Exploring TREC and KREC Levels in Nursing Home Residents and Staff and Their Association with SARS-CoV-2 Antibody Response After Vaccination
Abstract
1. Background
2. Methods
2.1. Study Design and Population
2.2. Ethical Considerations
2.3. Questionnaires
2.4. SARS-CoV-2 Antibody Response
2.5. DNA Extraction from DBSs
2.6. β-Actin, TREC, and KREC Quantification
2.7. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. TREC and KREC Concentrations in NHRs and NHS in Correlation to Age, Sex, and Infection Naivety
3.3. TREC and KREC Association with SARS-CoV-2 Antibody Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chiarini, M.; Zanotti, C.; Serana, F.; Sottini, A.; Bertoli, D.; Caimi, L.; Imberti, L. T-Cell Receptor and K-Deleting Recombination Excision Circles in Newborn Screening of T- and B-cell Defects: Review of the Literature and Future Challenges. J. Public Health Res. 2013, 2, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Somech, R.; Etzioni, A. A Call to Include Severe Combined Immunodeficiency in Newborn Screening Program. Rambam Maimonides Med. J. 2014, 5, e0001. [Google Scholar] [CrossRef]
- Serana, F.; Chiarini, M.; Zanotti, C.; Sottini, A.; Bertoli, D.; Bosio, A.; Caimi, L.; Imberti, L. Use of V(D)J recombination excision circles to identify T- and B-cell defects and to monitor the treatment in primary and acquired immunodeficiencies. J. Transl. Med. 2013, 11, 119. [Google Scholar] [CrossRef]
- van der Spek, J.; Groenwold, R.H.; van der Burg, M.; van Montfrans, J.M. TREC Based Newborn Screening for Severe Combined Immunodeficiency Disease: A Systematic Review. J. Clin. Immunol. 2015, 35, 416–430. [Google Scholar] [CrossRef]
- Marakhonov, A.V.; Efimova, I.Y.; Mukhina, A.A.; Zinchenko, R.A.; Balinova, N.V.; Rodina, Y.; Pershin, D.; Ryzhkova, O.P.; Orlova, A.A.; Zabnenkova, V.V.; et al. Newborn Screening for Severe T and B Cell Lymphopenia Using TREC/KREC Detection: A Large-Scale Pilot Study of 202,908 Newborns. J. Clin. Immunol. 2024, 44, 93. [Google Scholar] [CrossRef]
- Marinova, M.; Georgyeva, A.; Yordanova, V.; Ivanov, N.; Atanasova, V.; Naumova, E.; Kandilarova, S.M. Implementation of TREC/KREC detection protocol for newborn SCID screening in Bulgaria: A pilot study. Cent. Eur. J. Immunol. 2022, 47, 339–349. [Google Scholar] [CrossRef]
- Blom, M.; Soomann, M.; Soler-Palacín, P.; Šedivá, A.; Stray-Pedersen, A.; Zetterström, R.; Speckmann, C.; Gennery, A.R.; van der Burg, M. Newborn screening for SCID and severe T lymphocytopenia in Europe. J. Allergy Clin. Immunol. 2025, 155, 377–386. [Google Scholar] [CrossRef]
- Shinwari, K.; Bolkov, M.; Tuzankina, I.A.; Chereshnev, V.A. Newborn Screening through TREC, TREC/KREC System for Primary Immunodeficiency with limitation of TREC/KREC. Comprehensive Review. Antiinflamm. Antiallergy Agents Med. Chem. 2021, 20, 132–149. [Google Scholar] [CrossRef] [PubMed]
- Kwok, J.S.Y.; Cheung, S.K.F.; Ho, J.C.Y.; Tang, I.W.H.; Chu, P.W.K.; Leung, E.Y.S.; Lee, P.P.W.; Cheuk, D.K.L.; Lee, V.; Ip, P.; et al. Establishing Simultaneous T Cell Receptor Excision Circles (TREC) and K-Deleting Recombination Excision Circles (KREC) Quantification Assays and Laboratory Reference Intervals in Healthy Individuals of Different Age Groups in Hong Kong. Front. Immunol. 2020, 11, 1411. [Google Scholar] [CrossRef]
- Medova, V.; Hulinkova, I.; Laiferova, N.; Urdova, V.; Ciznar, P.; Dolnikova, D.; Krasnanova, V.; Fabri, O.; Ficek, A.; Soltysova, A. The importance of defining the age-specific TREC/KREC levels for detection of various inborn errors of immunity in pediatric and adult patients. Clin. Immunol. 2022, 245, 109155. [Google Scholar] [CrossRef]
- Farag, A.A.; Kharboush, T.G.; Ibrahim, N.H.; Darwish, M.; Fawzy, I.M.; Bayomy, H.E.; Abdelmotaleb, D.S.; Abdul Basset, S.A.; Abdel-Kareim, A.M.; Al Mohaini, M.; et al. Exploiting Signal Joint T Cell Receptor Excision Circle to Investigate the Impact of COVID-19 and Autoimmune Diseases on Age Prediction and Immunosenescence. Biomedicines 2022, 10, 3193. [Google Scholar] [CrossRef]
- Mitchell, W.A.; Lang, P.O.; Aspinall, R. Tracing thymic output in older individuals. Clin. Exp. Immunol. 2010, 161, 497–503. [Google Scholar] [CrossRef]
- Kennedy, R.B.; Ovsyannikova, I.G.; Haralambieva, I.H.; Oberg, A.L.; Zimmermann, M.T.; Grill, D.E.; Poland, G.A. Immunosenescence-Related Transcriptomic and Immunologic Changes in Older Individuals Following Influenza Vaccination. Front. Immunol. 2016, 7, 450. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, L.; Chen, C.; Zhang, Y.; Zeng, C.; Jin, Z.; Chen, S.; Li, B.; Zha, X.; Yin, Z.; et al. Age-Related Immune Profile of the T Cell Receptor Repertoire, Thymic Recent Output Function, and miRNAs. Biomed Res. Int. 2020, 2020, 5910823. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, Q.; Ren, Y.; Guo, C.; Ge, X.; Wang, L.; Cheng, Q.; Luo, P.; Zhang, Y.; Han, X. Immunosenescence: Molecular mechanisms and diseases. Signal Transduct. Target. Ther. 2023, 8, 200. [Google Scholar] [CrossRef]
- Pritz, T.; Weinberger, B.; Grubeck-Loebenstein, B. The aging bone marrow and its impact on immune responses in old age. Immunol. Lett. 2014, 162, 310–315. [Google Scholar] [CrossRef]
- Haralambieva, I.H.; Painter, S.D.; Kennedy, R.B.; Ovsyannikova, I.G.; Lambert, N.D.; Goergen, K.M.; Oberg, A.L.; Poland, G.A. The Impact of Immunosenescence on Humoral Immune Response Variation after Influenza A/H1N1 Vaccination in Older Subjects. PLoS ONE 2015, 10, e0122282. [Google Scholar] [CrossRef]
- Aspinall, R.; Pido-Lopez, J.; Imami, N.; Henson, S.M.; Ngom, P.T.; Morre, M.; Niphuis, H.; Remarque, E.; Rosenwirth, B.; Heeney, J.L. Old Rhesus Macaques Treated with Interleukin-7 Show Increased TREC Levels And Respond Well to Influenza Vaccination. Rejuvenation Res. 2007, 10, 5–18. [Google Scholar] [CrossRef]
- Khadzhieva, M.B.; Kalinina, E.V.; Larin, S.S.; Sviridova, D.A.; Gracheva, A.S.; Chursinova, J.V.; Stepanov, V.A.; Redkin, I.V.; Avdeikina, L.S.; Rumyantsev, A.G.; et al. TREC/KREC Levels in Young COVID-19 Patients. Diagnostics 2021, 11, 1486. [Google Scholar] [CrossRef]
- Rosichini, M.; Bordoni, V.; Silvestris, D.A.; Mariotti, D.; Matusali, G.; Cardinale, A.; Zambruno, G.; Condorelli, A.G.; Flamini, S.; Genah, S.; et al. SARS-CoV-2 infection of thymus induces loss of function that correlates with disease severity. J. Allergy Clin. Immunol. 2023, 151, 911–921. [Google Scholar] [CrossRef]
- Roux, H.M.; Marouf, A.; Dutrieux, J.; Charmeteau-De Muylder, B.; Figueiredo-Morgado, S.; Avettand-Fenoel, V.; Cuvelier, P.; Naudin, C.; Bouaziz, F.; Geri, G.; et al. Genetically determined thymic function affects strength and duration of immune response in COVID patients with pneumonia. Sci. Adv. 2023, 9, eadh7969. [Google Scholar] [CrossRef]
- Savchenko, A.A.; Tikhonova, E.; Kudryavtsev, I.; Kudlay, D.; Korsunsky, I.; Beleniuk, V.; Borisov, A. TREC/KREC Levels and T and B Lymphocyte Subpopulations in COVID-19 Patients at Different Stages of the Disease. Viruses 2022, 14, 646. [Google Scholar] [CrossRef]
- Meyers, E.; De Rop, L.; Engels, F.; Gioveni, C.; Coen, A.; De Burghgraeve, T.; Digregorio, M.; Van Ngoc, P.; De Clercq, N.; Buret, L.; et al. Follow-Up of SARS-CoV-2 Antibody Levels in Belgian Nursing Home Residents and Staff Two, Four and Six Months after Primary Course BNT162b2 Vaccination. Vaccines 2024, 12, 951. [Google Scholar] [CrossRef]
- Meyers, E.; De Rop, L.; Deschepper, E.; Duysburgh, E.; De Burghgraeve, T.; Van Ngoc, P.; Digregorio, M.; Delogne, S.; Coen, A.; De Clercq, N.; et al. Prevalence of SARS-CoV-2 antibodies among Belgian nursing home residents and staff during the primary COVID-19 vaccination campaign. Eur. J. Gen. Pract. 2023, 29, 2149732. [Google Scholar] [CrossRef] [PubMed]
- Random Select: GraphPad Prism Software. Available online: https://www.graphpad.com/quickcalcs/randomselect1/ (accessed on 2 April 2024).
- G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. 2007. Available online: https://link.springer.com/article/10.3758/BF03193146 (accessed on 2 April 2024).
- Wallace, M.; Shelkey, M. Katz Index of Independence in Activities of Daily Living (ADL). Urol. Nurs. 2007, 27, 93–94. [Google Scholar] [PubMed]
- Meyers, E.; Coen, A.; De Sutter, A.; Padalko, E.; Callens, S.; Vandekerckhove, L.; Witkowski, W.; Heytens, S.; Cools, P. Diagnostic performance of the SARS-CoV-2 S1RBD IgG ELISA (ImmunoDiagnostics) for the quantitative detection of SARS-CoV-2 antibodies on dried blood spots. J. Clin. Virol. 2022, 155, 105270. [Google Scholar] [CrossRef] [PubMed]
- Van Biesen, N.; Cools, P.; Meyers, E. Comparison and Optimization of DNA Extraction Methods for Human DNA from Dried Blood Spot Samples. Pediatr. Rep. 2025, 17, 30. [Google Scholar] [CrossRef]
- Leila, S.; Zahra, P.; Somayeh, S.; Erna, D.; Anoshirvan, K.; Hossein, D.; Maryam, N. Determining Laboratory Reference Values of TREC and KREC in Different Age Groups of Iranian Healthy Individuals. Iran. J. Allergy Asthma Immunol. 2019, 18, 143–152. [Google Scholar]
- Şentürk, G.; Ng, Y.Y.; Eltan, S.B.; Başer, D.; Ogulur, I.; Altındirek, D.; Fırtına, S.; Yılmaz, H.; Kocamış, B.; Kıykım, A.; et al. Determining T and B Cell development by TREC/KREC analysis in primary immunodeficiency patients and healthy controls. Scand. J. Immunol. 2022, 95, e13130. [Google Scholar] [CrossRef]
- Ou, X.-l.; Gao, J.; Wang, H.; Wang, H.-s.; Lu, H.-l.; Sun, H.-y. Predicting Human Age with Bloodstains by sjTREC Quantification. PLoS ONE 2012, 7, e42412. [Google Scholar] [CrossRef]
- Profaizer, T.; Slev, P. A Multiplex, Droplet Digital PCR Assay for the Detection of T-Cell Receptor Excision Circles and Kappa-Deleting Recombination Excision Circles. Clin. Chem. 2020, 66, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Tessitore, M.V.; Sottini, A.; Roccaro, A.M.; Ghidini, C.; Bernardi, S.; Martellosio, G.; Serana, F.; Imberti, L. Detection of newly produced T and B lymphocytes by digital PCR in blood stored dry on nylon flocked swabs. J. Transl. Med. 2017, 15, 70. [Google Scholar] [CrossRef]
- Pido-Lopez, J.; Imami, N.; Aspinall, R. Both age and gender affect thymic output: More recent thymic migrants in females than males as they age. Clin. Exp. Immunol. 2001, 125, 409–413. [Google Scholar] [CrossRef]
- Goronzy, J.J.; Weyand, C.M. Mechanisms underlying T cell ageing. Nat. Rev. Immunol. 2019, 19, 573–583. [Google Scholar] [CrossRef]
- Surh, C.D.; Sprent, J. Homeostasis of naive and memory T cells. Immunity 2008, 29, 848–862. [Google Scholar] [CrossRef] [PubMed]
- Cancro, M.P.; Hao, Y.; Scholz, J.L.; Riley, R.L.; Frasca, D.; Dunn-Walters, D.K.; Blomberg, B.B. B cells and aging: Molecules and mechanisms. Trends Immunol. 2009, 30, 313–318. [Google Scholar] [CrossRef]
- Salam, N.; Rane, S.; Das, R.; Faulkner, M.; Gund, R.; Kandpal, U.; Lewis, V.; Mattoo, H.; Prabhu, S.; Ranganathan, V.; et al. T cell ageing: Effects of age on development, survival & function. Indian J. Med. Res. 2013, 138, 595–608. [Google Scholar]
- Azkur, A.K.; Akdis, M.; Azkur, D.; Sokolowska, M.; van de Veen, W.; Brüggen, M.C.; O’Mahony, L.; Gao, Y.; Nadeau, K.; Akdis, C.A. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy 2020, 75, 1564–1581. [Google Scholar] [CrossRef] [PubMed]
- Krutikov, M.; Palmer, T.; Tut, G.; Fuller, C.; Azmi, B.; Giddings, R.; Shrotri, M.; Kaur, N.; Sylla, P.; Lancaster, T.; et al. Prevalence and duration of detectable SARS-CoV-2 nucleocapsid antibodies in staff and residents of long-term care facilities over the first year of the pandemic (VIVALDI study): Prospective cohort study in England. Lancet Healthy Longev. 2022, 3, e13–e21. [Google Scholar] [CrossRef] [PubMed]
NHR (n = 50) | NHS (n = 148) | NHR + NHS (n = 198) | |
---|---|---|---|
Age, median (IQR) | 86 (77–90) | 44 (36–54) | 51 (40–66) |
Female sex, n (%) | 35 (70) | 130 (88) | 165 (83) |
Infection-primed, n (%) | 30 (60) | 78 (53) | 98 (49) |
Cardiovascular disease, n (%) | 14 (28) | 0 (0) | 14 (7) |
Diabetes, n (%) | 7 (14) | 0 (0) | 7 (4) |
Hypertension, n (%) | 11 (22) | 0 (0) | 11 (6) |
Severe renal, lung, or heart disease, n (%) | 2 (4) | 0 (0) | 2 (1) |
Immunodeficiency and/ or immunosuppression, n (%) | 1 (2) | 0 (0) | 1 (1) |
Active cancer, n (%) | 1 (2) | 0 (0) | 1 (1) |
Highly care-dependent, n (%) (Katz dependency scale C, Cd) | 17 (34) | NA | NA |
Little to no care dependence, n (%) (Katz dependency scale O, A, B) | 32 (64) | NA | NA |
Variable | Estimate | Standard Error | 95% Confidence Interval | p Value | |
---|---|---|---|---|---|
TREC b | Intercept | 51.82 | 5.689 | 40.60 to 63.05 | <0.0001 |
Age (years) a | −28.69 | 2.692 | −34.00 to −23.38 | <0.0001 | |
S1RBD IgG concentration a | 0.7574 | 0.8026 | −0.8264 to 2.341 | 0.3466 | |
Female | 0.7648 | 1.169 | −1.543 to 3.072 | 0.5139 | |
Infection-primed | 1.105 | 0.9458 | −0.7612 to 2.971 | 0.2442 | |
KREC b | Intercept | 81.03 | 19.26 | 43.02 to 119.0 | <0.0001 |
Age (years) a | −0.5440 | 0.1386 | −0.8174 to −0.2706 | 0.0001 | |
S1RBD IgG concentration a | 6.166 | 4.603 | −2.917 to 15.25 | 0.1821 | |
Female | −6.231 | 7.587 | −21.20 to 8.739 | 0.4125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meyers, E.; Van Biesen, N.; De Rop, L.; De Burghgraeve, T.; Digregorio, M.; Buret, L.; Coenen, S.; Scholtes, B.; Verbakel, J.Y.; Heytens, S.; et al. Exploring TREC and KREC Levels in Nursing Home Residents and Staff and Their Association with SARS-CoV-2 Antibody Response After Vaccination. Vaccines 2025, 13, 874. https://doi.org/10.3390/vaccines13080874
Meyers E, Van Biesen N, De Rop L, De Burghgraeve T, Digregorio M, Buret L, Coenen S, Scholtes B, Verbakel JY, Heytens S, et al. Exploring TREC and KREC Levels in Nursing Home Residents and Staff and Their Association with SARS-CoV-2 Antibody Response After Vaccination. Vaccines. 2025; 13(8):874. https://doi.org/10.3390/vaccines13080874
Chicago/Turabian StyleMeyers, Eline, Natalja Van Biesen, Liselore De Rop, Tine De Burghgraeve, Marina Digregorio, Laëtitia Buret, Samuel Coenen, Beatrice Scholtes, Jan Y. Verbakel, Stefan Heytens, and et al. 2025. "Exploring TREC and KREC Levels in Nursing Home Residents and Staff and Their Association with SARS-CoV-2 Antibody Response After Vaccination" Vaccines 13, no. 8: 874. https://doi.org/10.3390/vaccines13080874
APA StyleMeyers, E., Van Biesen, N., De Rop, L., De Burghgraeve, T., Digregorio, M., Buret, L., Coenen, S., Scholtes, B., Verbakel, J. Y., Heytens, S., & Cools, P. (2025). Exploring TREC and KREC Levels in Nursing Home Residents and Staff and Their Association with SARS-CoV-2 Antibody Response After Vaccination. Vaccines, 13(8), 874. https://doi.org/10.3390/vaccines13080874