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Abstract: Bovine viral diarrhea virus (BVDV) is an important animal pathogen that affects cattle.
Infections caused by the virus have resulted in substantial economic losses and outbreaks of BVDV
are reported globally. Virus-like particles (VLPs) are promising vaccine technology largely due to
their safety and strong ability to elicit robust immune responses. In this study, we developed a
strategy to generate BVDV-VLPs using a baculovirus expression vector system (BEVS). We were
able to assemble BVDV-VLPs composed of dimerized viral proteins E2 and Erns, and the VLPs
were spherical particles with the diameters of about 50 nm. Mice immunized with 15 µg of VLPs
adjuvanted with ISA201 elicited higher levels of E2-specific IgG, IgG1, and IgG2a antibodies as well
as higher BVDV-neutralizing activity in comparison with controls. Re-stimulation of the splenocytes
collected from mice immunized with VLPs led to significantly increased levels of CD3+CD4+T cells
and CD3+CD8+T cells. In addition, the splenocytes showed dramatically enhanced proliferation and
the secretion of Th1-associated IFN-γ and Th2-associated IL-4 compared to that of the unstimulated
control group. Taken together, our data indicate that BVDV-VLPs efficiently induced BVDV-specific
humoral and cellular immune responses in mice, showing a promising potential of developing
BVDV-VLP-based vaccines for the prevention of BVDV infections.

Keywords: bovine viral diarrhea virus; virus-like particles; baculovirus expression vector system;
Erns; E2; vaccine

1. Introduction

Bovine viral diarrhea virus (BVDV) is an important pathogen of cattle found in many
parts of the world, which poses a great threat to agriculture globally. BVDV is capable of
infecting a diverse range of animals, including pigs, sheep, goats, deer, and camelids [1].
Upon infection, BVDV often induces both acute infections (AI) and persistent infections (PI)
in cattle. Symptoms associated with AI include diarrhea, fever, leukopenia, coughing, and
increased nasal discharge. PI is established when a non-cytopathic (NCP) BVDV crosses the
barrier of placenta and infects an immunoincompetent fetus. Persistently infected calves
are the major source to spread BVDV as they can shed virus throughout their lives, and
viruses can be detected in almost all organs [2,3] from these calves.

BVDV is an enveloped, positively-stranded RNA virus that belongs to the genus
Pestivirus in the Flaviviridae family [4]. BVDV is classified into three genotypes: BVDV-
1(BVDV-1a~BVDV-1u), BVDV-2(BVDV-2a~BVDV-2d), and BVDV-3 (Hobi-like, atypical
pestivirus) [5,6]. On the basis of the cytotoxicity in cell culture, each BVDV strain has two
biotypes: NCP and cytopathic (CP) [7]. The genome of BVDV is about 12.3 kb, which
is composed of a 5’ untranslated region (UTR) containing a highly conserved internal
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ribosome entry site (IRES), a 3’ non-coding region (NCR), and an open reading frame (ORF)
encoding a 3988-amino acid polyprotein [8]. The fully translated polyprotein is processed
by cellular and viral proteases to generate 11 functional proteins, namely, NH2-Npro (N-
terminal autoprotease), C (capsid protein, core), Erns (envelope protein RNase secreted),
E1, E2, p7, NS2-3 (NS2 and NS3), NS4A, NS4B, NS5A, and NS5B [9,10].

The two surface proteins Erns and E2 are highly glycosylated and often exist as ho-
modimers mediated by disulfide bonds. Specifically, Erns contains 8–9 conserved cysteine
residues that form intra- and inter-molecular disulfide bonds, more than 50% carbohy-
drates in the mature form of Erns [11–14]. E2 has 3–6 N-linked glycosylation sites and
15–17 cysteine residues that are conserved across all genotypes [15,16]. Moreover, E2 is a
membrane-anchored type I transmembrane protein with an N-terminal ectodomain and a
C-terminal hydrophobic anchor [17]. BVDV’s entry into host cells is mediated by E2, which
binds the cell-surface receptor CD46 [18]. E2 and Erns are the main targets for neutralizing
antibodies induced by BVDV infection, making them important subunit antigen candidates
for vaccine development.

Virus-like particles (VLPs) are non-infectious and genome-free virus particles con-
structed by one or multiple viral proteins. VLPs are similar to infectious virions in structure
and conformation, but are non-infectious due to the lack of genetic material. Compared
to individual proteins or peptides, VLPs display more repetitive epitopes on the surface,
which may trigger stronger B cell and T cell-mediated immune responses [19,20].

Baculovirus expression vector system (BEVS) has been widely used in the production
of VLPs and has been used for the development of several licensed vaccines, such as
HPV16/18 vaccine (CERVARIX, GSK, Brentford, UK) and influenza virus vaccine (NanoFlu,
Novavax, Gaithersburg, MD, USA) [21–23]. Baculovirus has a large capacity for the
incorporation of foreign genes, infects only arthropods, and is essentially nonpathogenic
to mammals. Moreover, baculovirus shows a strong adjuvant activity [24–27], which
may help improve the immunogenicity of VLP-based vaccines. The availability of cell
lines suitable for suspension cultures in serum-free conditions allows for the large-scale
production of recombinant proteins. Importantly, most of the proteins expressed in BEVS
undergo post-translational modifications, such as N-glycosylation, O-glycosylation, or
phosphorylation, which are important for maintaining the immunogenicity of recombinant
antigens [28].

BEVS-based VLPs have been successfully generated for many members of the Flaviviri-
dae family, including dengue fever virus (DENV) [29], Japanese encephalitis virus (JEV) [30],
Zika virus (ZV) [31], West Nile virus (WNV) [32], and hepatitis C virus (HCV) [33]. How-
ever, there has been no reports of BEVS-based VLPs for BVDV, another member of the
Flaviviridae family. In this study, we generated BVDV-VLPs containing Erns and E2 with
BEVS method. We observed the assembly and structure of the VLPs with transmission
electron microscopy (TEM) and immune-electron microscopy (IEM). In addition, we immu-
nized BALB/c mice with the BVDV-VLPs we manufactured and evaluated and compared
the humoral and cellular immune responses in the animals to that of a commercial BVDV
vaccine. Our results suggest BVDV-VLPs generated by BEVS are a promising candidate
vaccine for the prevention of BVDV infections.

2. Materials and Methods
2.1. Cells and Virus

MDBK cells, BVDV 1a strain NADL, were obtained from the China Veterinary Culture
Collection Center (CVCC, Beijing, China). Sf9 (Invitrogen, Carlsbad, CA, USA) cells were
cultured in suspension in the serum-free Grace medium (Invitrogen, Carlsbad, CA, USA)
supplemented with 1% penicillin–streptomycin (Solarbio, Beijing, China) at 27 ◦C, 100 rpm.
MDBK cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) (Invitrogen,
Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (Biological industries,
Beit-Haemek, Israel) and 1% penicillin–streptomycin (Sigma-Aldrich, St. Louis, MO, USA)
at 37 ◦C and 5% CO2.
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2.2. Construction of Recombinant Baculovirus

The coding sequences of the Erns proteins (residues 271-497) and E2 proteins (residues
693-1036) were cloned from BVDV 1a NADL (GenBank accession no. AJ133738.1), a gp64
signal peptide sequence (gtaagcgctattgttttatatgtgcttttggcggcggcggcgcattctgcctttgcg) was
fused to the N-terminal of Erns or E2 with a Gly-Gly-Gly-Gly-Ser linker, and gp64-Erns and
gp64-E2 were cloned into the XhoI-KpnI and BamHI-PstI sites of pFastBac Dual vector
(Invitrogen, Carlsbad, CA, USA). The correct clones were verified via Sanger sequencing
and were named pFastBac-Erns+E2, which was transformed into DH10Bac Escherichia coli
(E. coli) cells to generate recombinant bacmids rBacmids-Erns+E2. Of the Sf9 cells, 106 were
transfected with 1µg rBacmids-Erns+E2 using Cellfectin II (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s guidelines. After 5 days, medium from cell culture was
collected, centrifuged at 1000× g for 5 min to remove cellular debris, and stored at −80 ◦C.

2.3. Production and Purification of VLPs

Sf9 cells at a density of 3 × 106 cells/mL were infected with P4 (passage #4) rBac-
Erns+E2 with the multiplicity of infection (MOI) of 0.1 for 5 days at 27 ◦C, and rotated
at 100 rpm in a 125 mL culture bottle. Cell suspensions were centrifuged at 1000× g for
5 min to remove supernatant, and the cell pellets were resuspended with 5× volumes
of TNE buffer (20 mM Tris-HCl (pH 8.0), 150 mM NaCl, 2 mM EDTA) and sonicated
5 times for 10 s on ice with a sonicator (Scientz, Ningbo, China) at 30% amplification.
Cell lysates were collected after centrifugation at 12,000 rpm for 20 min and used in the
subsequent experiments.

For VLP purification, the cell lysates were loaded onto gradient sucrose solution (50%,
40%, 30%, 20%, and 10%, from densest to lightest using 2 mL per layer) in TNE buffer in a
13.3 mL ultraclear centrifuge tube (Beckman Coulter, Brea, CA, USA) and centrifuged at
35,000 rpm, 4 ◦C for 4 h in an SW41 rotor (Beckman Coulter, Brea, CA, USA). Fractions of
1.5 mL were collected dropwise after puncturing the bottom of the tube. The distribution of
the VLPs in the gradient was measured by SDS-PAGE (Bio-Rad, Hercules, CA, USA) with
Coomassie Brilliant Blue staining and Western blot with Erns polyclonal antibody (pAb)
(prepared by our laboratory) and E2 monoclonal antibodies (mAb) 348 (VMRD, Pullman,
WA, USA).

Several fractions of the sucrose gradient containing the VLPs were mixed with 2×
volumes of TNE and centrifuged at 35,000 rpm, 4 ◦C, for 2 h in an SW41 rotor (Beckman
Coulter, Brea, CA, USA). VLP pellets were resuspended in 500 µL of TNE and stored at
−80 ◦C.

2.4. Western Blotting Analyses

Purified VLPs or cell lysates were separated by SDS-PAGE under reducing (with
4% β-mercaptoethanol) or non-reducing conditions (without β-mercaptoethanol), and
proteins were transferred to PVDF membranes (Millipore, Billerica, MA, USA) and blocked
for 2 h at room temperature with 5% skim milk in PBST (0.05% Tween in 0.01 M PBS).
Blocked membranes were then incubated with primary antibodies Erns pAb and E2 mAb
348 diluted in 5% skim milk in PBST for 1 h at 25 ◦C, washed 3 times with PBST, and then
incubated with HRP-conjugated secondary antibody in 5% skim milk in PBST for 30 min
at 25 °C. Membranes were washed extensively, and signals were detected using the ECL
reagents (Tanon, Shanghai, China).

2.5. TEM and IEM

Sf9 cells infected by rBac-Erns+E2 were spun down and resuspended in 2.5% glu-
taraldehyde, followed by dehydration using a standard graded series of acetone solutions
including 50%, 70%, 90%, and 100% for 15 min per step. Cells were then embedded in
Epon815 resin (Sigma-Aldrich, St. Louis, MO, USA) and allowed to polymerize for 24 h
at 37 ◦C, 24 h at 45 ◦C, and 24 h at 60 ◦C. Ultrathin sections (70 nm) of these blocks were
obtained with a Reichert-Jung Ultracut E ultramicrotome, and sections were deposited on
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carbon-coated Cu grids and negative stained with 5% uranyl acetate and 5% lead citrate.
Specimens were viewed with a JEM-1200EX (JEOL, Tokyo, Japan) transmission electron
microscope at 80 kV.

For visualization of the purified VLPs, we applied 20 µL of VLPs onto carbon-coated
Cu grids, which were negative stained with 2% uranyl acetate and viewed with the method
described above.

For IEM, 20 µL of VLPs were applied onto carbon-coated Cu grids and blocked with
1% BSA. The primary antibodies were Erns pAb and E2 mAb 348. The 10 nm colloidal
gold-conjugated goat anti-rabbit antibody and 5 nm colloidal gold-conjugated goat anti-
mouse antibody (BB International, Cardiff, UK) were used as the secondary antibody, and
subsequently the grids were negatively stained with 2% uranyl acetate and examined with
a HT7800 (Hitachi, Tokyo, Japan) transmission electron microscope at 80 kV.

2.6. Immunization of Mice

A total of 48 6–8-week-old female BALB/c mice (Charles River Laboratories, Beijing,
China) were randomly divided into 8 groups (6 per group) and immunized intramuscularly
on days 0 and 21 with (I) 5 µg of VLPs, (II) 5 µg of VLPs adjuvanted with 5 µg of ISA201,
(III) 10 µg of VLPs, (IV) 10 µg of VLPs adjuvanted with 10 µg of ISA201, (V) 15 µg of VLPs,
(VI) 15 µg of VLPs adjuvanted with 15 µg of ISA201, (VII) commercial BVDV inactivated
vaccine, and (VIII) TNE and equal volume ISA201.

Blood samples were taken through the inner canthal orbital vein for serological
analysis on day 42 post-prime immunization, and spleens were harvested from groups
(V), (VI), (VII), and (VIII) for flow cytometry and splenocytes proliferation test on day 28
post-prime immunization.

2.7. ELISA

BVDV E2-specific serum antibody titers were measured by ELISA. We coated 96-well
microtiter plates with 100µL per well of 4µg/mL of purified prokaryotic expressed BVDV-
E2 protein produced in E. coli using a pMAL-c5X-His expression vector in CBS (0.015 M
Na2CO3, 0.035 M NaHCO3, pH 9.6) overnight at 4 ◦C. Next, the plates were blocked with
5% skim milk in PBST (0.05%Tween in 0.01 M PBS) for 2 h at 37 ◦C. A total of 100 µL of
serum samples were diluted 50x times in PBST and added to each well in the plates for 1 h
at 37 ◦C. The plates were then washed 3 times with PBST, and 100 µL of HRP-conjugated
goat anti-mice IgG (Solarbio, Beijing, China), IgG1 (abclonal, Wuhan, China) or IgG2a
(Sigma-Aldrich, St. Louis, MO, USA) were 2000-, 4000-, or 500-fold diluted, respectively, in
PBST and added to the plates for 1 h at 37 ◦C. The plates were washed again and 100 µL of
TMB (Solarbio, Beijing, China) was added to each well prior to adding 50 µL of stopping
solution (2 M H2SO4). OD450nm was determined using an ELISA plate reader (Tecan,
Männedorf, Switzerland).

2.8. Neutralizing Antibody Assay

The serum samples were heat-inactivated at 56 ◦C for 30 min and serially diluted
twofold in DMEM medium, and then an equal volume of DMEM-diluted BVDV virus
containing 100 TCID50 was added and samples were incubated for 1 h at 37 ◦C in a final
volume of 200 µL. MDBK cells were infected in triplicate with 100 µL of the neutralization
mixture and incubated for 1 h at 37 ◦C with 5% CO2, the mixture was then removed and
replaced with DMEM medium with 2% FBS. Cells were further incubated for 7 days at
37 ◦C with 5% CO2, and cytopathic effects (CPE) were observed. The 50% neutralization
titer of serum was calculated by the Reed and Muench method.

2.9. Flow Cytometry

Spleens were collected from mice on day 28 post-prime immunization and were
grounded in a 35 mm Petri dish containing 5 mL of mice 1× lymphocyte separation
medium (DAKEWE, Shenzhen, China); suspensions were filtered using 40-µm filters
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into a new tube and were centrifuged at 800× g for 30 min. The lymphocyte layer was
collected and washed with RPMI 1640 medium(Invitrogen, Carlsbad, CA, USA), and cell
counts were stained with 0.4% trypan blue and counted using the Countess Automated
Cell Counter system (Life Technologies, Carlsbad, CA, USA). Splenocytes were used for
subsequent flow cytometry analysis, enzyme-linked immunospot assay (Elispot), and
splenocyte proliferation assays. For flow cytometry, splenocytes (5 × 106 cells in 6-well cell
culture plates) were stimulated with 10 µg/mL VLPs or inactivated BVDV in the presence
of 3 µg/mL Brefeldin A (eBioscience, San Diego, CA, USA) for 6 h at 37 ◦C and 5% CO2,
and cells were washed using staining buffer (eBioscience, San Diego, CA, USA) and stained
with PE/cyanine7 anti-mice CD3 (BioLegend, San Diego, CA, USA), PE anti-mice CD4
(BioLegend, San Diego, CA, USA), and PerCP/cyanine5.5 anti-mice CD8a (BioLegend, San
Diego, CA, USA). Cells were analyzed using BD Fortessa (BD Biosciences, CA, USA).

2.10. MTT Assay

Splenocytes (106 cells per well) were added to 96-well plates with 1 µg/mL of VLPs
or heat-inactivated BVDV, and splenocytes cultured with RPMI 1640 medium alone or
1 µg/mL of ConA (Sigma-Aldrich, St. Louis, MO, USA) were used as negative and
positive controls, respectively. The plates were incubated at 37 ◦C, 5% CO2, for 72 h. Then,
500 µg/mL of MTT (Sigma-Aldrich, St. Louis, MO, USA) solution was added to each
well and the plates were incubated at 37 ◦C, 5% CO2, for 4 h. The MTT solution was
removed and 150 µL of DMSO was added to dissolve the precipitate at 37 ◦C for 10 min;
the OD570nm was determined using an ELISA plate reader (Tecan, Männedorf, Switzerland).
The stimulation index (SI) was calculated as follows: SI = OD570nm (sample)/OD570nm
(blank control).

2.11. EliSpot

Mouse IFN-γ precoated ELISpot kit and Mouse IL-4 precoated ELISpot kit (DAKEWE,
Shenzhen, China) were used to determine cytokine expression. Splenocytes (106 cells per
well) were added to anti-mouse IFN-γ or IL-4 monoclonal antibody-precoated ELISpot
plates with 10 µg/mL VLPs or inactivated BVDV; splenocytes cultured with RPMI 1640
medium alone or 50 µg/mL PMA/ionomycin were used as negative and positive controls,
respectively. The plates were incubated at 37 ◦C, 5% CO2, for 48 h. Then, the blots were
immunostained according to the manufacturer’s instructions and counted using an AID
EliSpot Reader (Autoimmun Diagnostika, Strassberg, Germany). Results are presented as
mean number of IFN-γ- or IL-4-secreting cells per 106 splenocytes.

2.12. Statistical Analysis

Results are expressed as mean ± standard deviation (SD). Statistical analysis was
performed by one-way analysis of variance (ANOVA) with Tukey’s multiple-comparison
test in GraphPad Prism.

3. Results
3.1. Expression of Erns and E2 Proteins in Sf9 Cells

The baculovirus gp64 signal peptide was fused to the N-terminal ends of Erns and E2;
the gp64-Erns and gp64-E2 were then inserted into pFastBac Dual vector to generate the
recombinant plasmid pFastBac-Erns+E2 and the subsequent recombinant bacmid rBacmids-
Erns+E2. The bacmid was transfected into Sf9 cells and the recombinant baculoviruses
rBac-Erns+E2 were rescued using a previously described protocol (Figure 1A). Sf9 cells
infected with rBac-Erns+E2 typically display the following characteristics: enlargement of
cell and nucleus, rounding of infected cells, and cell detachment and lysis. Next, rescued
viruses were passaged 3x times for amplification. Sf9 cells were then infected with the
recombinant viruses and cell lysates were collected 5 days post-infection (dpi) and proteins
were separated using SDS-PAGE. Expressions of Erns and E2 were examined by Western
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blot analyses. As shown in Figure 1B, expression of both Erns and E2 proteins were detected
in Sf9 cells.
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Figure 1. Expression of Erns and E2 proteins in Sf9 Cells. (A) Sf9 cells mock-infected or infected with
rescued recombinant viruses are shown in the following order: (1) mock-infected Sf9 cells, (2) Sf9
cells infected with rBac-Erns+E2 (multiplicity of infection (MOI) = 0.1), (3) Sf9 cells infected with
Bac only. (B) Western blot analysis of Erns and E2 expression in Sf9 cells. Cell lysates from Sf9 cells
infected with rBac-Erns+E2 were subjected to Western blot analyses and Erns and E2 were detected by
Erns pAb and E2 mAb 348, respectively. Cell lysates from Sf9 cells uninfected or infected with Bac
vector were loaded as controls; numbers on the right indicate protein molecular weight in kDa.

3.2. Identification of Particle Formation in Sf9 Cells

To determine whether Erns and E2 formed VLPs, we examined ultrathin section of Sf9
cells infected with rBac-Erns+E2 by TEM, as shown in Figure 2A. Spherically shaped VLPs
stacked in intracellular vesicles were observed in cells, and the majority of the particles
showed diameters of about 50 nm; similar to wild-type BVDV particles, these objects were
absent from uninfected Sf9 cells.Vaccines 2021, 9, x FOR PEER REVIEW 7 of 17 
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Figure 2. Identification of particle formation in Sf9 cells. Particle formation was confirmed by
TEM in Sf9 cells infected with rBac-Erns+E2. Ultrathin sections of the cells showed the presence
of numerous bovine viral diarrhea virus (BVDV) virus-like particles (VLPs). (A) Sf9 cells infected
with rBac-Erns+E2 (MOI = 0.1). (B) Sf9 cells infected with Bac only. Images were obtained with a
JEM-1200EX (Japan) transmission electron microscope at 80 kV. Black arrows point to VLPs, black
arrowheads point to baculovirus, scale bar represents 1 µm.
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3.3. Production, Purification, and Characterization of the BVDV-VLPs

In order to purify VLPs, we harvested cell lysates from Sf9 cells infected with rBac-
Erns+E2 and placed them on top of a sucrose density gradient. Samples were centrifuged
at 35,000 rpm for 4 h and then nine fractions (1.5 mL each) were collected from bottom to
top. The fractions were next analyzed by SDS-PAGE and total proteins were visualized by
Coomassie Brilliant Blue staining. Expression of E2 and Erns were examined by Western
blotting analysis. As shown in Figure 3A, two protein bands migrating at the expected size
of ≈48 kDa were visible in fractions 4–6 on the Coomassie-stained gel, and Western blot
result confirmed that the bands were indeed Erns and E2 (Figure 3B).Vaccines 2021, 9, x FOR PEER REVIEW 8 of 17 
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Figure 3. Purification of VLPs by sucrose density centrifugation. VLPs obtained with ultracen-
trifugation through sucrose density gradient (10%, 20%, 30%, 40%, 50%) at 35,000 rpm, 4 ◦C, for
3 h in a Beckman SW41 rotor and divided into nine fractions. (A) Fractions 1-9 were analyzed by
SDS-PAGE and protein bands were visualized with Coomassie Brilliant Blue staining. The Erns and
E2 protein bands are highlighted in boxes; M: protein ladder. (B) Western blot analysis of fractions of
1-9 with Erns pAb and E2 mAb 348. (C) Purified VLPs were subjected to SDS-PAGE and two protein
bands migrated to the size of ≈48 kDa were identified by LC–MS/MS. The matched peptides are
highlighted in bold red; molecular weight (kDa) of the ladder is labelled on the right.

An alternative approach was taken to confirm the identity of the protein bands col-
lected from fractions 4–6. Specifically, contents from fractions 4–6 were purified one more
time with ultracentrifugation prior to analyzing with liquid chromatography tandem mass
spectrometry (LC–MS/MS) (Agilent Technologies, Palo Alto, CA, USA). The results were
compared against the profile of BVDV NADL (Figure 3C). Using this method, we were
able to confirm that the two bands were indeed BVDV Erns and E2.

3.4. Observation of VLPs by TEM and IEM

To confirm the quality and purity of VLPs, we analyzed the sucrose-purified fraction
4–6 containing the highest Erns and E2 concentration using TEM. TEM data showed that
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the VLPs were spherical in morphology, with diameters of about 50 nm (Figure 4). IEM
using Erns pAb and E2 mAb 348 further indicated the exposure of Erns and E2 on the outer
surface of the BVDV-VLPs. These data demonstrate that BVDV-VLPs comprised Erns and
E2 proteins (Figure 4B–D).Vaccines 2021, 9, x FOR PEER REVIEW 9 of 17 
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Figure 4. Purification TEM and immune-electron microscopy (IEM) of BVDV-VLPs. (A) Sucrose-
purified VLPs were examined by TEM. All observed VLPs were spherical in morphology and were
about 50 nm in diameter. Images were obtained with a JEM-1200EX (JEOL, Tokyo, Japan) transmission
electron microscope at 80 kV; scale bar represents 200 nm. (B) BVDV-VLPs labeled for E2 with E2
mAb 348 and 5 nm colloidal gold-conjugated goat anti-mouse antibody. (C) BVDV-VLPs labeled for
Erns with Erns pAb and 10 nm colloidal gold-conjugated goat anti-rabbit antibody. (D) BVDV-VLPs
double-labeled for E2 (5 nm gold labels) and Erns (10 nm gold labels). Black arrows point to E2, black
arrowheads point to Erns. Images were obtained with a HT7800 (Hitachi, Tokyo, Japan) transmission
electron microscope at 80 kV; scale bar represents 50 nm.

3.5. Homodimerisation of Erns or E2 Proteins in VLPs

As native Erns and E2 often form homodimers in BVDV-infected cells, we next sought
to investigate if they also form homodimers in VLPs. Cell lysates were separated with
SDS-PAGE under reducing (R) or nonreducing (NR) conditions and Western blot was
performed to determine the expression and multimerization of Erns and E2. As shown
in Figure 5, for both E2 and Erns, only one predominant band of 48 kDa was detected
under reducing condition. As a comparison, only one band migrating at the size of 96 kDa
was detectable under non-reducing condition, suggesting the existence of homodimers for
both proteins.

3.6. Immunization With BVDV-VLP-Induced E2-Specific IgG, IgG1, IgG2a, and
BVDV-Neutralizing Antibodies

To determine the immunogenicity of BVDV-VLPs, we used three doses of VLPs with
or without ISA201 adjuvant to immunize BALB/C mice; a commercial BVDV inactivated
vaccine and ISA201 adjuvant alone were included as positive and negative controls, respec-
tively. Serum was collected on day 42 post-prime immunization and BVDV E2-specific IgG,
IgG1, and IgG2a were examined by ELISA. As shown in Figure 6A–C, inactivated BVDV
vaccine triggered strong induction of IgG, IgG1, and IgG2a in mice after immunization,
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validating the specificity and effectiveness of this assay. The VLPs induced IgG, IgG1, and
IgG2a in a dose-dependent and adjuvant-dependent manner. VLPs alone induced low
levels of IgG, IgG1, and IgG2a, however, when used with adjuvant, the VLPs resulted
in dramatic induction of immunoglobulins to levels comparable to that induced by the
inactivated vaccine.
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Figure 5. Homodimerization of Erns or E2 proteins. The VLPs were separated by SDS-PAGE under
reducing (R) or nonreducing (NR) conditions followed by Western blotting with Erns pAb and E2
mAb 348; on the left protein ladder, the molecular weight in kDa is given. The bands of Erns or E2
monomer and Erns or E2 homodimer are indicated.
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Figure 6. BVDV E2-specific IgG, IgG1, IgG2a and neutralizing antibodies induced by BVDV-VLPs
in mice. The mice were immunized with 5, 10, or 15 µg VLPs in the presence or absence of ISA201
adjuvant; a commercial BVDV-inactivated vaccine and ISA201 adjuvant alone were used as controls.
Samples were administered intramuscularly and were given twice within a 21-day interval. Serum
was collected on day 42 post-prime immunization, and BVDV E2-specific IgG (A), IgG1 (B), IgG2a (C),
and neutralizing antibody (D) were monitored. Error bars are standard error of the mean. GP:0.1234
(ns), 0.0332 (*), 0.0021 (**), 0.0002 (***), <0.0001 (****).
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To determine if the antibodies elicited by BVDV-VLPs exhibited neutralizing poten-
tials, we collected serum from the vaccinated animals on day 42 post-prime immunization,
heat-inactivated the serum at 56 ◦C for 30 min, and determined their capacity to neutralize
BVDV infection in MDBK cells. As shown in Figure 6D, while the adjuvant alone did not
elicit any neutralizing titers, the commercial vaccine induced a high level of neutralizing
capability. Importantly, the BVDV-VLPs at three different doses all evoked strong neutral-
izing activities in mice and the titers were comparable to that induced by the commercial
BVDV vaccine.

3.7. Activation of T cells by BVDV-VLPs

To determine if VLPs could also induce T cell immune responses, we collected
mice splenocytes on day 28 post-prime immunization from animals immunized and re-
stimulated with 10 µg/mL of VLPs or inactivated BVDV. The abundances of CD3+CD4+T
cells and CD3+CD8+T cells were analyzed by flow cytometry. As shown in Figure 7,
the ratio of CD3+CD4+T cells and CD3+CD8+T cells were significantly higher in animals
treated with VLPs than those treated with the adjuvant alone or the commercial vaccine,
suggesting the advantage of BVDV-VLPs in the stimulation of T cell responses over the
commercial vaccine.
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Figure 7. The ratio of CD3+CD4+T cells and CD3+CD8+T cells in splenocytes. Mice were immunized
with 15 µg VLPs with or without ISA201 adjuvant, commercial BVDV inactivated vaccine, or ISA201
adjuvant alone; splenocytes were collected on day 28 post-prime immunization and re-stimulated
with the same antigen as those used for immunization, and flow cytometry was used to detect the
ratio of CD3+CD4+T cells (A) and CD3+CD8+T cells (B). Error bars are standard error of the mean.
GP:0.1234 (ns), <0.0001 (****).

3.8. The Effect of VLPs on the Proliferation of Splenocytes

Proliferation of splenocytes upon vaccination signifies a robust activation of the
immune responses. To explore the effect of BVDV-VLPs on the proliferation of splenocytes,
we harvested splenocytes from immunized mice and performed MTT assay to monitor cell
proliferation. As shown in Figure 8, VLPs triggered significantly enhanced proliferation of
splenocytes as compared to the adjuvant alone, while the commercial vaccine failed to do
so. The treatment of ConA, a commonly used mitogen, was able to further enhance cell
proliferation, validating the effectiveness of the assay.



Vaccines 2021, 9, 350 11 of 15

Vaccines 2021, 9, x FOR PEER REVIEW 12 of 17 

 

 

Figure 8. The effects of VLPs on splenocyte proliferation. Mice were immunized with 15 μg of VLPs 

with or without ISA201 adjuvant, a commercial BVDV-inactivated vaccine, or the ISA201 adjuvant 

alone. Splenocytes were collected on day 28 post-prime immunization and re-stimulated with the 

same antigen as those used for immunization, and cell proliferation was presented as mean of stim-

ulation index (SI). Error bars are standard error of the mean. GP:0.1234 (ns), 0.0002 (***), <0.0001 

(****). 

3.9. The Effect of VLPs on Cytokine Expression 

As IL-4 and IFN-γ are major cytokines regulating antibody class switching during 

BVDV infections, as reported previously, we decided to monitor these two cytokiens fol-

lowing the treatment of VLPs in mice. We chose to monitor Th2-associated IL-4 and Th1-

associated IFN-γ in spleen with EliSpot assay. Splenocytes collected from the immunized 

animals were stimulated with the same antigen as that used for immunization, and the 

number of IL-4- or IFN-γ-secreting cells were measured and plotted. Remarkably, VLPs 

were able to trigger improved IL4 and IFN-γ production. In comparison, the commercial 

vaccine was only able to enhance IFN-γ production up to 50% of the capacity induced by 

VLPs, and was incapable of inducing any IL-4 production (Figure 9). 

  

Figure 8. The effects of VLPs on splenocyte proliferation. Mice were immunized with 15 µg of
VLPs with or without ISA201 adjuvant, a commercial BVDV-inactivated vaccine, or the ISA201
adjuvant alone. Splenocytes were collected on day 28 post-prime immunization and re-stimulated
with the same antigen as those used for immunization, and cell proliferation was presented as mean
of stimulation index (SI). Error bars are standard error of the mean. GP:0.1234 (ns), 0.0002 (***),
<0.0001 (****).

3.9. The Effect of VLPs on Cytokine Expression

As IL-4 and IFN-γ are major cytokines regulating antibody class switching during
BVDV infections, as reported previously, we decided to monitor these two cytokiens
following the treatment of VLPs in mice. We chose to monitor Th2-associated IL-4 and Th1-
associated IFN-γ in spleen with EliSpot assay. Splenocytes collected from the immunized
animals were stimulated with the same antigen as that used for immunization, and the
number of IL-4- or IFN-γ-secreting cells were measured and plotted. Remarkably, VLPs
were able to trigger improved IL4 and IFN-γ production. In comparison, the commercial
vaccine was only able to enhance IFN-γ production up to 50% of the capacity induced by
VLPs, and was incapable of inducing any IL-4 production (Figure 9).
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Figure 9. Immunization with VLPs induced IL-4 and IFN-γ secretion. Mice were immunized with
15 µg of VLPs with or without ISA201 adjuvant, commercial BVDV-inactivated vaccine, or ISA201
adjuvant alone; splenocytes were collected on day 28 post-prime immunization and re-stimulated
with the same antigen as those used for immunization. Data are presented as number of IL-4- and
IFN-γ-secreting cells per 106 splenocytes. Error bars are standard error of the mean. GP:0.1234 (ns),
0.0002 (***), <0.0001 (****).
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4. Discussion

BVDV is a notorious pathogen in the dairy industry that affects farm animals around
the world. In China, the seroprevalence of BVDV in dairy cattle was found to be 57%,
and positive rate of viral RNA was estimated at 27.1% according to a meta-analysis per-
formed between 2003 and 2009, and between 2010 and 2018 [34]. An independent study
showed the RNA-positive rate of the virus in bulk tank milk was 43.7%, and BVDV-1a,
1c, and 1m were the dominant strains identified [35]. BVDV is the most critical threat
to the cattle industry, as symptoms of BVDV infection, such as abortion, diarrhea, and
embryonic death, highly jeopardize animal growth and milk production [36]. Furthermore,
BVDV causes tremendous damage to the host’s immune system, and BVDV-mediated
immunosuppression renders the cattle more susceptible to other infectious diseases.

Currently, both inactivated and live attenuated vaccines are commercially available
for BVDV. However, drawbacks are associated with both types of vaccines. The attenuated
vaccine could harm pregnant cows by causing premature miscarriage, fetal damage, or
PI. PI animals are the main source of BVDV transmission. On the other hand, inactivated
vaccines are safer for animals but induce a much weaker cellular immune response as
compared to the attenuated vaccine. In addition, the vaccinated animals cannot be serolog-
ically distinguished from those infected with the wild-type virus, posing a challenge for
viral surveillance in the cattle industry. As a result, more efforts are needed to explore the
options of safe and effective BVDV vaccines.

Erns and E2 are the most immunogenic proteins of BVDV and induce high titers of
protective neutralizing antibodies after infection; several studies based on vaccination
with Erns and E2 glycoprotein expressed in different systems have been reported [37–41],
Chimeno Zoth S used BEVS to express the E2 protein of the BVDV NADL strain, proving
that the recombinant E2 protein vaccine can elicit an in vitro neutralizing humoral immune
response, not only against the homologous strain, but also against heterologous BVDV
strains [37]. As viral envelope glycoproteins, Erns and E2 need to undergo certain N-linked
glycosylation to help them fold correctly [42]. BEVS has a complete post-translational
modification function.

In this study, we aimed to develop a new type of vaccine by constructing VLPs with
viral Erns and E2 proteins using the previously established BEVS method. A comprehensive
protein domain analysis by TMHMM suggests that E2 contains an extracellular domain
(amino acid residues 693–1036), a transmembrane domain (residues 1037–1059), and an
intracellular domain (residues 1060–1066). Erns, on the other hand, does not contain any
transmembrane domain. Neither Erns nor E2 contain any signal peptide. Therefore, a
signal peptide derived from the baculovirus gp64 surface glycoprotein was fused to the N-
termini of Erns and E2 extracellular domains. The baculovirus gp64 signal peptide contains
hydrophobic amino acids, which is recognizable by the receptor on the endoplasmic
reticulum [43]. The nascent Erns and E2 enter the ER, assemble into VLPs, and are released
from the ER [44].

We verified the morphology of VLPs produced by TEM. As expected, a large number
of VLPs were observed in the cytoplasm; most importantly, the size and morphology of
VLPs are similar to that of BVDV (Figure 2). Next, sucrose density gradient centrifugation
was employed to purify VLPs as previously described [45]. The purified VLPs were
characterized by TEM and IEM (Figure 4), and the content of the VLPs was examined and
verified by SDS-PAGE, Western blot, and LC–MS/MS. Two bands corresponding to Erns

and E2 were clearly visible on the SDS-PAGE gel, and the results of LC–MS/MS confirmed
that two protein bands were BVDV Erns and E2 (Figure 3). Importantly, we were able to
validate that both E2 and Erns form homodimers (Figure 5), which was reported to be the
native form for both in virus particles [46,47].

Erns forms homodimers through disulfide bonds formed between cysteine 171 (C171),
which is conserved in pestiviruses. A study showed that a mutant classical swine fever
virus (CSFV) without C171 is attenuated, indicating the role of dimerization in maintaining
its biological function [48]. In wild BVDV, E2 forms a disulfide-linked homodimer and
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also a heterodimer with E1, which functions in virus entry. Our study denotes that VLP-
associated Erns and E2 maintain their natural conformation, which may help maintain their
immunogenicity increase specificity of the immune responses from the host.

Traditionally, VLPs are secretive and are more often purified from cell supernatant
than from cell lysates. However, we found only a small portion of VLPs secreted, whereas
the majority of them remained intracellularly. Whether modifications on the signal peptides
can increase E2/Erns secretion demands further investigation [49,50].

After in vitro verification of the VLPs generated, we next assessed the immunogenicity
and the neutralization potential of them in BALB/c mice. The results showed that vaccina-
tion of mice with BVDV-VLPs induced significantly higher levels of IgG, IgG1, and IgG2a
antibodies against BVDV E2 protein compared to controls in the presence of adjuvant
(Figure 6A–C). In vitro neutralization assay showed that serum collected from immunized
animals exhibited high-titer neutralization activity against BVDV NADL strain. Strong
neutralizing activities against NADL were observed, even in the lowest concentration of
VLPs tested (Figure 6D).

In addition to antibody response, we monitored cell-mediated immunity in mice
immunized with BVDV-VLPs. We found both CD3+CD4+T cells and CD3+CD8+T cells
were enriched upon VLP immunization (Figure 7). Moreover, mice vaccinated with the
BVDV-VLPs displayed higher numbers of IL-4- and IFN-γ-secreting cells compared to mice
vaccinated with the commercial BVDV-inactivated vaccine (Figure 9). Previous studies
demonstrated that Th1 cytokines such as IFN-γ promote immunoglobulin class switching
from IgM to IgG2a, whereas Th2 cytokines such as IL-4 lead to immunoglobulin isotype
switching to IgG1 [51]. In our study, the level of E2-specific IgG1 was higher in mice
immunized with BVDV-VLPs, consistent with increased production of Th2-type cytokine
IL-4 in splenocytes from these mice. We were not able to determine E2-specific IgG2a due to
a technical difficulty. Nevertheless, the fact that BVDV-VLP-based vaccine elicited stronger
cellular immune responses than the commercial BVDV-inactivated vaccine indicates that
VLP is an excellent system for the efficient induction of cell-mediated immune responses.

Taken together, our data suggest that BVDV-VLPs induce strong humoral and cellular
immune responses in mice.

5. Conclusions

We successfully established a method to generate BVDV-VLPs with viral E2 and Erns

using BEVS. The VLPs produced with this protocol were morphologically and dimension-
ally similar to the wild-type BVDV particles. In addition, Erns and E2 proteins encapsulated
in the VLPs and existed in homodimers, which help preserve the immunogenicity of the
two proteins. Furthermore, our BVDV-VLPs were able to induce mice to produce a sim-
ilar level of humoral immune response and stronger cellular immune response than the
commercial BVDV-inactivated vaccine.
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