A Mini-Review on Electrocatalytic Self-Cleaning Membrane Materials for Sustainable Fouling Control
Abstract
1. Introduction
ECM | Merits | Drawbacks |
---|---|---|
CNTs | High electrical conductivity [20]; Tunable surface structure [20]; Larger specific surface area; Good chemical stability and mechanical properties. | Poor electrocatalytic activity [20]; Low overpotential for the competitive oxygen evolution reaction [12]; High cost. |
Transition metal oxides | Tunable electronic structure [21]; Environmentally friendly; Efficient generation of ROS [16]. | Easy passivation [12]; High preparation costs [22]; Low intrinsic catalytic activity; |
PANI | Low cost [23]; Good redox ability [23]; High chemical stability [23]. | Generation of organic waste during synthesis process [24]. Limited conductivity; Poor selectivity for desired pollutants; |
MXene | Large number of active sites [25]; Adjustable surface chemical properties [25]; Fast charge and electron transfer ability [25]. | Easy agglomeration [25]; Poor processibility [25]; Poor oxidation resistance [26]. |
MOFs | Highly adjustable pore architectures [27]; Plentiful supply of active sites [27]; Rich microenvironment inherent [27]; Larger specific surface area [27]. | Poor conductivity [28]; Low stability [28]; Easy agglomeration [28]; Risk of metal leaching [29]; Lack of exposed active sites [29]. |
COFs | Adjustable structure [30]; Good chemical stability [30]; Larger specific surface area [30]; Tunable conductivity [30]. | Inherently low electrical conductivity [31]; Limited accessibility of active sites [31]; Difficulty in synthesis. |
2. Electrocatalytic Membrane Materials
2.1. Carbonaceous Materials
2.2. Metal and Metal Oxide
2.3. Conductive Polymer
2.4. Emerging Materials
2.4.1. MOFs
2.4.2. MXene
3. Fabrication Methods of Electrocatalytic Membranes
4. Electrocatalytic Self-Cleaning Performance and Mechanism
4.1. Effect of Foulant and Wastewater Types
4.2. Self-Cleaning Mechanism
5. Challenges and Future Prospects
ECM Materials | Water Composition | Operating Conditions | Fouling Control Performance | Reference |
---|---|---|---|---|
D-UiO-66/PVDF | 100 mg/L BSA; 100 mg/L SA; 0.5 mM Ca2+ | Current density = 0.01 mA/cm2; Energy consumption = 0.46 W·h/L; | flux restored nearly 100 % after three fouling self-cleanings | [9] |
CNT/MXene | 20 mg/L methylene blue | Voltage = 4 V; Flux = 37.51 L·m−2·h−1·bar−1 | membrane’s permeation flux recovered to about 80% after 10 min | [18] |
Fe-g-C3N4/ABC-600/Graphite/PVDF | 100 mg/L BSA; pH = 7.0 | Flux = 421.3 L·m−2·h−1·bar−1; Energy consumption = 0.199 W·h/L; Residence time = 0.749 min; Excellent self-cleaning property | flux loss was negligible | [80] |
Ti-MOFs-1 | Simulated municipal wastewater; yeast extract (22 mg/L), peptone (32 mg/L), urea (6 mg/L) | Current density = 2.0 mA·cm−2; Flux = 618.6 L·m−2·h−1·bar−1; EC = 0.533 W·h/m3; Residence time = 50.2 s; Excellent self-cleaning property | Normalized flux decreased to 90% after 48 h operation | [96] |
Reconstructed UiO-66 | Surface water, pH = 7.34 | Voltage = 1.5 V, flux = 1223 L·m−2·h−1·bar−1, continuous operating mode | no obvious reduction in flux | [98] |
Graphene modified membrane | Pollutant: 20 mg/L alginate; pH = 7.0 0.05 mM Na2SO4 | Voltage = −2.5 V; Residence time = 7.5 min; | Normalized flux decreased to 76% after 10 h of operation | [116] |
FeNi-layered double hydroxide/carbon nanotube-based membrane | Humic acid; pH = 6.8 100 mM Na2SO4 | Current density = 2 mA cm−2; Flux = 225 L·m−2·h−1·bar−1; Energy consumption = 0.331 W·h/L; | Normalized flux decreased to 70% after 1 h operation | [117] |
PANI-CNT | 100 mg/L BSA | Voltage = 3 V; Flux = 40 L·m−2·h−1 | 81% flux recovery | [118] |
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, S.; Wan, Y.; Chen, X.; Luo, J. Loose nanofiltration membrane custom-tailored for resource recovery. Chem. Eng. J. 2021, 409, 127376. [Google Scholar] [CrossRef]
- Tian, K.; Xu, X.; Zhu, J.; Cao, S.; Yin, Z.; Li, F.; Yang, W. A critical review of oxidation for membrane fouling control in water treatment: Applications, mechanisms and challenges. J. Environ. Chem. Eng. 2024, 12, 114718. [Google Scholar] [CrossRef]
- Yin, Z.; Wen, T.; Li, Y.; Li, A.; Long, C. Pre-ozonation for the mitigation of reverse osmosis (RO) membrane fouling by biopolymer: The roles of Ca2+ and Mg2+. Water Res. 2020, 171, 115437. [Google Scholar] [CrossRef]
- Yin, Z.; Shao, Q.; Wen, T.; Li, A.; Long, C. Insights into the coupling pre-ozonation with coagulation pre-treatment for mitigating biopolymer fouling of reverse osmosis membrane: Role of Ca2+. J. Membr. Sci. 2021, 639, 119768. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Chen, Y.-B.; Fu, J.; Zhu, X.; Lv, L.-Y.; Sun, L.; Zhang, G.-M.; Ren, Z.-J. A review of combined fouling on high-pressure membranes in municipal wastewater reuse: Behaviors, mechanisms, and pretreatment mitigation strategies. Chem. Eng. J. 2024, 485, 150135. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, Y.; Yin, Z.; Yang, W. Insights into coagulation, softening and ozonation pre-treatments for reverse osmosis membrane fouling control in reclamation of textile secondary effluent. J. Water Process Eng. 2024, 58, 104764. [Google Scholar] [CrossRef]
- Gul, A.; Hruza, J.; Yalcinkaya, F. Fouling and chemical cleaning of microfiltration membranes: A mini-review. Polymers 2021, 13, 846. [Google Scholar]
- Li, N.; Lu, X.; He, M.; Duan, X.; Yan, B.; Chen, G.; Wang, S. Catalytic membrane-based oxidation-filtration systems for organic wastewater purification: A review. J. Hazard. Mater. 2021, 414, 125478. [Google Scholar] [CrossRef]
- Tian, K.; Xu, X.; Yin, Z.; Liu, Y.; Zhu, Y.; Li, F.; Wen, T.; Yang, W. Sustainable control of organic-inorganic combined fouling of electroactive ultrafiltration membrane during electrocatalytic-driven self-cleaning process: Mechanism and implications. J. Water Process Eng. 2024, 65, 105751. [Google Scholar] [CrossRef]
- Wang, X.; Li, F.; Hu, X.; Hua, T. Electrochemical advanced oxidation processes coupled with membrane filtration for degrading antibiotic residues: A review on its potential applications, advances, and challenges. Sci. Total Environ. 2021, 784, 146912. [Google Scholar] [CrossRef]
- Sun, W.; Xu, Q.; Yang, S.; Liu, S.; Sayed, M.; Mousset, E.; Zhao, C. Cathodic membrane–based electrochemical redox process for water treatment: A review. Curr. Opin. Chem.Eng. 2024, 44, 101023. [Google Scholar] [CrossRef]
- Sun, M.; Wang, X.; Winter, L.R.; Zhao, Y.; Ma, W.; Hedtke, T.; Kim, J.-H.; Elimelech, M. Electrified membranes for water treatment applications. ACS ES&T Eng. 2021, 1, 725–752. [Google Scholar]
- Zhao, Y.; Sun, M.; Winter, L.R.; Lin, S.; Wang, Z.; Crittenden, J.C.; Ma, J. Emerging challenges and opportunities for electrified membranes to enhance water treatment. Environ. Sci. Technol. 2022, 56, 3832–3835. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, G.; Li, Y.; Chen, X.; Yao, Y.; Zhang, P.; Ren, S.; Li, M.; Luo, Y.; Chen, N.; et al. Heterogeneous electro-Fenton catalytic FeOCl@NCNT/ceramic membrane filtration for in-situ membrane fouling control: Performance and mechanism. Sep. Purif. Technol. 2023, 316, 123845. [Google Scholar] [CrossRef]
- Li, N.; Wang, W.; Ma, C.; Zhu, L.; Chen, X.; Zhang, B.; Zhong, C. A novel conductive rGO/ZnO/PSF membrane with superior water flux for electrocatalytic degradation of organic pollutants. J. Membr. Sci. 2022, 641, 119901. [Google Scholar] [CrossRef]
- Zhou, S.; Zhu, J.; Wang, Z.; Yang, Z.; Yang, W.; Yin, Z. Defective MOFs-based electrocatalytic self-cleaning membrane for wastewater reclamation: Enhanced antibiotics removal, membrane fouling control and mechanisms. Water Res. 2022, 220, 118635. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, Z.; Lai, Z.; Yin, S.; Xian, W.; Meng, Q.-W.; Dai, Z.; Xiong, Y.; Meng, X.; Ma, S.; et al. Covalent organic framework membrane reactor for boosting catalytic performance. Nat. Commun. 2024, 15, 6837. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, W.; Zhao, B.; Yang, X.; Zhao, C.; Wang, W.; Yang, X.; Shen, A.; Ye, M. Novel CNT/MXene composite membranes with superior electrocatalytic efficiency and durability for sustainable wastewater treatment. Chem. Eng. J. 2024, 495, 153605. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Chang, H.; Xie, F.; Wu, R.; Zhou, S.; Zhu, X.; Liang, H.; Zhu, J. Triboelectric pulse promotes self-cleaning, catalysis of nano-confined domain lamellar membranes for effective water decontamination. Adv. Funct. Mater. 2024, 35, 2418565. [Google Scholar] [CrossRef]
- Jing, L.; Tian, Q.; Li, X.; Sun, J.; Wang, W.; Yang, H.; Chai, X.; Hu, Q.; He, C. Dual-engineering of porous structure and carbon edge enables highly selective H2O2 electrosynthesis. Adv. Funct. Mater. 2023, 33, 2305795. [Google Scholar] [CrossRef]
- Luo, H.; Jin, Y.; Shao, Q. Metastable-phase two-dimensional metal oxides for advanced electrocatalysis. Chem. Mater. 2024, 36, 6310–6320. [Google Scholar] [CrossRef]
- Jing, X.; Wang, X.; Li, X.; Wang, D.; Xu, H.; Yan, W. Progress in the preparation of metal oxide electrodes for the electrochemical treatment of organic wastewater: A short review. Catalysts 2023, 13, 1096. [Google Scholar] [CrossRef]
- Pan, Z.; Xu, S.; Xin, H.; Yuan, Y.; Xu, R.; Wang, P.; Yan, X.; Fan, X.; Song, C.; Wang, T. High performance polypyrrole coated carbon-based electrocatalytic membrane for organic contaminants removal from aqueous solution. J. Colloid Interface Sci. 2022, 626, 283–295. [Google Scholar] [CrossRef]
- Baker, C.O.; Huang, X.; Nelson, W.; Kaner, R.B. Polyaniline nanofibers: Broadening applications for conducting polymers. Chem. Soc. Rev. 2017, 46, 1510–1525. [Google Scholar] [CrossRef]
- Shuai, T.-Y.; Zhan, Q.-N.; Xu, H.-M.; Huang, C.-J.; Zhang, Z.-J.; Li, G.-R. Recent advances in the synthesis and electrocatalytic application of MXene materials. Chem. Commun. 2023, 59, 3968–3999. [Google Scholar] [CrossRef]
- Kong, W.; Deng, J.; Li, L. Recent advances in noble metal MXene-based catalysts for electrocatalysis. J. Mater. Chem. A 2022, 10, 14674–14691. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, Y.; Zhang, C.; Zi, Y.; Feng, Y.; Hu, J. Stability regulation of metal–organic framework materials for electrocatalysis. J. Mater. Chem. A 2025, 13, 4814–4837. [Google Scholar] [CrossRef]
- Yin, Z.; Liu, Y.; Hu, Z.; Wang, J.; Li, F.; Yang, W. Sustainable and ultrafast antibiotics removal, self-cleaning and disinfection with electroactive metal-organic frameworks/carbon nanotubes membrane. J. Hazard. Mater. 2024, 475, 134944. [Google Scholar] [CrossRef]
- Zheng, W.; Lee, L.Y.S. Metal–organic frameworks for electrocatalysis: Catalyst or precatalyst? ACS Energy Lett. 2021, 6, 2838–2843. [Google Scholar] [CrossRef]
- Li, Z.-H.; Zhang, H.; Yang, M.-Y.; Zhang, S.-B.; Zhang, M.; Liu, Y.-F.; Li, S.-L.; Lu, M.; Lan, Y.-Q. Multifunctional engineering and active sites regulation of covalent organic frameworks for efficient electrocatalytic acetylene hydrogenation to ethylene. ACS Catal. 2025, 15, 4837–4844. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Jiang, Y.; Li, M.; Peng, H.; Ma, G.; Zhu, L.; Shakir, I.; Xu, Y. Application of COF materials in carbon dioxide electrocatalytic reduction. Chem. Rec. 2025, 25, 202400244. [Google Scholar] [CrossRef]
- Li, J.; Li, D.; Liu, C.; Shi, W.; Yu, J.; Chen, M.; Ma, J. A review of the flow-through electro-catalytic water treatment process. Sep. Purif. Technol. 2025, 365, 132545. [Google Scholar] [CrossRef]
- Yin, Z.; Wen, T.; Li, Y.; Li, A.; Long, C. Alleviating reverse osmosis membrane fouling caused by biopolymers using pre-ozonation. J. Membr. Sci. 2020, 595, 117546. [Google Scholar] [CrossRef]
- Yin, Z.; Yang, C.; Long, C.; Li, A. Effect of integrated pretreatment technologies on RO membrane fouling for treating textile secondary effluent: Laboratory and pilot-scale experiments. Chem. Eng. J. 2018, 332, 109–117. [Google Scholar] [CrossRef]
- Villanueva Martinez, B.; Odier, H.; Coetsier, C.; Groenen Serrano, K. Recent advances in sub-stoichiometric TiO2 as reactive electrochemical membranes (REM) for bio-refractory pollutants removal: A critical review. J. Environ. Chem. Eng. 2023, 11, 110203. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, Y.; Xiao, P.; Liu, R.; Liu, H.; Qu, J.; Kim, J.-H.; Sun, M. Selective O2-to-H2O2 electrosynthesis by a high-performance, single-pass electrofiltration system using ibuprofen-laden CNT membranes. Environ. Sci. Technol. 2024, 58, 19058–19069. [Google Scholar] [CrossRef]
- Kong, D.; Zhao, Y.; Wang, R.; Li, J.; Li, J.; Ma, J. Inorganic electrified membrane: From basic science to performance translation. ACS ES&T Eng. 2023, 3, 2123–2146. [Google Scholar]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Pedrosa, M.; Figueiredo, J.L.; Silva, A.M.T. Graphene-based catalytic membranes for water treatment-A review. J. Environ. Chem. Eng. 2021, 9, 104930. [Google Scholar] [CrossRef]
- An, Y.-C.; Gao, X.-X.; Jiang, W.-L.; Han, J.-L.; Ye, Y.; Chen, T.-M.; Ren, R.-Y.; Zhang, J.-H.; Liang, B.; Li, Z.-L.; et al. A critical review on graphene oxide membrane for industrial wastewater treatment. Environ. Res. 2023, 223, 115409. [Google Scholar] [CrossRef]
- Shi, Y.; Yao, W.; Shen, X.; Li, R.; Chen, B.; Zhu, X. Development of a graphene based anodic membrane for efficient electrocatalytic oxidation of typical antibiotics from water. J. Environ. Manag. 2025, 380, 125131. [Google Scholar] [CrossRef]
- Feng, L.; Qin, Z.; Huang, Y.; Peng, K.; Wang, F.; Yan, Y.; Chen, Y. Boron-, sulfur-, and phosphorus-doped graphene for environmental applications. Sci. Total Environ. 2020, 698, 134239. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, Z.; Zhang, G.; Hu, Z.; He, M.; Jia, J.; Li, H.; Zhang, X.; Zhou, W. The promotion mechanism of different nitrogen doping types on the catalytic activity of activated carbon electro-Fenton cathode: Simultaneous promotion of H2O2 generation and phenol degradation ability. Environ. Res. 2024, 257, 119295. [Google Scholar] [CrossRef]
- Peng, Y.; Bian, Z.; Wang, F.; Li, S.; Xu, S.; Wang, H. Electrocatalytic degradation of p-nitrophenol on metal-free cathode: Superoxide radical (O2•−) production via molecular oxygen activation. J. Hazard. Mater. 2024, 462, 132797. [Google Scholar] [CrossRef]
- Alanezi, K.M.; Ahmad, I.; AlFaify, S.; Ali, I.; Mohammad, A.; Jabir, M.S.; Majdi, H.; Almutairi, F.M. A review of advanced heteroatom-doped graphene and its derivatives materials for photocatalytic applications. J. Ind. Eng. Chem. 2025, 143, 1–32. [Google Scholar] [CrossRef]
- Kaliyaraj Selva Kumar, A.; Lu, Y.; Compton, R.G. Voltammetry of carbon nanotubes and the limitations of particle-modified electrodes: Are carbon nanotubes electrocatalytic? J. Phys. Chem. Lett. 2022, 13, 8699–8710. [Google Scholar] [CrossRef]
- Rashed, A.O.; Huynh, C.; Merenda, A.; Qin, S.; Maghe, M.; Kong, L.; Kondo, T.; Razal, J.M.; Dumée, L.F. Electrocatalytic ultrafiltration membrane reactors designed from dry-spun self-standing carbon nanotube sheets. Chem. Eng. J. 2023, 458, 141517. [Google Scholar] [CrossRef]
- Fei, W.-Q.; Zhang, C.-M.; Feng, J.-J.; Li, Q.; Wan, Z.-H.; Sun, X.-F. Interface-induced modulation of electrocatalytic mechanisms in electrochemical membrane systems. J. Membr. Sci. 2025, 717, 123634. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, X.; Butler, C.; Kankam, A.; Belgada, A.; Simon, J.; Gao, Y.; Chen, E.; Winter, L.R. Highly efficient metal-free nitrate reduction enabled by electrified membrane filtration. Nat. Water 2024, 2, 684–696. [Google Scholar] [CrossRef]
- Chu, Y.; Ma, Q.; Hou, X.; Zhang, Y.; Zhang, J.; Ni, X.; Wang, Y. Enhancement of electrocatalytic activity for micropollutant removal by CeO2@CNT-based membranes: The influences of the structure and morphology of CeO2. J. Clean. Prod. 2023, 425, 139005. [Google Scholar] [CrossRef]
- Rashed, A.O.; Huynh, C.; Merenda, A.; Qin, S.; Usman, K.A.S.; Sadek, A.; Kong, L.; Kondo, T.; Dumée, L.F.; Razal, J.M. Schottky-like photo/electro-catalytic carbon nanotube composite ultrafiltration membrane reactors. Carbon 2023, 204, 238–253. [Google Scholar] [CrossRef]
- Zhang, P.; Meng, X.; Luo, X.; Wang, J.; Feng, J.; Ma, Y.; Li, K.; Liu, Y.; Wang, P.; Yin, C.; et al. In-situ interconnected 1D/2D/3D architectures of CNT/MoS2/Fe3O4 membranes for increasing degradation efficiency of penetrative electro-Fenton under low energy consumption. J. Environ. Chem. Eng. 2024, 12, 113735. [Google Scholar] [CrossRef]
- Han, F.; Mao, J.; Liu, S. Preparation of reduced graphene oxide-carbon nanotubes membranes for conductive heating membrane distillation treatment of humic acid. Sep. Purif. Technol. 2022, 302, 122181. [Google Scholar] [CrossRef]
- Chen, W.; Wang, F.; Hou, X.; Li, M.; Jia, L.; Li, X.; Li, S.; Zhang, X.; Wang, H.; Bian, Z. Efficient degradation of tetracycline contaminants by a flow-through Electro-Fenton system: Carbon nanotube-encapsulated α-Fe2O3 under nanoconfinement. Chem. Eng. J. 2025, 507, 160449. [Google Scholar] [CrossRef]
- Mehrkhah, R.; Hadavifar, M.; Mehrkhah, M.; Baghayeri, M.; Lee, B.H. Recent advances in titanium-based boron-doped diamond electrodes for enhanced electrochemical oxidation in industrial wastewater treatment: A review. Sep. Purif. Technol. 2025, 358, 130218. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, X.; Kamali, M.; Zhang, X.; Feijoo, S.; Al-Salem, S.M.; Dewil, R.; Appels, L. Biochar in hydroxyl radical-based electrochemical advanced oxidation processes (eAOPs)-Mechanisms and prospects. Chem. Eng. J. 2023, 467, 143291. [Google Scholar] [CrossRef]
- Sun, J.; Garg, S.; Waite, T.D. Utilizing an integrated flow cathode-membrane filtration system for effective and continuous electrochemical hydrodechlorination. Environ. Sci. Technol. 2024, 58, 13131–13144. [Google Scholar] [CrossRef]
- Tognia, M.; Feng, G.; Pan, Z.; Fan, X.; Song, C.; Wang, T. Efficient reactive electrochemical carbon membranes for organic pollutants removal from aqueous solution: A study of multi-physics modeling and simulation approach. J. Water Process Eng. 2022, 50, 103261. [Google Scholar] [CrossRef]
- Xue, Y.; Jia, Y.; Liu, S.; Yuan, S.; Ma, R.; Ma, Q.; Fan, J.; Zhang, W.-X. Electrochemical reduction of wastewater by non-noble metal cathodes: From terminal purification to upcycling recovery. J. Hazard. Mater. 2023, 459, 132106. [Google Scholar] [CrossRef]
- Cai, Y.; Luo, Y.-H.; Long, X.; Roldan, M.A.; Yang, S.; Zhou, C.; Zhou, D.; Rittmann, B.E. Reductive dehalogenation of herbicides catalyzed by Pd0NPs in a H2-based membrane catalyst-film reactor. Environ. Sci. Technol. 2022, 56, 18030–18040. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Q.-Y.; Lee, M.-Y.; Nong, Y.-J.; Wang, W.-L.; Drewes, J.E. Efficient electrocatalytic hydrodechlorination and detoxification of chlorophenols by palladium–palladium oxide heterostructure. Environ. Sci. Technol. 2024, 58, 20739–20750. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Jiang, K.; Wu, H.; Ao, L.; Hu, L.; Li, X.; Shen, F.; Shi, L.; Dong, F.; Jiang, G. Defective layered double hydroxide nanosheet boosts electrocatalytic hydrodechlorination reaction on supported palladium nanoparticles. ACS ES&T Water 2022, 2, 1451–1460. [Google Scholar]
- Xu, Y.; Mao, Z.; Qu, R.; Wang, J.; Yu, J.; Luo, X.; Shi, M.; Mao, X.; Ding, J.; Liu, B. Electrochemical hydrogenation of oxidized contaminants for water purification without supporting electrolyte. Nat. Water 2023, 1, 95–103. [Google Scholar] [CrossRef]
- Ren, Y.; Zheng, W.; Li, S.; Liu, Y. Atomic H*-mediated electrochemical removal of low concentration antimonite and recovery of antimony from water. J. Hazard. Mater. 2023, 445, 130520. [Google Scholar] [CrossRef]
- Zhang, X.; Li, S.; Zhao, G.; Zhao, H.; Zhou, M. Single-atom catalysts toward electrochemical water treatment. Appl. Catal. B Environ. Energ. 2025, 363, 124783. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, Y.; Dang, X.; Sun, Y.; Kong, D.; Wang, X.; Bai, S.; Arotiba, O.A.; Ma, J. Unveiling the environmental sustainability of Ti4O7 electrified membrane for perfluorooctanoic acid removal. Water Res. 2025, 277, 123310. [Google Scholar] [CrossRef]
- Sun, Y.; Lu, D.; Zhang, H.; Liu, G.; Hu, Y.; Xie, H.; Ma, J. Titanium oxide electrocatalytic membrane filtration: “Two Faces” of oxygen vacancies in generation and transformation of reactive oxygen species. Environ. Sci. Technol. 2023, 57, 13226–13235. [Google Scholar] [CrossRef]
- Ren, G.; Li, R.; Zhao, M.; Hou, Q.; Rao, T.; Zhou, M.; Ma, X. Membrane electrodes for electrochemical advanced oxidation processes: Preparation, self-cleaning mechanisms and prospects. Chem. Eng. J. 2023, 451, 138907. [Google Scholar] [CrossRef]
- Kim, M.; Ha, J.; Kim, Y.-T.; Choi, J. Stainless steel: A high potential material for green electrochemical energy storage and conversion. Chem. Eng. J. 2022, 440, 135459. [Google Scholar] [CrossRef]
- Kumari, P.; Bahadur, N.; Conlan, X.A.; Laleh, M.; Kong, L.; O’Dell, L.A.; Dumée, L.F.; Merenda, A. Atomically-thin Schottky-like photo-electrocatalytic cross-flow membrane reactors for ultrafast remediation of persistent organic pollutants. Water Res. 2022, 218, 118519. [Google Scholar] [CrossRef]
- Yang, Y.; Qiao, S.; Zhou, J.; Quan, X. Mitigating membrane fouling based on in situ *OH generation in a novel electro-Fenton membrane bioreactor. Environ. Sci. Technol. 2020, 54, 7669–7676. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Zhuang, L.; Zhang, S.; Liu, Q.; Zhang, L.; Hu, G. Single atom catalyst for electrocatalysis. Chin. Chem. Lett. 2021, 32, 2947–2962. [Google Scholar] [CrossRef]
- Gao, Y.; Liang, S.; Jiang, C.; Gu, M.; Zhang, Q.; Abdelhafiz, A.; Zhang, Z.; Han, Y.; Yang, Y.; Zhang, X.; et al. Electric field-confined synthesis of single atomic TiOxCy electrocatalytic membranes. Sci. Adv. 2025, 11, 7154. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Y.; He, S.; Wu, S.; Yang, C. Singlet oxygen: Properties, generation, detection, and environmental applications. J. Hazard. Mater. 2024, 461, 132538. [Google Scholar] [CrossRef]
- Li, H.; Lai, J.; Li, Z.; Wang, L. Multi-sites electrocatalysis in high-entropy alloys. Adv. Funct. Mater. 2021, 31, 2106715. [Google Scholar] [CrossRef]
- Zhang, N.; Wu, Y.; Awad, A.M.; Doelsch, E.; de Lannoy, C.F. Ni-Cu bimetallic catalytic membranes for continuous nitrophenol conversion. Chem. Eng. J. 2023, 467, 143435. [Google Scholar] [CrossRef]
- Yan, N.; Ren, T.; Lu, K.; Gao, Y.; Sun, M.; Huang, X.; Zhang, X. Carbon-based electrocatalytic dual-membrane system bolsters singlet oxygen production for ultrafast water decontamination. J. Hazard. Mater. 2024, 463, 132787. [Google Scholar] [CrossRef]
- Song, Y.; Wang, A.; Ren, S.; Zhang, Y.; Fan, R.; Liu, Y.; Zhang, Z. Electro-controlled membrane coupling heterogeneous electro-Fenton (EM-HEF) in treating acetaminophen: Performance, mechanism, DFT calculation, and application. Sep. Purif. Technol. 2024, 345, 127345. [Google Scholar] [CrossRef]
- Yang, L.; Xu, D.; Luo, X.; Zhu, X.; Zhao, J.; Song, J.; Han, Y.; Li, G.; Gao, X.; Liu, L.; et al. Fe(II)-modulated microporous electrocatalytic membranes for organic microcontaminant oxidation and fouling control: Mechanisms of regulating electron transport toward enhanced reactive oxygen species activation. Environ. Sci. Technol. 2023, 57, 19000–19011. [Google Scholar] [CrossRef]
- Yin, Z.; Zhu, J.; Wang, Z.; Liu, Y.; Yang, Z.; Yang, W. Novel Fe/N co-doping biochar based electro-Fenton catalytic membrane enabling enhanced tetracycline removal and self-cleaning performance. J. Clean. Prod. 2023, 402, 136731. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Jing, J.; Song, G.; Zhou, M. Biomass derived S, N self-doped catalytic Janus cathode for flow-through metal-free electrochemical advanced oxidation process: Better removal efficiency and lower energy consumption under neutral conditions. Chem. Eng. J. 2023, 466, 143283. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Chen, G.; Wu, Y.; Tian, M.; Peng, Y.; Dou, S.; Li, L.; Sun, J. Refining metal-free carbon nanoreactors through electronic and geometric comodification for boosted H2O2 electrosynthesis toward efficient water decontamination. Environ. Sci. Technol. 2024, 58, 21893–21903. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, G.; Zhao, C.; Liu, J.; Yang, F. Hydraulic power and electric field combined antifouling effect of a novel conductive poly(aminoanthraquinone)/reduced graphene oxide nanohybrid blended PVDF ultrafiltration membrane. J. Mater. Chem. A 2015, 3, 20277–20287. [Google Scholar] [CrossRef]
- Ramohlola, K.E.; Modibane, K.D.; Ndipingwi, M.M.; Iwuoha, E.I. Polyaniline-based electrocatalysts for electrochemical hydrogen evolution reaction. Eur. Polym. J. 2024, 213, 113125. [Google Scholar] [CrossRef]
- Liu, M.-L.; Li, L.; Sun, Y.-X.; Fu, Z.-J.; Cao, X.-L.; Sun, S.-P. Scalable conductive polymer membranes for ultrafast organic pollutants removal. J. Membr. Sci. 2021, 617, 118644. [Google Scholar] [CrossRef]
- Pan, Z.; Xin, H.; Xu, S.; Xu, R.; Wang, P.; Yuan, Y.; Fan, X.; Song, Y.; Song, C.; Wang, T. Preparation and performance of polyaniline modified coal-based carbon membrane for electrochemical filtration treatment of organic wastewater. Sep. Purif. Technol. 2022, 287, 120600. [Google Scholar] [CrossRef]
- Sboui, M.; Niu, W.; Li, D.; Lu, G.; Zhou, N.; Zhang, K.; Pan, J.H. Fabrication of electrically conductive TiO2/PANI/PVDF composite membranes for simultaneous photoelectrocatalysis and microfiltration of azo dye from wastewater. Appl. Catal. A Gen. 2022, 644, 118837. [Google Scholar] [CrossRef]
- Hu, S.; Shen, Y.; Jin, Q.; Cheng, M.; Qin, Z. Unique construction of hierarchical PANI–based nanofibrous network for boosting water electrolysis through highly efficient utilization of Pt nanocatalyst. J. Power Sources 2024, 608, 234653. [Google Scholar] [CrossRef]
- Wang, S.; Huang, T.; Ma, H.; Liu, Z.; Xia, H.; Sun, Z.; Ma, J.; Zhao, Y. Electrocatalytic pani-encapsulated aluminum silicate/ceramic membranes for efficient and energy-saving removal of 4-chlorophenol in wastewater. Membranes 2025, 15, 114. [Google Scholar] [CrossRef]
- Han, G.-Y.; Sun, M.; Zhao, R.; Junaid, Q.M.; Hou, G.; Mohmand, N.Z.K.; Jia, C.; Liu, Y.; Van Der Voort, P.; Shi, L.; et al. Defect engineered Ti-MOFs and their applications. Chem. Soc. Rev. 2025, 54, 5081–5107. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhu, G.C. A review on metal organic frameworks (MOFs) modified membrane for remediation of water pollution. Environ. Eng. Res. 2021, 26, 190435. [Google Scholar] [CrossRef]
- Zhang, S.F.; Zhao, M.K.; Li, H.; Hou, C.; Du, M. Facile in situ synthesis of ZIF-67/cellulose hybrid membrane for activating peroxymonosulfate to degrade organic contaminants. Cellulose 2021, 28, 3585–3598. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Hou, C.; Jing, L.; Ren, R.; Ma, L.; Wang, X.; Wang, J. Biomass-based carbon fiber/MOFs composite electrode for electro-Fenton degradation of TBBPA. Sep. Purif. Technol. 2022, 282, 120059. [Google Scholar] [CrossRef]
- Zhu, W.K.; Han, M.; Kim, D.; Zhang, Y.; Kwon, G.; You, J.; Jia, C.; Kim, J. Facile preparation of nanocellulose/Zn-MOF-based catalytic filter for water purification by oxidation process. Environ. Res. 2022, 205, 112417. [Google Scholar] [CrossRef]
- Yin, Z.; Liu, Y.; Zhou, S.; Yang, Z.; Yang, W. Constructing zirconium based metal-organic frameworks based electrically-driven self-cleaning membrane for removal of tetracycline: Effect of ligand substitution. Chem. Eng. J. 2022, 450, 138100. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Yin, Z.; Ma, Y.; Kou, Y.; Yang, W. Titanium metal organic framework based electrocatalytic membrane for fast antibiotics removal: Synergy of defects and hierarchical pore. Sep. Purif. Technol. 2023, 323, 124517. [Google Scholar] [CrossRef]
- Hu, Z.; Yin, Z.; Chen, Y.; Wen, T.; Li, F.; Yang, W. Development of conductive two-dimensional metal-organic frameworks self-cleaning membrane for enhanced antibiotics rejection and sustainable fouling mitigation. J. Membr. Sci. 2024, 709, 123108. [Google Scholar] [CrossRef]
- Wang, J.; Yin, Z.; Wang, M.; Fan, Y.; Li, F.; Li, B.; Yang, W. Tunable reconstruction of metal-organic frameworks for advanced electrocatalytic degradation of antibiotics: Key role of structural defects and pollutant properties. J. Hazard. Mater. 2025, 494, 138456. [Google Scholar] [CrossRef]
- Sheikh, T.A.; Muhammad, I.; Fazle, R.M.; Hira, K.; Ayesha, R.; Zeerak, R.; Amna, S.; Zeeshan, R.M.; Khattak, K.Z.A.; Sajid, J.S.M.; et al. 2D MXene-based nanoscale materials for electrochemical sensing toward the detection of hazardous pollutants: A perspective. Crit. Rev. Anal. Chem. 2024, 1–46. [Google Scholar] [CrossRef]
- He, K.; Li, W.; Tang, L.; Chen, L.; Wang, G.; Liu, Q.; Xin, X.; Yang, C.; Wang, Z.; Lv, S.; et al. Insight into the design of a Ti3C2 MXene/Ti4O7 composite ceramic membrane boosts the electrocatalytic activity for 1,4-dioxane electro-oxidation. Appl. Catal. B Environ. 2023, 338, 123077. [Google Scholar] [CrossRef]
- Yang, X.; Wei, G.; Cao, J.; Ding, Z.; Yuan, R.; Long, J.; Xu, C. Mxene-Cu electrified membranes with confined lamellar channels for the flow-through electrochemical reduction of nitrate to ammonia. ACS Sustain. Chem. Eng. 2024, 12, 3378–3389. [Google Scholar] [CrossRef]
- Wang, H.; Shao, Y.; Yin, Z.; Yu, D.; Zhang, J.; Yin, Z.; Li, J. Construction of MXene/Ti membrane electrode with Ti3C2TX via electrophoretic deposition for high-efficient electrochemical degradation of antibiotic wastewater. J. Water Process Eng. 2023, 54, 103893. [Google Scholar] [CrossRef]
- Sun, L.; Liu, Z.; Wu, Y.; Zhu, Y.; Shao, S.; Xia, X. MXene laminar membrane functionalized with Pd-Cu for efficient and selective nitrate reduction to ammonia. Sep. Purif. Technol. 2025, 355, 129638. [Google Scholar] [CrossRef]
- Jin, L.; Liu, M.; You, S.; Zhao, H.; Liu, Y. Electrocatalytic membrane with p-block bismuth atoms for selective oxygen activation to hydroxyl radicals for effective water decontamination. Appl. Cataly. B Environ. Energ. 2024, 352, 124044. [Google Scholar] [CrossRef]
- Xu, M.; Huang, J.; Yue, X.; Huang, S. Immobilizing ultralow loading platinum nanoparticles onto mxene through defect engineering to enhance the activity of the hydrogen evolution reaction. ACS Appl. Energy Mater. 2024, 7, 2460–2468. [Google Scholar] [CrossRef]
- Wang, Y.-Z.; Xu, G.-Q.; Sun, Y.-H.; Yang, L.; Liu, Y.-L.; Fu, Y. Synthesis of CoFe2O4@C based on Fe/Co-BTC for efficient detection, determination and degradation of nitenpyram residue: An electrochemical study, condition optimization and mechanism. J. Clean. Prod. 2024, 483, 144317. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.S.; Shao, Y.M.; Jing, L.M.; Ren, R.K.; Ma, L.W.; Wang, X.; Li, Z.J.; Wang, J.Z.; Hou, C. Energy-efficient mineralization of perfluorooctanoic acid: Biomass energy driven solar photo-electro-fenton catalysis and mechanism study. Chem. Eng. J. 2022, 443, 136514. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, M.Z.; Hou, C.; Chen, W.Q.; Li, S.S.; Ren, R.K.; Li, Z.J. Efficient degradation of perfluorooctanoic acid by solar photo-electro-Fenton like system fabricated by MOFs/carbon nanofibers composite membrane. Chem. Eng. J. 2021, 414, 128940. [Google Scholar] [CrossRef]
- Hou, C.; Chen, W.Q.; Fu, L.H.; Zhang, S.F.; Liang, C.; Wang, Y. Facile synthesis of a Co/Fe bi-MOFs/CNF membrane nanocomposite and its application in the degradation of tetrabromobisphenol A. Carbohydr. Polym. 2020, 247, 116731. [Google Scholar] [CrossRef]
- Li, X.; Chen, X.G.; Wang, B.; Yu, G. Boosting Fe (II) generation in MOFs under visible-light irradiation for accumulated micropollutants decomposition. J. Environ. Chem. Eng. 2022, 10, 108833. [Google Scholar] [CrossRef]
- Yin, Z.; Zhou, S.; Hu, M.; Yang, Z.; Yang, W. Constructing visible-light-driven self-cleaning UF membrane by quaternary ammonium-functionalized Ti-MOFs for water remediation. J. Membr. Sci. 2022, 650, 120394. [Google Scholar] [CrossRef]
- Anis, S.F.; Lalia, B.S.; Khair, M.; Hashaikeh, R.; Hilal, N. Electro-ceramic self-cleaning membranes for biofouling control and prevention in water treatment. Chem. Eng. J. 2021, 415, 128395. [Google Scholar] [CrossRef]
- Gayen, P.; Chen, C.; Abiade, J.T.; Chaplin, B.P. Electrochemical oxidation of atrazine and clothianidin on Bi-doped SnO2-TinO2n-1 electrocatalytic reactive electrochemical membranes. Environ. Sci. Technol. 2018, 52, 12675–12684. [Google Scholar] [CrossRef]
- Wang, S.; Pei, S.; Zhang, J.; Huang, J.; You, S. Flow-through electrochemical removal of benzotriazole by electroactive ceramic membrane. Water Res. 2022, 218, 118454. [Google Scholar] [CrossRef]
- Zhao, Y.; Gu, Y.; Liu, B.; Yan, Y.; Shan, C.; Guo, J.; Zhang, S.; Vecitis, C.D.; Gao, G. Pulsed hydraulic-pressure-responsive self-cleaning membrane. Nature 2022, 608, 69–73. [Google Scholar] [CrossRef]
- Jiang, W.-L.; Xia, X.; Han, J.-L.; Ding, Y.-C.; Haider, M.R.; Wang, A.-J. Graphene modified electro-Fenton catalytic membrane for in situ degradation of antibiotic florfenicol. Environ. Sci. Technol. 2018, 52, 9972–9982. [Google Scholar] [CrossRef]
- Yang, L.; Xu, D.; Yang, H.; Luo, X.; Liang, H. Structurally-controlled FeNi LDH/CNTs electro-Fenton membrane for in-situ electro-generation and activation of hydroxyl radicals toward organic micropollutant treatment. Chem. Eng. J. 2022, 432, 134436. [Google Scholar] [CrossRef]
- Duan, W.; Ronen, A.; Walker, S.; Jassby, D. Polyaniline-coated carbon nanotube ultrafiltration membranes: Enhanced anodic stability for in situ cleaning and electro-oxidation processes. ACS Appl. Mater. Interf. 2016, 8, 22574–22584. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, H.; Yin, Z. A Mini-Review on Electrocatalytic Self-Cleaning Membrane Materials for Sustainable Fouling Control. Membranes 2025, 15, 191. https://doi.org/10.3390/membranes15070191
Yin H, Yin Z. A Mini-Review on Electrocatalytic Self-Cleaning Membrane Materials for Sustainable Fouling Control. Membranes. 2025; 15(7):191. https://doi.org/10.3390/membranes15070191
Chicago/Turabian StyleYin, Honghuan, and Zhonglong Yin. 2025. "A Mini-Review on Electrocatalytic Self-Cleaning Membrane Materials for Sustainable Fouling Control" Membranes 15, no. 7: 191. https://doi.org/10.3390/membranes15070191
APA StyleYin, H., & Yin, Z. (2025). A Mini-Review on Electrocatalytic Self-Cleaning Membrane Materials for Sustainable Fouling Control. Membranes, 15(7), 191. https://doi.org/10.3390/membranes15070191