Electrospun Benzimidazole-Based Polyimide Membrane for Supercapacitor Applications
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of 6,6′-bis[2-(4-Aminophenyl)Benzimidazole], BAPBI
2.3. Fabrication of BI-PI Membrane
2.4. Characterization
2.5. Electrochemistry Test
3. Results and Discussions
3.1. Preparation and Characterization of BI-PI Polymer
3.2. Preparation and Characterization of Electrospun BI-PI Membrane
3.3. Supercapacitor Application of BI-PI Separator
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Da Silva, L.M.; Cesar, R.; Moreira, C.M.R.; Santos, J.H.M.; De Souza, L.G.; Pires, B.M.; Vicentini, R.; Nunes, W.; Zanin, H. Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials. Energy Storage Mater. 2020, 27, 555–590. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhao, D.; Cheng, M.; Zhou, J.; Owusu, K.A.; Mai, L.; Yu, Y. A new view of supercapacitors: Integrated supercapacitors. Adv. Energy Mater. 2019, 9, 81–91. [Google Scholar] [CrossRef]
- Zhuang, P.; Sun, Y.; Li, L.; Chee, M.O.L.; Dong, P.; Pei, L.; Chu, H.; Sun, Z.; Shen, J.; Ye, M.; et al. FIB-patterned nano-supercapacitors: Minimized size with ultrahigh performances. Adv. Mater. 2020, 32, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, A.P.R.; Périgo, E.A.; Faria, R.N. Simulation of galvanostatic charge-discharge curves of carbon-based symmetrical electrochemical supercapacitor with organic electrolyte employing potential dependent capacitance and time domain analytical expressions. J. Energy Storage 2022, 51, 104471. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, X.; Liu, T.; Chen, H.; Chen, S.; Jiang, Z.; Liu, J.; Huang, J.; Liu, M. Wood-derived hierarchically porous electrodes for high-performance all-solid-state supercapacitors. Adv. Funct. Mater. 2018, 28, 1806207. [Google Scholar] [CrossRef]
- Li, Q.; Jiang, Y.; Jiang, Z.; Zhu, J.; Gan, X.; Qin, F.; Tang, T.; Luo, W.; Guo, N.; Liu, Z.; et al. Ultrafast pore-tailoring of dense microporous carbon for high volumetric performance supercapacitors in organic electrolyte. Carbon 2022, 191, 19–27. [Google Scholar] [CrossRef]
- Costa, C.M.; Barbosa, J.C.; Gonçalves, R.; Castro, H.; Campo, F.J.D.; Lanceros-Méndez, S. Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities. Energy Storage Mater. 2021, 37, 433–465. [Google Scholar] [CrossRef]
- Dai, P.; Zhang, S.; Liu, H.; Yan, L.; Gu, X.; Li, L.; Liu, D.; Zhao, X. Cotton fabrics-derived flexible nitrogen-doped activated carbon cloth for high-performance supercapacitors in organic electrolyte. Electrochim. Acta 2020, 354, 136717. [Google Scholar] [CrossRef]
- Dong, G.; Dong, N.; Liu, B.; Tian, G.; Qi, S.; Wu, D. Ultrathin inorganic-nanoshell encapsulation: TiO2 coated polyimide nanofiber membrane enabled by layer-by-layer deposition for advanced and safe high-power LIB separator. J. Membr. Sci. 2020, 601, 117884. [Google Scholar] [CrossRef]
- Barbosa, J.C.; Dias, J.P.; Lanceros-Mendez, S.; Costa, C.M. Recent advances in poly(vinylidene fluoride) and its copolymers for lithium-ion battery separators. Membranes 2018, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Földes, E.; Fekete, E.; Karasz, F.E.; Pukánszky, B. Interaction, miscibility and phase inversion in PBI/PI blends. Polymer 2000, 41, 975–983. [Google Scholar] [CrossRef]
- Bui, V.T.; Nguyen, V.T.; Nguyen, N.A.; Umapathi, R.; Larina, L.L.; Kim, J.H.; Kim, H.S.; Choi, H.S. Multilayered PVDF-HFP porous separator via phase separation and selective solvent etching for high voltage lithium-ion batteries. Membranes 2021, 11, 41. [Google Scholar] [CrossRef]
- Berrada, M.; Carriere, F.; Abboud, Y.; Abourriche, A.; Benamara, A.; Lajrhed, N.; Kabbaj, M. Preparation and characterization of new soluble benzimidazole-imide copolymers. J. Mater. Chem. 2002, 12, 3551–3559. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Xia, Q.; Dong, J.; Xu, Q. Synthesis, characteri-zation and properties of polyimides derived from a symmetrical diamine containing bis-benzimidazole rings. Polym. Degrad. Stab. 2012, 97, 987–994. [Google Scholar] [CrossRef]
- Ku, H.-Y.; Pai, J.-Y.; Lu, Y.-T.; Wang, L.-Q.; Hu, C.-C. Design of polyimide-based separators for effective suppression of self-discharge in non-aqueous electrical double layer capacitors. J. Power Sources 2021, 514, 230594. [Google Scholar] [CrossRef]
- Chu, S.; Pan, Y.; Wang, Y.; Zhang, H.; Xiao, R.; Zou, Z. Polyimide-based photocatalysts: Rational design for energy and environmental applications. J. Mater. Chem. A 2020, 8, 14441–14462. [Google Scholar] [CrossRef]
- Gou, J.; Liu, W.; Tang, A.; Wu, L. Interfacially stable and high-safety lithium batteries enabled by porosity engineering toward cellulose separators. J. Membr. Sci. 2022, 659, 120807. [Google Scholar] [CrossRef]
- He, L.; Cao, J.-H.; Liang, T.; Wu, D.-Y. Effect of monomer structure on properties of polyimide as LIB separator and its mechanism study. Electrochim. Acta 2020, 337, 135838. [Google Scholar] [CrossRef]
- Hossain, I.; Al Munsur, A.Z.; Kim, T.H. A Facile Synthesis of (PIM-polyimide)-(6FDA-durene-polyimide) copolymer as novel polymer membranes for CO2 separation. Membranes 2019, 9, 113. [Google Scholar] [CrossRef]
- Hou, X.; Mao, Y.; Zhang, R.; Fang, D. Super-flexible polyimide nanofiber cross-linked polyimide aerogel membranes for high efficient flexible thermal protection. Chem. Eng. J. 2021, 417, 129341. [Google Scholar] [CrossRef]
- Sun, M.; Chang, J.; Tian, G.; Niu, H.; Wu, D. Preparation of high-performance polyimide fibers containing benzimidazole and benzoxazole units. J. Mater. Sci. 2015, 51, 2830–2840. [Google Scholar] [CrossRef]
- Li, D.; Shi, D.; Xia, Y.; Qiao, L.; Li, X.; Zhang, H. Superior thermally dtable and nonflammable porous polybenzimidazole membrane with high wettability for high-power lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 8742–8750. [Google Scholar] [CrossRef] [PubMed]
- Lian, M.; Zheng, F.; Wu, Q.; Lu, X.; Lu, Q. Incorporating bis--benzimidazole into polyimide chains for effectively improving thermal resistance and dimensional stability. Poly. Int. 2019, 69, 93–99. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, B.; Wu, Y.; Chen, J.; Fang, M.; Wang, L.; Wang, L. The effects of polybenzimidazole nanofiber separator on the safety and performance of lithium-ion batteries: Characterization and analysis from the perspective of mechanism. J. Power Sources 2020, 475, 228624. [Google Scholar] [CrossRef]
- Ma, P.; Dai, C.; Wang, H.; Li, Z.; Liu, H.; Li, W.; Yang, C. A review on high temperature resistant polyimide films: Heterocyclic structures and nanocomposites. Compos. Commun. 2019, 16, 84–93. [Google Scholar] [CrossRef]
- Song, J.; Zhao, G.; Ding, Q.; Yang, Y. Molecular dynamics study on the thermal, mechanical and tribological properties of PBI/PI composites. Mater. Today Commun. 2022, 30, 103077. [Google Scholar] [CrossRef]
- Yue, Z.; Cai, Y.-B.; Xu, S. Facile synthesis of a symmetrical diamine containing bis-benzimidazole ring and its thermally stable polyimides. J. Polym. Res. 2014, 21, 463. [Google Scholar] [CrossRef]
- Hsu, C.H.; Pan, Z.B.; Chen, C.R.; Wei, M.X.; Chen, C.A.; Lin, H.P.; Hsu, C.H. Synthesis of multiporous carbons from water caltrop shell for high-performance supercapacitors. ACS Omega 2020, 5, 10626–10632. [Google Scholar] [CrossRef]
- Zhang, M.; Niu, H.; Chang, J.; Ge, Q.; Cao, L.; Wu, D. High-performance fibers based on copolyimides containing benzimidazole and ether moieties: Molecular packing, morphology, hydrogen-bonding interactions and properties. Polym. Eng. Sci. 2015, 55, 2615–2625. [Google Scholar] [CrossRef]
- Zhang, S.; Luo, J.; Du, M.; Hui, H.; Sun, Z. Safety and cycling stability enhancement of cellulose paper-based lithium-ion battery separator by aramid nanofibers. Eur. Polym. J. 2022, 171, 111222. [Google Scholar] [CrossRef]
- Yan, B.; Zheng, J.; Feng, L.; Du, C.; Jian, S.; Yang, W.; Wu, Y.A.; Jiang, S.; He, S.; Chen, W. Wood-derived biochar as thick electrodes for high-rate performance supercapacitors. Biochar 2022, 4, 50. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, J.; Deng, H.; Du, Y.; Shi, X. Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors. J. Bioresour. Bioprod. 2021, 6, 142–151. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Zhang, B.; Weng, X.; Yu, X.D.; Liu, X.; He, T.S. Application of electrospun polyimide-based porous nano-fibers separators in ionic liquid electrolyte for electrical double-layer capacitors. Polymer 2022, 253, 124945. [Google Scholar] [CrossRef]
Thickness/μm | Modulus/MPa | Tensile Strength/MPa | Elongation/% | |
---|---|---|---|---|
Raw BI-PI | 150 | 202.9 ± 6.1 | 9.9 ± 1.5 | 7.8 ± 1.2 |
Pressed BI-PI | 50 | 783 ± 50 | 35 ± 4 | 6.1 ± 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.-H.; Wang, Y.-Z.; Tsai, M.-Y.; Lin, H.-P.; Hsu, C.-H. Electrospun Benzimidazole-Based Polyimide Membrane for Supercapacitor Applications. Membranes 2022, 12, 961. https://doi.org/10.3390/membranes12100961
Lu Y-H, Wang Y-Z, Tsai M-Y, Lin H-P, Hsu C-H. Electrospun Benzimidazole-Based Polyimide Membrane for Supercapacitor Applications. Membranes. 2022; 12(10):961. https://doi.org/10.3390/membranes12100961
Chicago/Turabian StyleLu, Yu-Hsiang, Yen-Zen Wang, Ming-Ying Tsai, Hong-Ping Lin, and Chun-Han Hsu. 2022. "Electrospun Benzimidazole-Based Polyimide Membrane for Supercapacitor Applications" Membranes 12, no. 10: 961. https://doi.org/10.3390/membranes12100961
APA StyleLu, Y. -H., Wang, Y. -Z., Tsai, M. -Y., Lin, H. -P., & Hsu, C. -H. (2022). Electrospun Benzimidazole-Based Polyimide Membrane for Supercapacitor Applications. Membranes, 12(10), 961. https://doi.org/10.3390/membranes12100961