Effect of Temperature and Humidity on the Water and Dioxygen Transport Properties of Polybutylene Succinate/Graphene Nanoplatelets Nanocomposite Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Film Processing
2.3. Attenuated Total Reflectance ATR-FTIR
2.4. Raman Spectroscopy
2.5. Scattering Electron Microscopy (SEM)
2.6. Differential Scanning Calorimetry
2.7. Dynamic Vapor Sorption (DVS)
2.8. Water Permeation
2.9. Dioxygen Permeation
3. Analysis
3.1. Thermodynamic Analysis: Isotherm Modeling
3.2. Temperature Dependency on Transport Properties
4. Results and Discussion
4.1. Morphology
4.2. Morphology
4.3. Water Permeability
4.4. Dioxygen Permeability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, R. Biodegradable Polymers for Industrial Applications; CRC Press: Boca Raton, FL, USA, 2005; ISBN 978-1-85573-934-5. [Google Scholar]
- Rafiqah, S.A.; Khalina, A.; Harmaen, A.S.; Tawakkal, I.A.; Zaman, K.; Asim, M.; Nurrazi, M.N.; Lee, C.H. A Review on Properties and Application of Bio-based Poly(Butylene Succinate). Polymers 2021, 13, 1436. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; Lee, J.; Kwon, K. Hydrolytic Degradation Behavior of Poly(Butylene Succinate)s with Different Crystalline Morphologies. J. Appl. Polym. Sci. 2001, 79, 1025–1033. [Google Scholar] [CrossRef]
- Thurber, H.; Curtzwiler, G.W. Suitability of Poly(Butylene Succinate) as a Coating for Paperboard Convenience Food Packaging. Int. J. Biobased Plast. 2020, 2, 1–12. [Google Scholar] [CrossRef]
- Charlon, S.; Follain, N.; Chappey, C.; Dargent, E.; Soulestin, J.; Sclavons, M.; Marais, S. Improvement of Barrier Properties of Bio-Based Polyester Nanocomposite Membranes by Water-Assisted Extrusion. J. Membr. Sci. 2015, 496, 185–198. [Google Scholar] [CrossRef]
- Tan, B.; Thomas, N.L. A Review of the Water Barrier Properties of Polymer/Clay and Polymer/Graphene Nanocomposites. J. Membr. Sci. 2016, 514, 595–612. [Google Scholar] [CrossRef] [Green Version]
- Cosquer, R.; Pruvost, S.; Gouanvé, F. Improvement of Barrier Properties of Biodegradable Polybutylene Succinate/Graphene Nanoplatelets Nanocomposites Prepared by Melt Process. Membranes 2021, 11, 151. [Google Scholar] [CrossRef] [PubMed]
- Charlon, S.; Follain, N.; Soulestin, J.; Sclavons, M.; Marais, S. Water Transport Properties of Poly(Butylene Succinate) and Poly[(Butylene Succinate)-Co-(Butylene Adipate)] Nanocomposite Films: Influence of the Water-Assisted Extrusion Process. J. Phys. Chem. C 2017, 121, 918–930. [Google Scholar] [CrossRef]
- Siparsky, G.L.; Voorhees, K.J.; Dorgan, J.R.; Schilling, K. Water Transport in Polylactic Acid (PLA), PLA/Polycaprolactone Copolymers, and PLA/Polyethylene Glycol Blends. J. Environ. Polym. Degrad. 1997, 5, 125–136. [Google Scholar] [CrossRef]
- Liu, L.; Yu, J.; Cheng, L.; Yang, X. Biodegradability of Poly(Butylene Succinate) (PBS) Composite Reinforced with Jute Fibre. Polym. Degrad. Stab. 2009, 94, 90–94. [Google Scholar] [CrossRef]
- Miyata, T.; Masuko, T. Crystallization Behaviour of Poly(Tetramethylene Succinate). Polymer 1998, 39, 1399–1404. [Google Scholar] [CrossRef]
- Wang, X.; Yang, H.; Song, L.; Hu, Y.; Xing, W.; Lu, H. Morphology, Mechanical and Thermal Properties of Graphene-Reinforced Poly(Butylene Succinate) Nanocomposites. Compos. Sci. Technol. 2011, 72, 1–6. [Google Scholar] [CrossRef]
- Kumari Pallathadka, P.; Koh, X.Q.; Khatta, A.; Luckachan, G.E.; Mittal, V. Characteristics of Biodegradable Poly(Butylene Succinate) Nanocomposites with Thermally Reduced Graphene Nanosheets. Polym. Compos. 2017, 38, E42–E48. [Google Scholar] [CrossRef]
- Papageorgiou, G.Z.; Bikiaris, D.N. Crystallization and Melting Behavior of Three Biodegradable Poly(Alkylene Succinates). A Comparative Study. Polymer 2005, 46, 12081–12092. [Google Scholar] [CrossRef]
- Yaws, C.L. The Yaws Handbook of Vapor Pressure: Antoine Coefficients; Gulf Professional Publishing: London, UK, 2015. [Google Scholar]
- Guggenheim, E.A. Applications of Statistical Mechanics; Clarendon: Oxford, UK, 1966. [Google Scholar]
- Anderson, R.B. Modifications of the Brunauer, Emmett and Teller Equation. J. Am. Chem. Soc. 1946, 68, 686–691. [Google Scholar] [CrossRef]
- De Boer, J.H. The Dynamical Character of Adsorption, 2nd ed.; Clarendon: Oxford, UK, 1968. [Google Scholar]
- Quirijns, E.J.; Van Boxtel, A.J.B.; Van Loon, W.K.P.; Van Straten, G. Sorption Isotherms, GAB Parameters and Isosteric Heat of Sorption. J. Sci. Food Agric. 2005, 1814, 1805–1814. [Google Scholar] [CrossRef]
- Zimm, B.H.; Lundberg, J.L. Sorption of Vapors by High Polymers. J. Chem. Phys. 1956, 60, 425–428. [Google Scholar] [CrossRef]
- Rogers, C.E.; Ashley, R.J.; Comyn, J.; Goosey, M.T.; Marom, G.; Moisan, J.Y.; Richards, J.H.; Rogers, C.E.; Windle, A.H. Permeation of Gases and Vapours in Polymers; Springer: Dordrecht, The Netherlands, 1985; ISBN 978-94-009-4858-7. [Google Scholar]
- Costello, L.M.; Koros, W.J. Effect of Structure on the Temperature Dependence of Gas Transport and Sorption in a Series of Polycarbonates. J. Polym. Sci. Part B Polym. Phys. 1994, 32, 701–713. [Google Scholar] [CrossRef]
- Barrer, R.M.; Skirrow, G. Transport and Equilibrium Phenomena in Gas-Elastomer Systems. II. Equilibrium Phenomena. Rubber Chem. Technol. 1949, 22, 440–449. [Google Scholar] [CrossRef]
- Koros, W.J.; Chan, A.H.; Paul, D.R. Sorption and Transport of Various Gases in Polycarbonate. J. Membr. Sci. 1977, 2, 165–190. [Google Scholar] [CrossRef]
- Stannett, V.T.; Koros, W.J.; Paul, D.R.; Lonsdale, H.K.; Baker, R.W. Recent Advances in Membrane Science and Technology. In Chemistry; Advances in Polymer Science Series; Springer: Berlin/Heidelberg, Germany, 1979; pp. 69–121. [Google Scholar]
- Meares, P.; Crank, J.; Park, G. Diffusion in Polymers; Academic Press: London, UK, 1968; pp. 373–428. [Google Scholar]
- Flaconnèche, B.; Klopffer, M.H. Transport Properties of Gases in Polymers: Bibliographic Review. Oil Gas Sci. Technol. 2001, 56, 223–244. [Google Scholar] [CrossRef] [Green Version]
- Abderrahim, B.; Abderrahman, E.; Mohamed, A.; Fatima, T.; Abdesselam, T.; Krim, O. Kinetic Thermal Degradation of Cellulose, Polybutylene Succinate and a Green Composite: Comparative Study. World J. Environ. Eng. 2015, 3, 95–110. [Google Scholar] [CrossRef]
- Shin, K.-Y.; Hong, J.-Y.; Lee, S.; Jang, J. High Electrothermal Performance of Expanded Graphite Nanoplatelet-Based Patch Heater. J. Mater. Chem. 2012, 22, 23404. [Google Scholar] [CrossRef]
- Yudanov, N.F.; Okotrub, A.V.; Bulusheva, L.G.; Asanov, I.P.; Shubin, Y.V.; Yudanova, L.I.; Alferova, N.I.; Sokolov, V.V.; Gavrilov, N.N.; Tur, V.A. Layered Compounds Based on Perforated Graphene. J. Struct. Chem. 2011, 52, 903–909. [Google Scholar] [CrossRef]
- Bharadwaj, R.K. Modeling the Barrier Properties of Polymer-Layered Silicate Nanocomposites. Macromolecules 2001, 34, 9189–9192. [Google Scholar] [CrossRef]
- Bhatia, A.; Gupta, R.K.; Bhattacharya, S.N.; Choi, H.J. Compatibility of Biodegradable Poly (Lactic Acid) (PLA) and Poly (Butylene Succinate) (PBS) Blends for Packaging Application. Korea Aust. Rheol. J. 2007, 19, 125–131. [Google Scholar]
- Gonçalves, C.; Pinto, A.M.; Machado, A.V.; Moreira, J.; Gonçalves, I.C.; Magalhães, F. Biocompatible Reinforcement of Poly(Lactic Acid) with Graphene Nanoplatelets. Polym. Compos. 2018, 39, E308–E320. [Google Scholar] [CrossRef] [Green Version]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Blanchard, A.; Gouanvé, F.; Espuche, E. Effect of Humidity on Mechanical, Thermal and Barrier Properties of EVOH Films. J. Membr. Sci. 2017, 540, 1–9. [Google Scholar] [CrossRef]
- Sabard, M.; Gouanvé, F.; Espuche, E.; Fulchiron, R.; Fillot, L.A.; Trouillet-Fonti, L. Erasure of the Processing Effects in Polyamide 6 Based Cast Films by the Introduction of Montmorillonite: Effect on Water and Oxygen Transport Properties. J. Membr. Sci. 2014, 456, 11–20. [Google Scholar] [CrossRef]
- Yoon, J.-S.; Jung, H.-W.; Kim, M.-N.; Park, E.-S. Diffusion Coefficient and Equilibrium Solubility of Water Molecules in Biodegradable Polymers. J. Appl. Polym. Sci. 2000, 77, 1716–1722. [Google Scholar] [CrossRef]
- Picard, E.; Gérard, J.F.; Espuche, E. Water Transport Properties of Polyamide 6 Based Nanocomposites Prepared by Melt Blending: On the Importance of the Clay Dispersion State on the Water Transport Properties at High Water Activity. J. Membr. Sci. 2008, 313, 284–295. [Google Scholar] [CrossRef]
- Dubelley, F.; Planes, E.; Bas, C.; Pons, E.; Yrieix, B.; Flandin, L. Water Vapor Sorption Properties of Polyethylene Terephthalate over a Wide Range of Humidity and Temperature. J. Phys. Chem. B 2017, 121, 1953–1962. [Google Scholar] [CrossRef] [PubMed]
- Yoo, B.M.; Shin, H.J.; Yoon, H.W.; Park, H.B. Graphene and Graphene Oxide and Their Uses in Barrier Polymers. J. Appl. Polym. Sci. 2014, 131, 39628. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.B.T.; Ruoff, R.S. Graphene-Based Composite Materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef]
- Samaniego-Esguerra, C.M.; Robertson, G.L. Development of a Mathematical Model for the Effect of Temperature and Relative Humidity on the Water Vapour Permeability of Plastic Films. Packag. Technol. Sci. 1991, 4, 61–68. [Google Scholar] [CrossRef]
- Auras, R.; Harte, B.; Selke, S. Effect of Water on the Oxygen Barrier Properties of Poly(Ethylene Terephthalate) and Polylactide Films. J. Appl. Polym. Sci. 2004, 92, 1790–1803. [Google Scholar] [CrossRef]
- Salehi, A.; Jafari, S.H.; Khonakdar, H.A.; Ebadi-Dehaghani, H. Temperature Dependency of Gas Barrier Properties of Biodegradable PP/PLA/Nanoclay Films: Experimental Analyses with a Molecular Dynamics Simulation Approach. J. Appl. Polym. Sci. 2018, 135, 46665. [Google Scholar] [CrossRef]
Theoretical GnP Loading (wt.%) | Determined GnP Loading | ||
---|---|---|---|
wt.% | v.% | ||
PBS | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 |
PBS/GnP0.1 | 0.1 | 0.06 ± 0.02 | 0.03 ± 0.01 |
PBS/GnP0.5 | 0.5 | 0.28 ± 0.12 | 0.16 ± 0.06 |
PBS/GnP1 | 1 | 0.66 ± 0.05 | 0.38 ± 0.03 |
PBS/GnP2 | 2 | 1.35 ± 0.02 | 0.78 ± 0.01 |
PBS | PBS/GnP0.1 | PBS/GnP0.5 | PBS/GnP1 | PBS/GnP2 | |
---|---|---|---|---|---|
Tg (°C) | −35 ± 1 | −36 ± 1 | −36 ± 2 | −36 ± 2 | −37 ± 1 |
Xc (%) | 38 ± 1 | 38 ± 1 | 38 ± 1 | 38 ± 1 | 38 ± 1 |
Mm (×10−3) | Cg | K | MRD (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | 10 | 25 | 40 | 10 | 25 | 40 | 10 | 25 | 40 | 10 | 25 | 40 |
Neat PBS | 4.2 | 4.7 | 6.1 | 2.0 | 2.1 | 2.1 | 0.94 | 0.93 | 0.94 | 5.6 | 5.2 | 4.8 |
PBS/GnP0.1 | 4.2 | 4.6 | 5.9 | 2.0 | 2.1 | 2.2 | 0.94 | 0.93 | 0.91 | 5.7 | 5.1 | 3.5 |
PBS/GnP0.5 | 4.1 | 4.8 | 5.7 | 1.9 | 2.0 | 2.2 | 0.95 | 0.93 | 0.93 | 6.3 | 5.4 | 3.6 |
PBS/GnP1 | 4.1 | 4.8 | 5.7 | 2.1 | 2.1 | 2.4 | 0.93 | 0.94 | 0.91 | 5.6 | 5.5 | 2.7 |
PBS/GnP2 | 4.1 | 4.6 | 5.8 | 2.2 | 2.4 | 2.4 | 0.93 | 0.94 | 0.90 | 4.7 | 4.9 | 4.1 |
Sorption Experiment | Permeation Experiment | |||
---|---|---|---|---|
Experimental | Calculated | Experimental | ||
∆HS (kJ mol−1) | Ed (kJ mol−1) | (kJ mol−1) | (kJ mol−1) | |
Neat PBS | −36 ± 2 | 64 ± 4 | 28 ± 6 | 17 ± 2 |
PBS/GnP0.1 | −36 ± 2 | 64 ± 4 | 28 ± 6 | 19 ± 2 |
PBS/GnP0.5 | −36 ± 2 | 55 ± 3 | 19 ± 5 | 17 ± 2 |
PBS/GnP1 | −35 ± 2 | 55 ± 3 | 20 ± 5 | 20 ± 2 |
PBS/GnP2 | −36 ± 2 | 59 ± 4 | 22 ± 6 | 16 ± 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosquer, R.; Pruvost, S.; Gouanvé, F. Effect of Temperature and Humidity on the Water and Dioxygen Transport Properties of Polybutylene Succinate/Graphene Nanoplatelets Nanocomposite Films. Membranes 2022, 12, 721. https://doi.org/10.3390/membranes12070721
Cosquer R, Pruvost S, Gouanvé F. Effect of Temperature and Humidity on the Water and Dioxygen Transport Properties of Polybutylene Succinate/Graphene Nanoplatelets Nanocomposite Films. Membranes. 2022; 12(7):721. https://doi.org/10.3390/membranes12070721
Chicago/Turabian StyleCosquer, Raphaël, Sébastien Pruvost, and Fabrice Gouanvé. 2022. "Effect of Temperature and Humidity on the Water and Dioxygen Transport Properties of Polybutylene Succinate/Graphene Nanoplatelets Nanocomposite Films" Membranes 12, no. 7: 721. https://doi.org/10.3390/membranes12070721
APA StyleCosquer, R., Pruvost, S., & Gouanvé, F. (2022). Effect of Temperature and Humidity on the Water and Dioxygen Transport Properties of Polybutylene Succinate/Graphene Nanoplatelets Nanocomposite Films. Membranes, 12(7), 721. https://doi.org/10.3390/membranes12070721