, S.A.; Franco, O.H.; Rojas, L.Z.; Raguindin, P.F.; Roa-Diaz, Z.M.; Wyssmann, B.M.; Guevara, S.L.R.; Echeverria, L.E.; Glisic, M.; Muka, T. COVID-19 in Health-Care Workers: A Living Systematic Review and Meta-Analysis of Prevalence, Risk Factors, Clinical Characteristics, and Outcomes. Am. J. Epidemiol. 2021, 190, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Henson, D.A.; Austin, M.D.; Sha, W. Upper respiratory tract infection is reduced in physically fit and active adults. Br. J. Sports Med. 2011, 45, 987–992. [Google Scholar] [CrossRef]
- Nieman, D.C.; Nehlsen-Cannarella, S.L.; Markoff, P.A.; Balk-Lamberton, A.J.; Yang, H.; Chritton, D.B.; Lee, J.W.; Arabatzis, K. The effects of moderate exercise training on natural killer cells and acute upper respiratory tract infections. Int. J. Sports Med. 1990, 11, 467–473. [Google Scholar] [CrossRef]
- Murphy, E.A.; Davis, J.M.; Brown, A.S.; Carmichael, M.D.; Van Rooijen, N.; Ghaffar, A.; Mayer, E.P. Role of lung macrophages on susceptibility to respiratory infection following short-term moderate exercise training. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 287, R1354–R1358. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8, 420–422. [Google Scholar] [CrossRef]
- Stefan, N.; Birkenfeld, A.L.; Schulze, M.B.; Ludwig, D.S. Obesity and impaired metabolic health in patients with COVID-19. Nat. Rev. Endocrinol. 2020, 16, 341–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guler, S.A.; Ebner, L.; Aubry-Beigelman, C.; Bridevaux, P.O.; Brutsche, M.; Clarenbach, C.; Garzoni, C.; Geiser, T.K.; Lenoir, A.; Mancinetti, M.; et al. Pulmonary function and radiological features 4 months after COVID-19: First results from the national prospective observational Swiss COVID-19 lung study. Eur Respir. J. 2021, 57, 2003690. [Google Scholar] [CrossRef]
- Flenley, D.C. Chronic obstructive pulmonary disease. Dis. Mon. 1988, 34, 537–599. [Google Scholar] [CrossRef]
- Quanjer, P.H.; Weiner, D.J.; Pretto, J.J.; Brazzale, D.J.; Boros, P.W. Measurement of FEF25-75% and FEF75% does not contribute to clinical decision making. Eur Respir. J. 2014, 43, 1051–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonini, M.; Di Paolo, M.; Bagnasco, D.; Baiardini, I.; Braido, F.; Caminati, M.; Carpagnano, E.; Contoli, M.; Corsico, A.; Del Giacco, S.; et al. Minimal clinically important difference for asthma endpoints: An expert consensus report. Eur. Respir. Rev. 2020, 29, 190137. [Google Scholar] [CrossRef]
- Dani, M.; Dirksen, A.; Taraborrelli, P.; Torocastro, M.; Panagopoulos, D.; Sutton, R.; Lim, P.B. Autonomic dysfunction in ‘long COVID’: Rationale, physiology and management strategies. Clin. Med. 2021, 21, e63. [Google Scholar] [CrossRef]
- Rajpal, S.; Tong, M.S.; Borchers, J.; Zareba, K.M.; Obarski, T.P.; Simonetti, O.P.; Daniels, C.J. Cardiovascular Magnetic Resonance Findings in Competitive Athletes Recovering from COVID-19 Infection. JAMA Cardiol. 2021, 6, 116–118. [Google Scholar]
- Daniels, C.J.; Rajpal, S.; Greenshields, J.T.; Rosenthal, G.L.; Chung, E.H.; Terrin, M.; Jeudy, J.; Mattson, S.E.; Law, I.H.; Borchers, J.; et al. Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS-CoV-2 infection: Results from the Big Ten COVID-19 Cardiac Registry. JAMA Cardiol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Moulson, N.; Petek, B.J.; Drezner, J.A.; Harmon, K.G.; Kliethermes, S.A.; Patel, M.R.; Baggish, A.L.; ORCCA Investigators. SARS-CoV-2 Cardiac Involvement in Young Competitive Athletes. Circulation 2021. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Sultanian, P.; Lundgren, P.; Strömsöe, A.; Aune, S.; Bergström, G.; Hagberg, E.; Hollenberg, J.; Lindqvist, J.; Djärv, T.; Castelheim, A.; et al. Cardiac arrest in COVID-19: Characteristics and outcomes of in- and out-of-hospital cardiac arrest. A report from the Swedish Registry for Cardiopulmonary Resuscitation. Eur. Heart J. 2021, 42, 1094–1106. [Google Scholar] [CrossRef] [PubMed]
- Vassalini, M.; Verzeletti, A.; Restori, M.; De Ferrari, F. An autopsy study of sudden cardiac death in persons aged 1–40 years in Brescia (Italy). J. Cardiovasc. Med. 2016, 17, 446–453. [Google Scholar] [CrossRef]
- Harris, K.M.; Mackey-Bojack, S.; Bennett, M.; Nwaudo, D.; Duncanson, E.; Maron, B.J. Sudden unexpected death due to myocarditis in young people, including athletes. Am. J. Cardiol. 2021, 143, 131–134. [Google Scholar] [CrossRef]
- Pagnesi, M.; Baldetti, L.; Beneduce, A.; Calvo, F.; Gramegna, M.; Pazzanese, V.; Ingallina, G.; Napolano, A.; Finazzi, R.; Ruggeri, A.; et al. Pulmonary hypertension and right ventricular involvement in hospitalised patients with COVID-19. Heart 2020, 106, 1324–1331. [Google Scholar] [CrossRef]
- Ong, K.C.; Ng, A.W.; Lee, L.S.; Kaw, G.; Kwek, S.K.; Leow, M.K.; Earnest, A. Pulmonary function and exercise capacity in survivors of severe acute respiratory syndrome. Eur. Respir. J. 2004, 24, 436–442. [Google Scholar] [CrossRef] [Green Version]
ID | COVID-19 Related Symptoms | Main Symptoms Duration | Persisting Symptoms | Medical History | General Clinical Examination | Resting ECG | Spirometry | Echocardiography |
---|---|---|---|---|---|---|---|---|
1 | Fatigue, Myalgia, Rhinitis | 4 days | Mild Myalgia | Isolated PVB | Normal | Normal | FEF 25–75% Reduction | Mild Mitral Insufficiency |
2 | Fever, Cough, Anosmia, Ageusia | 3 days | Anosmia, Ageusia | Asthma | Normal | Sinus Bradycardia, Incomplete RBB | Normal | Mild Tricuspid Insufficiency |
3 | Fever, Anosmia, Myalgia | 5 days | Anosmia | None | Normal | Incomplete RBB | FEF 25–75% Reduction | Normal |
4 | Fever, Cough, Myalgia, Fatigue, Anosmia, Ageusia | 3 days | Sporadic Cough | T inversion during exercise test | Normal | Normal | Normal | Mild Tricuspid Insufficiency |
5 | Myalgia, Fatigue | 3 days | None | Pollen Allergy | Normal | Normal | FEF 25–75% Reduction | Normal |
6 | Rhinitis, Pharyngodynia | 3 days | Rhinitis | None | Normal | Normal | Normal | Normal |
7 | None | N/A | N/A | None | Normal | Sinus Bradycardia grade AV Block, Incomplete RBB | Normal | Normal |
8 | Pharyngodynia, Anosmia, Ageusia | 2 days | Anosmia | Hypothyroidism | Normal | Sinus Bradycardia | Normal | Normal |
9 | Fever, Cough, Rhintis, Myalgia, Fatigue, Anosmia, Ageusia | 4 days | Rhinitis, Anosmia, Ageusia | None | Normal | incomplete RBB | Normal | Normal |
10 | Disosmia, Ageusia | 3 days | None | None | Normal | Normal | FEF 25–75% Reduction | Normal |
11 | Fever, Dispnea, Rhinitis, Pharyngodynia, Anosmia, Ageusia, Myalgia, Fatigue | 5 days | Rhinitis, Anosmia, Ageusia | Hypothyroidism, Smoking | Normal | Normal | Normal | Mild Mitral Insufficiency |
12 | Fever, Rhinitis, Myalgia, Fatigue | 3 days | Rhinitis | None | Normal | Incomplete RBBB | Normal | Normal |
13 | Myalgia, Fatigue | 3 days | None | PFO | 2/6 sistolic murmur | Incomplete RBBB | Normal | PFO, Mild Mitral Insufficiency |
14 | Fever, Cough, Pharyngodynia, Myalgia, Fatigue, Anosmia, Ageusia | 4 days | Anosmia, Ageusia | none | normal | normal | Normal | Normal |
15 | Cough, Rhintis, Shortness of Breath, Myalgia, Fatigue, Anosmia | 3 days | Anosmia | Isolated PVB, Asthma, Pollen Allergia | Normal | Normal | Normal | Normal |
16 | None | N/A | N/A | None | Normal | Sinus Bradycardia | Normal | Normal |
17 | Fever, Cough, Shortness of Breath, Pharyngodynia, Cefalea, Myalgia, Fatigue, Anosmia, Ageusia | 5 days | Mild Myalgia | Pollen Allergia | Normal | Normal | Normal | Normal |
18 | Fever, Cough, Rhintis, Dispnea, Faringodinia, Headache, Fatigue, Anosmia, Ageusia, Nause, Diarrhea | 6 days | Anosmia, Ageusia, Sporadic Cough | None | Normal | Sinus Bradycardia, Incomplete RBB | Normal | Normal |
19 | Cough, Rhintis, Pharyngodynia, Anosmia, Ageusia | 5 days | Anosmia, Ageusia | None | Normal | Sinus Bradycardia | Normal | Mild Mitral Insufficiency, Mild Tricuspid Insufficiency |
20 | Cough, Anosmia, Ageusia | 4 days | Sporadic Cough | Asthma, Pollen Allergia | Normal | Incomplete RBB | FEF 25–75% Reduction | Mild Mitral Insufficiency |
21 | Cough, Rhintis, Myalgia, Fatigue, Anosmia, Ageusia | 4 days | Rhinitis | none | Normal | Normal | Normal | Normal |
22 | Fever, Dispnea, Pharyngodynia, Rhitntis, Myalgia, Fatigue, Anosmia, Ageusia, Diarrhea | 4 days | Anosmia, Ageusia | Pollen Allergia | Normal | Sinus Bradycardia | Normal | Normal |
23 | Fever, Rhinitis, Pharyngodynia, Headache, Myalgia, Fatigue, Diarrhea, Anosmia, Ageusia | 5 days | Anosmia, Ageusia | Aortic Insuficiency, Smoking | 2/6 diastolic murmur | Normal | Normal | Mild Aortic Insufficiency |
24 | Fever, Cough, Rhinitis, Myalgia, Fatigue, Anosmia, Ageusia, Diarrhea | 4 days | Sporadic Cough | Smoking | Normal | Normal | FEF 25–75% Reduction | Normal |
ID | Peak VO2% Predicted | Peak RER | 1st VT %VO2peak | VE/VCO2 Slope | Rest SpO2 | Peak SpO2 | Peak VE/MVV | Arrythmias | ST-T Anomalies | Systolic and Diastolic Blood Pressure Profile |
---|---|---|---|---|---|---|---|---|---|---|
1 | >100 | 0.93 | 73.7 | <30 | 97 | 95 | <0.8 | Isolated PVB and PSVB. | None | Normal |
2 | >100 | 1.05 | 82.1 | <30 | 98 | 96 | <0.8 | None | None | Normal |
3 | >100 | 1.14 | 70.5 | <30 | 98 | 96 | <0.8 | None | None | Normal |
4 | >100 | 1.06 | 82.8 | <30 | 98 | 97 | <0.8 | Isolated PVB | T inversion in V4-V6. | Normal |
5 | <100 (87) | 1.08 | 82.5 | <30 | 98 | 97 | <0.8 | None | None | Normal |
6 | >100 | 1.07 | 72.6 | <30 | 98 | 95 | <0.8 | Isolated PSVB. | None | Normal |
7 | >100 | 1.05 | 80.3 | <30 | 98 | 96 | <0.8 | None | None | Normal |
8 | >100 | 1.03 | 70.9 | <30 | 98 | 95 | <0.8 | None | None | Normal |
9 | >100 | 1.11 | 64.5 | <30 | 98 | 95 | <0.8 | None | None | Normal |
10 | >100 | 1.17 | 74.5 | <30 | 98 | 96 | <0.8 | None | None | Normal |
11 | >100 | 1.14 | 79 | <30 | 97 | 95 | <0.8 | None | None | Normal |
12 | >100 | 1.05 | 74.2 | <30 | 99 | 96 | <0.8 | None | None | Normal |
13 | >100 | 1.11 | 73.9 | <30 | 97 | 95 | <0.8 | None | None | Normal |
14 | >100 | 1.05 | 70.4 | <30 | 96 | 95 | <0.8 | None | None | Normal |
15 | >100 | 1.16 | 78.2 | <30 | 97 | 94 | <0.8 | None | None | Normal |
16 | >100 | 1.10 | 75.5 | <30 | 99 | 98 | <0.8 | None | None | Normal |
17 | >100 | 1.13 | 71.1 | <30 | 98 | 94 | <0.8 | None | None | Normal |
18 | >100 | 1.13 | 82.5 | <30 | 99 | 96 | <0.8 | None | None | Normal |
19 | >100 | 1.17 | 76.8 | <30 | 98 | 96 | <0.8 | None | None | Normal |
20 | >100 | 1.28 | 72.2 | <30 | 99 | 95 | <0.8 | None | None | Normal |
21 | >100 | 1.14 | 70.6 | <30 | 99 | 96 | <0.8 | None | None | Normal |
22 | >100 | 1.05 | 75.5 | <30 | 100 | 98 | <0.8 | None | None | Normal |
23 | >100 | 1.08 | 72.2 | <30 | 99 | 96 | <0.8 | None | None | Normal |
24 | >100 | 1.12 | 72.9 | <30 | 98 | 95 | <0.8 | None | None | Normal |
Covid-19 Athletes (N = 24) | HC (N = 11) | p-Value | |
---|---|---|---|
Age | 23.5 (20–25.5) | 21 (10–24) | 0.734 |
BMI kg/m | 23.34 (22.67–24.16) | 22.99 (22.30–25.65) | 0.776 |
Asthma | 3 (12.5) | 0 (0) | 0.220 |
Spirometry | |||
FVC L | 5.415 (4.87–5.995) | 5.46 (5.01–5.72) | 0.696 |
FVC% | 98 (93.5–105.5) | 103 (100–104) | 0.188 |
FEV1 L | 4.38 (4.05–4.995) | 4.8 (4.39–5.49) | 0.078 |
FEV1% th | 97.5 (91.5–108) | 109 (106–116) | 0.007 |
FEV1/FVC | 83.55 (77.2–86.9) | 88.7 (81.2–94.4) | 0.166 |
FEV1/FVC% th | 101 (91–105) | 107 (98–114) | 0·075 |
FEF25–75 L | 4.665 (3.78–5.175) | 4.72 (4.34–5.79) | 0.384 |
FEF25–75% th | 98 (78.5–108.5) | 106 (94–130) | 0.248 |
PEF% th | 97 (86.5–108.5) | 97 (92–120) | 0.302 |
Echocardiography | |||
LVEDD mm | 51 (50.15–53.35) | 51 (50.2–54) | 0.873 |
LVESDmm | 32.3 (29.5–35.8) | 33 (29–37.4) | 0.683 |
IVSd mm | 11 (11–11.65) | 11 (10–12.0) | 0.582 |
PWd mm | 10.3 (10–11.0) | 10 (10–11.0) | 0.985 |
LVMass/BSA kg/m2 | 110.5 (107–115.5) | 106 (97–114) | 0.194 |
LVEDV mL | 116 (106–123.5) | 122 (117–125) | 0.138 |
LVESV mL | 41 (36.5–46) | 48 (45–49) | 0.683 |
EF% | 63.5 (61–65) | 62 (60–65) | 0.225 |
TAPSE mm | 23 (20.8–25) | 21.4 (21–24) | 0.519 |
PAP mmHg | 24 (21–25.5) | 18(17–22) | 0.017 |
TAPSE/PAP | 0.96 (0.84–1.14) | 1.15 (0.95–1.33) | 0.179 |
F.A.C% | 50.75 (45.55–55.65) | 52 (48.6–54.3) | 0.582 |
PAacTime s | 118 (113–127) | 115 (112–123) | 0.433 |
E/A | 1.48 (1.32–1·68) | 1.51 (1.20–1.75) | 0.734 |
DT | 169 (160–190) | 174 (145–186) | 0.929 |
Resting ECG | |||
PQ ms | 165 (150–183) | 154 (148–170) | 0.569 |
QTc ms | 408.5 (391–428.5) | 402 (392–416) | 0.396 |
Inc. RBBB | 9 (37.5) | 1 (9%) | 0.084 |
Resting HR | 63.5 (55–67) | 62 (51–78) | 0.887 |
CPET | |||
Peak HR | 171 (166–179) | 162 (155–183) | 0.423 |
Resting SBP mmHg | 120 (105–120) | 120 (100–130) | 0.749 |
Peak SBP mmHg | 177.5 (170–182.5) | 180 (170–190) | 0.321 |
Resting SpO2% | 98 (98–99) | 98 (98–100) | 0.458 |
Peak SpO2% | 96 (95–96) | 96 (95–97) | 0.710 |
Peak VO2 mL/kg/min | 50.1 (47.7–51.6) | 49 (44.2–52.6) | 0.618 |
Resting VE L/m | 11.95 (9.5–13.5) | 12.4 (9–14) | 0.887 |
Peak VE L/m | 106.8 (100.75–126.05) | 115.4 (109.8–127.2) | 0.319 |
Peak VCO2 L/min | 3.818 (3.5215–4.194) | 4.018 (3.899–4.396) | 0.118 |
Peak RER | 1.1 (1.105–1.14) | 1.1 (1.08–1.18) | 0.354 |
VE/VCO2 slope | 27.35 (25.55–29.45) | 28.1 (26.8–29.3) | 0.271 |
Lowest VE/VCO2 | 23.3 (22.45–25.15) | 25.1 (23.7–26.5) | 0.155 |
1stVT VO2 mL/kg/min | 36.45 (34.5–39.7) | 38.2 (34.5–41.4) | 0.789 |
1stVT% Peak VO2 | 74.07 (71.6–78.6) | 79.04 (76.04–80.61) | 0.082 |
Peak O2 pulse mL/kg/min | 22.55 (20.55–25.1) | 21.07 (19.5–22) | 0.141 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komici, K.; Bianco, A.; Perrotta, F.; Dello Iacono, A.; Bencivenga, L.; D'Agnano, V.; Rocca, A.; Bianco, A.; Rengo, G.; Guerra, G. Clinical Characteristics, Exercise Capacity and Pulmonary Function in Post-COVID-19 Competitive Athletes. J. Clin. Med. 2021, 10, 3053. https://doi.org/10.3390/jcm10143053
Komici K, Bianco A, Perrotta F, Dello Iacono A, Bencivenga L, D'Agnano V, Rocca A, Bianco A, Rengo G, Guerra G. Clinical Characteristics, Exercise Capacity and Pulmonary Function in Post-COVID-19 Competitive Athletes. Journal of Clinical Medicine. 2021; 10(14):3053. https://doi.org/10.3390/jcm10143053
Chicago/Turabian StyleKomici, Klara, Antonio Bianco, Fabio Perrotta, Antonio Dello Iacono, Leonardo Bencivenga, Vito D'Agnano, Aldo Rocca, Andrea Bianco, Giuseppe Rengo, and Germano Guerra. 2021. "Clinical Characteristics, Exercise Capacity and Pulmonary Function in Post-COVID-19 Competitive Athletes" Journal of Clinical Medicine 10, no. 14: 3053. https://doi.org/10.3390/jcm10143053
APA StyleKomici, K., Bianco, A., Perrotta, F., Dello Iacono, A., Bencivenga, L., D'Agnano, V., Rocca, A., Bianco, A., Rengo, G., & Guerra, G. (2021). Clinical Characteristics, Exercise Capacity and Pulmonary Function in Post-COVID-19 Competitive Athletes. Journal of Clinical Medicine, 10(14), 3053. https://doi.org/10.3390/jcm10143053