Maternal Cigarette Smoke Exposure Does Not Impair Influenza Vaccine Responsiveness in Murine Offspring
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Study Design
2.3. CS Exposure Procedure
2.4. Vaccination Model
2.5. Antigen-Specific Delayed-Type Hypersensitivity (DTH) Reaction
2.6. Influvac-Specific Antibody Analysis in Serum
2.7. Flow Cytometric Analysis of Spleen
2.8. Statistical Analysis
3. Results
3.1. Effects of Maternal CS Exposure on Birth Outcomes and Spleen-to-Body Weight Ratio in Offspring
3.2. Comparable DTH Response and Serum IgG1 and IgG2a Levels in Vaccinated Offspring of Air- or CS-Exposed Dams
3.3. Maternal CS Exposure Does Not Affect Splenic Th1 Infiltration or Activation but Increases the Frequency of Activated Th2 Cells in Offspring
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saxena, K. Association Between Maternal Prenatal Exposure to Household Air Pollution and Child Respiratory Health: A Systematic Review and Meta-analysis. Yale J. Biol. Med. 2024, 97, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Zhang, H.; Bo, Y.; Chen, Y.; Zhang, P.; Huang, C.; Yu, Z.; Gao, Z. Ambient air pollution and Children’s health: An umbrella review. Atmos. Pollut. Res. 2024, 15, 102108. [Google Scholar] [CrossRef]
- Drury, N.L.; Mustapha, T.; Shore, R.A.; Zhao, J.; Wright, G.A.; Hoffmann, A.R.; Talcott, S.U.; Regan, A.; Tighe, R.M.; Zhang, R.; et al. Maternal exposure to ultrafine particles enhances influenza infection during pregnancy. Part. Fibre Toxicol. 2023, 20, 11. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.Z.; Chen, J.H.; Yu, Y.J.; Dong, G.H. Ambient air pollution and infant health: A narrative review. EBioMedicine 2023, 93, 104609. [Google Scholar] [CrossRef]
- Hehua, Z.; Qing, C.; Shanyan, G.; Qijun, W.; Yuhong, Z. The impact of prenatal exposure to air pollution on childhood wheezing and asthma: A systematic review. Environ. Res. 2017, 159, 519–530. [Google Scholar] [CrossRef]
- Metzger, M.J.; Halperin, A.C.; Manhart, L.E.; Hawes, S.E. Association of maternal smoking during pregnancy with infant hospitalization and mortality due to infectious diseases. Pediatr. Infect. Dis. J. 2013, 32, e1–e7. [Google Scholar] [CrossRef]
- Yaremenko, A.V.; Pechnikova, N.A.; Porpodis, K.; Damdoumis, S.; Aggeli, A.; Theodora, P.; Domvri, K. Association of Fetal Lung Development Disorders with Adult Diseases: A Comprehensive Review. J. Pers. Med. 2024, 14, 368. [Google Scholar] [CrossRef]
- WHO. The Cost of a Polluted Environment: 1.7 Million Child Deaths a Year, Says WHO. Available online: https://www.who.int/news/item/06-03-2017-the-cost-of-a-polluted-environment-1-7-million-child-deaths-a-year-says-who (accessed on 30 July 2025).
- Wang, X.; Li, Y.; O’Brien, K.L.; Madhi, S.A.; Widdowson, M.A.; Byass, P.; Omer, S.B.; Abbas, Q.; Ali, A.; Amu, A.; et al. Global burden of respiratory infections associated with seasonal influenza in children under 5 years in 2018: A systematic review and modelling study. Lancet Glob. Health 2020, 8, e497–e510. [Google Scholar] [CrossRef]
- Kielsen, K.; Shamim, Z.; Ryder, L.P.; Grandjean, P.; Heilmann, C. Vaccination Efficacy and Environmental Pollution. In Environmental Influences on the Immune System; Esser, C., Ed.; Springer: Vienna, Austria, 2016. [Google Scholar]
- Protano, C.; Valeriani, F.; Vitale, K.; Del Prete, J.; Liguori, F.; Liguori, G.; Gallè, F. Exposure to Pollutants and Vaccines’ Effectiveness: A Systematic Review. Vaccines 2024, 12, 1252. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, W.; More, S.; Booth, J.L.; Duggan, E.S.; Liu, L.; Zhao, Y.D.; Metcalf, J.P. Cigarette smoke attenuates the RIG-I-initiated innate antiviral response to influenza infection in two murine models. Am. J. Physiol. Lung Cell Mol. Physiol. 2014, 307, L848–L858. [Google Scholar] [CrossRef]
- Wu, W.; Alexander, J.S.; Metcalf, J.P. In Vivo and In Vitro Studies of Cigarette Smoke Effects on Innate Responses to Influenza Virus: A Matter of Models? Viruses 2022, 14, 1824. [Google Scholar] [CrossRef] [PubMed]
- Chavez, J.; Hai, R. Effects of Cigarette Smoking on Influenza Virus/Host Interplay. Pathogens 2021, 10, 1636. [Google Scholar] [CrossRef] [PubMed]
- Danov, O.; Wolff, M.; Bartel, S.; Böhlen, S.; Obernolte, H.; Wronski, S.; Jonigk, D.; Hammer, B.; Kovacevic, D.; Reuter, S.; et al. Cigarette Smoke Affects Dendritic Cell Populations, Epithelial Barrier Function, and the Immune Response to Viral Infection With H1N1. Front. Med. 2020, 7, 571003. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, S.; Marsland, A.L.; Kinnee, E.J.; Tunno, B.J.; Manuck, S.B.; Gianaros, P.J.; Clougherty, J.E. Long-Term Ambient Air Pollution Exposures and Circulating and Stimulated Inflammatory Mediators in a Cohort of Midlife Adults. Environ. Health Perspect. 2021, 129, 57007. [Google Scholar] [CrossRef]
- Tran, H.M.; Tsai, F.-J.; Lee, Y.-L.; Chang, J.-H.; Chang, L.-T.; Chang, T.-Y.; Chung, K.F.; Kuo, H.-P.; Lee, K.-Y.; Chuang, K.-J.; et al. The impact of air pollution on respiratory diseases in an era of climate change: A review of the current evidence. Sci. Total Environ. 2023, 898, 166340. [Google Scholar] [CrossRef]
- Kogevinas, M.; Karachaliou, M.; Espinosa, A.; Aguilar, R.; Castaño-Vinyals, G.; Garcia-Aymerich, J.; Carreras, A.; Cortés, B.; Pleguezuelos, V.; Papantoniou, K.; et al. Long-Term Exposure to Air Pollution and COVID-19 Vaccine Antibody Response in a General Population Cohort (COVICAT Study, Catalonia). Environ. Health Perspect. 2023, 131, 47001. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, S.; Xiao, G.; Zhao, M.; Li, J.; Dong, W.; Hu, J.; Yuan, T.; Li, Y.; Liu, L. The associations between air pollutant exposure and neutralizing antibody titers of an inactivated SARS-CoV-2 vaccine. Environ. Sci. Pollut. Res. 2022, 29, 13720–13728. [Google Scholar] [CrossRef]
- Zeng, Z.; Ngai, S.; Wang, Q.; Liang, W.; Huo, X. Early-life exposure to widespread environmental toxicants and children’s health risks: A focus on the post-vaccination antibody potency or immunoglobulin levels. Sci. Total Environ. 2021, 781, 146714. [Google Scholar] [CrossRef]
- Kinney, P.L.; Asante, K.-P.; Lee, A.G.; Ae-Ngibise, K.A.; Burkart, K.; Boamah-Kaali, E.; Twumasi, M.; Gyaase, S.; Quinn, A.; Oppong, F.B.; et al. Prenatal and Postnatal Household Air Pollution Exposures and Pneumonia Risk: Evidence From the Ghana Randomized Air Pollution and Health Study. Chest 2021, 160, 1634–1644. [Google Scholar] [CrossRef]
- Franza, L.; Cianci, R. Pollution, Inflammation, and Vaccines: A Complex Crosstalk. Int. J. Environ. Res. Public. Health 2021, 18, 6330. [Google Scholar] [CrossRef]
- Fabris, A.L.; Nunes, A.V.; Schuch, V.; de Paula-Silva, M.; Rocha, G.; Nakaya, H.I.; Ho, P.L.; Silveira, E.L.V.; Farsky, S.H.P. Hydroquinone exposure alters the morphology of lymphoid organs in vaccinated C57Bl/6 mice. Environ. Pollut. 2020, 257, 113554. [Google Scholar] [CrossRef]
- Bhat, T.A.; Kalathil, S.G.; Bogner, P.N.; Miller, A.; Lehmann, P.V.; Thatcher, T.H.; Phipps, R.P.; Sime, P.J.; Thanavala, Y. Secondhand Smoke Induces Inflammation and Impairs Immunity to Respiratory Infections. J. Immunol. 2018, 200, 2927–2940. [Google Scholar] [CrossRef]
- Liu, K.; Li, S.; Qian, Z.M.; Dharmage, S.C.; Bloom, M.S.; Heinrich, J.; Jalaludin, B.; Markevych, I.; Morawska, L.; Knibbs, L.D.; et al. Benefits of influenza vaccination on the associations between ambient air pollution and allergic respiratory diseases in children and adolescents: New insights from the Seven Northeastern Cities study in China. Environ. Pollut. 2020, 256, 113434. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Yang, B.-Y.; Guo, Y.; Bloom, M.S.; Dharmage, S.C.; Knibbs, L.D.; Heinrich, J.; Leskinen, A.; Lin, S.; Morawska, L.; et al. The role of influenza vaccination in mitigating the adverse impact of ambient air pollution on lung function in children: New insights from the Seven Northeastern Cities Study in China. Environ. Res. 2020, 187, 109624. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Morgenlander, W.R.; Nadeau, K.; Wang, G.; Frischmeyer-Guerrerio, P.A.; Pearson, C.; Adams, W.G.; Ji, H.; Larman, H.B.; Wang, X. Maternal exposure to per- and polyfluoroalkyl substances and epitope level antibody response to vaccines against measles and rubella in children from the Boston birth cohort. Environ. Int. 2025, 198, 109433. [Google Scholar] [CrossRef] [PubMed]
- Semmes, E.C.; Chen, J.L.; Goswami, R.; Burt, T.D.; Permar, S.R.; Fouda, G.G. Understanding Early-Life Adaptive Immunity to Guide Interventions for Pediatric Health. Front. Immunol. 2020, 11, 595297. [Google Scholar] [CrossRef]
- Wells, A.C.; Lotfipour, S. Prenatal nicotine exposure during pregnancy results in adverse neurodevelopmental alterations and neurobehavioral deficits. Adv. Drug Alcohol. Res. 2023, 3, 11628. [Google Scholar] [CrossRef]
- Ruan, Q.; Jiang, Y.; Shi, Y. Maternal smoking around birth and its influence on offspring allergic diseases: A mendelian randomization study. World Allergy Organ. J. 2024, 17, 100875. [Google Scholar] [CrossRef]
- Janbazacyabar, H.; van Bergenhenegouwen, J.; Garssen, J.; Leusink-Muis, T.; van Ark, I.; van Daal, M.T.; Folkerts, G.; Braber, S. Prenatal and Postnatal Cigarette Smoke Exposure Is Associated With Increased Risk of Exacerbated Allergic Airway Immune Responses: A Preclinical Mouse Model. Front. Immunol. 2021, 12, 797376. [Google Scholar] [CrossRef]
- Dehghani, A.; Wang, L.; Garssen, J.; Styla, E.; Leusink-Muis, T.; van Ark, I.; Folkerts, G.; van Bergenhenegouwen, J.; Braber, S. Synbiotics, a promising approach for alleviating exacerbated allergic airway immune responses in offspring of a preclinical murine pollution model. Environ. Toxicol. Pharmacol. 2024, 112, 104591. [Google Scholar] [CrossRef]
- Toutounchi, N.S.; Braber, S.; Van’t Land, B.; Thijssen, S.; Garssen, J.; Kraneveld, A.D.; Folkerts, G.; Hogenkamp, A. Exposure to Deoxynivalenol During Pregnancy and Lactation Enhances Food Allergy and Reduces Vaccine Responsiveness in the Offspring in a Mouse Model. Front. Immunol. 2021, 12, 797152. [Google Scholar] [CrossRef]
- Xiao, L.; Leusink-Muis, T.; Kettelarij, N.; van Ark, I.; Blijenberg, B.; Hesen, N.A.; Stahl, B.; Overbeek, S.A.; Garssen, J.; Folkerts, G.; et al. Human Milk Oligosaccharide 2’-Fucosyllactose Improves Innate and Adaptive Immunity in an Influenza-Specific Murine Vaccination Model. Front. Immunol. 2018, 9, 452. [Google Scholar] [CrossRef]
- Oh, S.S.; Narver, H.L. Mouse and Rat Anesthesia and Analgesia. Curr. Protoc. 2024, 4, e995. [Google Scholar] [CrossRef]
- Tingskov Pedersen, C.E.; Eliasen, A.U.; Ketzel, M.; Brandt, J.; Loft, S.; Frohn, L.M.; Khan, J.; Brix, S.; Rasmussen, M.A.; Stokholm, J.; et al. Prenatal exposure to ambient air pollution is associated with early life immune perturbations. J. Allergy Clin. Immunol. 2023, 151, 212–221. [Google Scholar] [CrossRef]
- Yue, H.; Yan, W.; Ji, X.; Zhang, Y.; Li, G.; Sang, N. Maternal exposure to NO2 enhances airway sensitivity to allergens in BALB/c mice through the JAK-STAT6 pathway. Chemosphere 2018, 200, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.P.; Gundavarapu, S.; Peña-Philippides, J.C.; Rir-Sima-ah, J.; Mishra, N.C.; Wilder, J.A.; Langley, R.J.; Smith, K.R.; Sopori, M.L. Prenatal secondhand cigarette smoke promotes Th2 polarization and impairs goblet cell differentiation and airway mucus formation. J. Immunol. 2011, 187, 4542–4552. [Google Scholar] [CrossRef] [PubMed]
- Strzelak, A.; Ratajczak, A.; Adamiec, A.; Feleszko, W. Tobacco Smoke Induces and Alters Immune Responses in the Lung Triggering Inflammation, Allergy, Asthma and Other Lung Diseases: A Mechanistic Review. Int. J. Environ. Res. Public. Health 2018, 15, 1033. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, M.; Aoshi, T.; Kuroda, E.; Yoshioka, Y. Murine Cross-Reactive Nonneutralizing Polyclonal IgG1 Antibodies Induced by Influenza Vaccine Inhibit the Cross-Protective Effect of IgG2 against Heterologous Virus in Mice. J. Virol. 2020, 94, 10–128. [Google Scholar] [CrossRef]
- Firacative, C.; Gressler, A.E.; Schubert, K.; Schulze, B.; Müller, U.; Brombacher, F.; von Bergen, M.; Alber, G. Identification of T helper (Th)1- and Th2-associated antigens of Cryptococcus neoformans in a murine model of pulmonary infection. Sci. Rep. 2018, 8, 2681. [Google Scholar] [CrossRef]
- Restori, K.H.; Srinivasa, B.T.; Ward, B.J.; Fixman, E.D. Neonatal Immunity, Respiratory Virus Infections, and the Development of Asthma. Front. Immunol. 2018, 9, 1249. [Google Scholar] [CrossRef]
- Janbazacyabar, H.; van Daal, M.; Leusink-Muis, T.; van Ark, I.; Garssen, J.; Folkerts, G.; van Bergenhenegouwen, J.; Braber, S. The Effects of Maternal Smoking on Pregnancy and Offspring: Possible Role for EGF? Front. Cell Dev. Biol. 2021, 9, 680902. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Choi, M.J.; Bak, D.-H.; Lee, B.C.; Ko, E.J.; Ahn, G.R.; Ahn, S.W.; Kim, M.J.; Na, J.; Kim, B.J. Topical administration of EGF suppresses immune response and protects skin barrier in DNCB-induced atopic dermatitis in NC/Nga mice. Sci. Rep. 2018, 8, 11895. [Google Scholar] [CrossRef] [PubMed]
- CDC. Health Effects of Cigarettes: Reproductive Health. Atlanta, GA, USA. 2025. Available online: https://www.cdc.gov/tobacco/about/cigarettes-and-reproductive-health.html (accessed on 30 July 2025).
- Hammer, B. Parental Smoking Behavior: Cellular and Molecular Consequences for Murine Offspring; Christian-Albrechts-Universität zu Kiel: Kiel, Germany, 2020. [Google Scholar]
- Hjálmsdóttir, Á.; Hasler, F.; Waeckerle-Men, Y.; Duda, A.; López-Deber, M.P.; Pihlgren, M.; Vukicevic, M.; Kündig, T.M.; Johansen, P. T cell independent antibody responses with class switch and memory using peptides anchored on liposomes. npj Vaccines 2024, 9, 115. [Google Scholar] [CrossRef] [PubMed]
- Raval, F.M.; Mishra, R.; Garcea, R.L.; Welsh, R.M.; Szomolanyi-Tsuda, E. Long-lasting T cell-independent IgG responses require MyD88-mediated pathways and are maintained by high levels of virus persistence. mBio 2013, 4, e00812–e00813. [Google Scholar] [CrossRef]
- de Vinuesa, C.G.; Cook, M.C.; Ball, J.; Drew, M.; Sunners, Y.; Cascalho, M.; Wabl, M.; Klaus, G.G.; MacLennan, I.C. Germinal centers without T cells. J. Exp. Med. 2000, 191, 485–494. [Google Scholar] [CrossRef]
- Chen, L.; Bennett, E.; Wheeler, A.J.; Lyons, A.B.; Woods, G.M.; Johnston, F.; Zosky, G.R. Maternal exposure to particulate matter alters early post-natal lung function and immune cell development. Environ. Res. 2018, 164, 625–635. [Google Scholar] [CrossRef]
- Hong, X.; Liu, C.; Chen, X.; Song, Y.; Wang, Q.; Wang, P.; Hu, D. Maternal exposure to airborne particulate matter causes postnatal immunological dysfunction in mice offspring. Toxicology 2013, 306, 59–67. [Google Scholar] [CrossRef]
- Huang, K.L.; Liu, S.Y.; Chou, C.C.; Lee, Y.H.; Cheng, T.J. The effect of size-segregated ambient particulate matter on Th1/Th2-like immune responses in mice. PLoS ONE 2017, 12, e0173158. [Google Scholar] [CrossRef]
- Allouche, J.; Cremoni, M.; Brglez, V.; Graça, D.; Benzaken, S.; Zorzi, K.; Fernandez, C.; Esnault, V.; Levraut, M.; Oppo, S.; et al. Air pollution exposure induces a decrease in type II interferon response: A paired cohort study. EBioMedicine 2022, 85, 104291. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, Y.; Li, B.; Zhao, Z.; Huang, C.; Zhang, X.; Qian, H.; Wang, J.; Liu, W.; Sun, Y.; et al. Interaction effect of prenatal and postnatal exposure to ambient air pollution and temperature on childhood asthma. Environ. Int. 2022, 167, 107456. [Google Scholar] [CrossRef]
- Wright, R.J.; Hsu, H.L.; Chiu, Y.M.; Coull, B.A.; Simon, M.C.; Hudda, N.; Schwartz, J.; Kloog, I.; Durant, J.L. Prenatal Ambient Ultrafine Particle Exposure and Childhood Asthma in the Northeastern United States. Am. J. Respir. Crit. Care Med. 2021, 204, 788–796. [Google Scholar] [CrossRef]
- Mountford, A.P.; Fisher, A.; Wilson, R.A. The profile of IgG1 and IgG2a antibody responses in mice exposed to Schistosoma mansoni. Parasite Immunol. 1994, 16, 521–527. [Google Scholar] [CrossRef]
- Moran, T.M.; Park, H.; Fernandez-Sesma, A.; Schulman, J.L. Th2 responses to inactivated influenza virus can Be converted to Th1 responses and facilitate recovery from heterosubtypic virus infection. J. Infect. Dis. 1999, 180, 579–585. [Google Scholar] [CrossRef]
- Bungener, L.; Geeraedts, F.; Ter Veer, W.; Medema, J.; Wilschut, J.; Huckriede, A. Alum boosts TH2-type antibody responses to whole-inactivated virus influenza vaccine in mice but does not confer superior protection. Vaccine 2008, 26, 2350–2359. [Google Scholar] [CrossRef]
- Crawford, L.; Halperin, S.A.; Dzierlenga, M.W.; Skidmore, B.; Linakis, M.W.; Nakagawa, S.; Longnecker, M.P. Systematic review and meta-analysis of epidemiologic data on vaccine response in relation to exposure to five principal perfluoroalkyl substances. Environ. Int. 2023, 172, 107734. [Google Scholar] [CrossRef]
- Looker, C.; Luster, M.I.; Calafat, A.M.; Johnson, V.J.; Burleson, G.R.; Burleson, F.G.; Fletcher, T. Influenza Vaccine Response in Adults Exposed to Perfluorooctanoate and Perfluorooctanesulfonate. Toxicol. Sci. 2013, 138, 76–88. [Google Scholar] [CrossRef]
Experimental Groups | p Value | ||
---|---|---|---|
Air | CS | ||
Duration of pregnancy a | 22.00 ± 0.2 | 22.43 ± 0.25 | |
Litter size (median) | 4 | 3.5 | |
Number of pregnant dams b | 6 | 7 | |
Female/male ratio | 1.57 | 2.22 | |
Body weight offspring (1 week old) c | 5.45 ± 0.14 | 4.48 ± 0.1 **** | 0.0001 |
Spleen weight/body weight ratio | |||
Female | 0.005 ± 0.0006 | 0.005 ± 0.0006 | |
Male | 0.0033 ± 0.0001 | 0.0038 ± 0.0001 * | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dehghani, A.; Garssen, J.; van Ark, I.; Folkerts, G.; van Bergenhenegouwen, J.; Braber, S. Maternal Cigarette Smoke Exposure Does Not Impair Influenza Vaccine Responsiveness in Murine Offspring. Vaccines 2025, 13, 1058. https://doi.org/10.3390/vaccines13101058
Dehghani A, Garssen J, van Ark I, Folkerts G, van Bergenhenegouwen J, Braber S. Maternal Cigarette Smoke Exposure Does Not Impair Influenza Vaccine Responsiveness in Murine Offspring. Vaccines. 2025; 13(10):1058. https://doi.org/10.3390/vaccines13101058
Chicago/Turabian StyleDehghani, Ali, Johan Garssen, Ingrid van Ark, Gert Folkerts, Jeroen van Bergenhenegouwen, and Saskia Braber. 2025. "Maternal Cigarette Smoke Exposure Does Not Impair Influenza Vaccine Responsiveness in Murine Offspring" Vaccines 13, no. 10: 1058. https://doi.org/10.3390/vaccines13101058
APA StyleDehghani, A., Garssen, J., van Ark, I., Folkerts, G., van Bergenhenegouwen, J., & Braber, S. (2025). Maternal Cigarette Smoke Exposure Does Not Impair Influenza Vaccine Responsiveness in Murine Offspring. Vaccines, 13(10), 1058. https://doi.org/10.3390/vaccines13101058