Risk Factors for COVID-19 and Respiratory Tract Infections during the Coronavirus Pandemic
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Data Sources
2.2. Statistical Analysis
2.3. Software
3. Results
3.1. Respiratory Tract Infections including COVID-19
3.2. COVID-19
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organisation WHO Coronavirus (COVID-19) Dashboard. Available online: https://data.who.int/dashboards/covid19/cases?n=c (accessed on 18 January 2024).
- CDC Key Facts about Flu Season, Influenza Viruses, How Flu Spreads, and Information for Specific High Risk Groups. Available online: https://www.cdc.gov/flu/about/index.html (accessed on 18 January 2024).
- CDC Tuberculosis Risk Factors. Available online: https://www.cdc.gov/tb/topic/basics/risk.htm (accessed on 17 January 2024).
- Ho, F.K.; Celis-Morales, C.A.; Gray, S.R.; Katikireddi, S.V.; Niedzwiedz, C.L.; Hastie, C.; Ferguson, L.D.; Berry, C.; Mackay, D.F.; Gill, J.M.; et al. Modifiable and Non-Modifiable Risk Factors for COVID-19, and Comparison to Risk Factors for Influenza and Pneumonia: Results from a UK Biobank Prospective Cohort Study. BMJ Open 2020, 10, e040402. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, F.; Solgi, M.; Khazaei, S. Predisposing Risk Factors for COVID-19 Infection: A Case-Control Study. Casp. J. Intern. Med. 2020, 11, 495–500. [Google Scholar] [CrossRef]
- Beaney, T.; Neves, A.L.; Alboksmaty, A.; Ashrafian, H.; Flott, K.; Fowler, A.; Benger, J.R.; Aylin, P.; Elkin, S.; Darzi, A.; et al. Trends and Associated Factors for COVID-19 Hospitalisation and Fatality Risk in 2.3 Million Adults in England. Nat. Commun. 2022, 13, 2356. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liang, W.; Zhong, H.; He, J.; Chen, Z.; He, G.; Song, T.; Chen, S.; Wang, P.; Li, J.; et al. Risk Factors Associated with COVID-19 Infection: A Retrospective Cohort Study Based on Contacts Tracing. Emerg. Microbes Infect. 2020, 9, 1546–1553. [Google Scholar] [CrossRef] [PubMed]
- Cordero-Franco, H.F.; De La Garza-Salinas, L.H.; Gomez-Garcia, S.; Moreno-Cuevas, J.E.; Vargas-Villarreal, J.; González-Salazar, F. Risk Factors for SARS-CoV-2 Infection, Pneumonia, Intubation, and Death in Northeast Mexico. Front. Public Health 2021, 9, 645739. [Google Scholar] [CrossRef] [PubMed]
- dos Anjos, L.R.B.; da Costa, A.C.; Cardoso, A.D.R.O.; Guimarães, R.A.; Rodrigues, R.L.; Ribeiro, K.M.; Borges, K.C.M.; Carvalho, A.C.D.O.; Dias, C.I.S.; Rezende, A.D.O.; et al. Efficacy and Safety of BCG Revaccination with M. Bovis BCG Moscow to Prevent COVID-19 Infection in Health Care Workers: A Randomized Phase II Clinical Trial. Front. Immunol. 2022, 13, 841868. [Google Scholar] [CrossRef] [PubMed]
- Bergman, J.; Ballin, M.; Nordström, A.; Nordström, P. Risk Factors for COVID-19 Diagnosis, Hospitalization, and Subsequent All-Cause Mortality in Sweden: A Nationwide Study. Eur. J. Epidemiol. 2021, 36, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Guerrisi, C.; Ecollan, M.; Souty, C.; Rossignol, L.; Turbelin, C.; Debin, M.; Goronflot, T.; Boëlle, P.-Y.; Hanslik, T.; Colizza, V.; et al. Factors Associated with Influenza-like-Illness: A Crowdsourced Cohort Study from 2012/13 to 2017/18. BMC Public Health 2019, 19, 879. [Google Scholar] [CrossRef]
- Baik, I.; Curhan, G.C.; Rimm, E.B.; Bendich, A.; Willett, W.C.; Fawzi, W.W. A Prospective Study of Age and Lifestyle Factors in Relation to Community-Acquired Pneumonia in US Men and Women. Arch. Intern. Med. 2000, 160, 3082–3088. [Google Scholar] [CrossRef]
- Kolditz, M.; Tesch, F.; Mocke, L.; Höffken, G.; Ewig, S.; Schmitt, J. Burden and Risk Factors of Ambulatory or Hospitalized CAP: A Population Based Cohort Study. Respir. Med. 2016, 121, 32–38. [Google Scholar] [CrossRef]
- Ruan, Z.; Qi, J.; Qian, Z.M.; Zhou, M.; Yang, Y.; Zhang, S.; Vaughn, M.G.; LeBaige, M.H.; Yin, P.; Lin, H. Disease Burden and Attributable Risk Factors of Respiratory Infections in China from 1990 to 2019. Lancet Reg. Health—West. Pac. 2021, 11, 100153. [Google Scholar] [CrossRef] [PubMed]
- Atsumi, E.; Yara, S.; Higa, F.; Hirata, T.; Haranaga, S.; Tateyama, M.; Fujita, J. Influence of Human T Lymphotropic Virus Type I Infection on the Etiology of Community-Acquired Pneumonia. Intern. Med. 2009, 48, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Kisiel, M.A.; Zhou, X.; Björnsson, E.; Holm, M.; Dahlman-Höglund, A.; Wang, J.; Svanes, C.; Norbäck, D.; Franklin, K.A.; Malinovschi, A.; et al. The Risk of Respiratory Tract Infections and Antibiotic Use in a General Population and among People with Asthma. ERJ Open Res. 2021, 7, 00429–2021. [Google Scholar] [CrossRef] [PubMed]
- Murphy, V.E.; Powell, H.; Wark, P.A.B.; Gibson, P.G. A Prospective Study of Respiratory Viral Infection in Pregnant Women with and without Asthma. Chest 2013, 144, 420–427. [Google Scholar] [CrossRef]
- Karki, S.; Muscatello, D.J.; Banks, E.; MacIntyre, C.R.; McIntyre, P.; Liu, B. Association between Body Mass Index and Laboratory-Confirmed Influenza in Middle Aged and Older Adults: A Prospective Cohort Study. Int. J. Obes. 2018, 42, 1480–1488. [Google Scholar] [CrossRef] [PubMed]
- Nie, W.; Zhang, Y.; Jee, S.H.; Jung, K.J.; Li, B.; Xiu, Q. Obesity Survival Paradox in Pneumonia: A Meta-Analysis. BMC Med. 2014, 12, 61. [Google Scholar] [CrossRef] [PubMed]
- Maccioni, L.; Weber, S.; Elgizouli, M.; Stoehlker, A.-S.; Geist, I.; Peter, H.-H.; Vach, W.; Nieters, A. Obesity and Risk of Respiratory Tract Infections: Results of an Infection-Diary Based Cohort Study. BMC Public Health 2018, 18, 271. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.-Y.; Forno, E.; Gogna, M.; Celedón, J.C. Obesity and Rhinitis in a Nationwide Study of Children and Adults in the United States. J. Allergy Clin. Immunol. 2016, 137, 1460–1465. [Google Scholar] [CrossRef]
- Cohen, S.; Tyrrell, D.A.; Russell, M.A.; Jarvis, M.J.; Smith, A.P. Smoking, Alcohol Consumption, and Susceptibility to the Common Cold. Am. J. Public Health 1993, 83, 1277–1283. [Google Scholar] [CrossRef]
- Aronson, M.D.; Weiss, S.T.; Ben, R.L.; Komaroff, A.L. Association between Cigarette Smoking and Acute Respiratory Tract Illness in Young Adults. JAMA 1982, 248, 181–183. [Google Scholar] [CrossRef]
- Peytremann, A.; Senn, N.; Mueller, Y. Are Healthcare Workers More Likely than the General Population to Consult in Primary Care for an Influenza-like Illness? Results from a Case-control Study. Influenza Other Respir. Viruses 2020, 14, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.J.; Schweiger, B.; Diner, G.; Gerlach, F.; Haaman, F.; Krause, G.; Nienhaus, A.; Buchholz, U. Seasonal Influenza Risk in Hospital Healthcare Workers Is More Strongly Associated with Household than Occupational Exposures: Results from a Prospective Cohort Study in Berlin, Germany, 2006/07. BMC Infect. Dis. 2010, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.-J.; Lai, C.-C.; Chao, C.-M. Changing Epidemiology of Respiratory Tract Infection during COVID-19 Pandemic. Antibiotics 2022, 11, 315. [Google Scholar] [CrossRef] [PubMed]
- Upton, C.M.; Van Wijk, R.C.; Mockeliunas, L.; Simonsson, U.S.H.; McHarry, K.; van den Hoogen, G.; Muller, C.; von Delft, A.; van der Westhuizen, H.-M.; van Crevel, R.; et al. Safety and Efficacy of BCG Re-Vaccination in Relation to COVID-19 Morbidity in Healthcare Workers: A Double-Blind, Randomised, Controlled, Phase 3 Trial. eClinicalMedicine 2022, 48, 101414. [Google Scholar] [CrossRef] [PubMed]
- CIRCULAR H 102/2020; Western Cape Government Population Data. Western Cape Government: Cape Town, South Africa, 2020.
- van Wijk, R.C.; Mockeliunas, L.; Upton, C.M.; Peter, J.; Diacon, A.H.; Simonsson, U.S.H. Seasonal Influence on Respiratory Tract Infection Severity Including COVID-19 Quantified through Markov Chain Modeling. CPT Pharmacomet. Syst. Pharmacol. 2023, 12, 1250–1261. [Google Scholar] [CrossRef] [PubMed]
- Van Wijk, R.C.; Simonsson, U.S.H. Finding the Right Hazard Function for Time-to-Event Modeling: A Tutorial and Shiny Application. CPT Pharmacomet. Syst. Pharmacol. 2022, 11, 991–1001. [Google Scholar] [CrossRef]
- Wählby, U.; Jonsson, E.N.; Karlsson, M.O. Comparison of Stepwise Covariate Model Building Strategies in Population Pharmacokinetic-Pharmacodynamic Analysis. AAPS PharmSci 2002, 4, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Dosne, A.-G.; Bergstrand, M.; Karlsson, M.O. An Automated Sampling Importance Resampling Procedure for Estimating Parameter Uncertainty. J. Pharmacokinet. Pharmacodyn. 2017, 44, 509–520. [Google Scholar] [CrossRef]
- Goulooze, S.C.; Välitalo, P.A.J.; Knibbe, C.A.J.; Krekels, E.H.J. Kernel-Based Visual Hazard Comparison (kbVHC): A Simulation-Free Diagnostic for Parametric Repeated Time-to-Event Models. AAPS J. 2018, 20, 5. [Google Scholar] [CrossRef]
- van Wijk, R.C.; Mockeliunas, L.; van den Hoogen, G.; Upton, C.M.; Diacon, A.H.; Simonsson, U.S.H. Reproducibility in Pharmacometrics Applied in a Phase III Trial of BCG-Vaccination for COVID-19. Sci. Rep. 2023, 13, 16292. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing 2020; R Core Team: Vienna, Austria, 2020.
- RStudio Team RStudio: Integrated Development Environment for R 2022; RStudio Team: Boston, MA, USA, 2022.
- Beal, S.; Sheiner, L.; Boeckmann, A.; Bauer, R. NONMEM 7.4 Users Guides 1989; Icon Development Solutions: Ellicott City, MD, USA, 2014. [Google Scholar]
- Jackson, C. Flexsurv: A Platform for Parametric Survival Modeling in R. J. Stat. Softw. 2016, 70, i08. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, O.S. Survival Analysis: Up from Kaplan–Meier–Greenwood. Eur. J. Epidemiol. 2008, 23, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, N.; Nyberg, J. Checklists and Best Practices to Support the Informed Use of Forest Plots to Illustrate the Impact of Covariates in Pharmacometric Models; November 2023; Vol. Poster M-122L. Available online: https://pharmetheus.com/publications/checklists-and-best-practices-to-support-the-informed-use-of-forest-plots-to-illustrate-the-impact-of-covariates-in-pharmacometric-models/ (accessed on 5 January 2024).
- Hall, V.J.; Foulkes, S.; Charlett, A.; Atti, A.; Monk, E.J.M.; Simmons, R.; Wellington, E.; Cole, M.J.; Saei, A.; Oguti, B.; et al. SARS-CoV-2 Infection Rates of Antibody-Positive Compared with Antibody-Negative Health-Care Workers in England: A Large, Multicentre, Prospective Cohort Study (SIREN). Lancet 2021, 397, 1459–1469. [Google Scholar] [CrossRef] [PubMed]
- Paleiron, N.; Mayet, A.; Marbac, V.; Perisse, A.; Barazzutti, H.; Brocq, F.-X.; Janvier, F.; Dautzenberg, B.; Bylicki, O. Impact of Tobacco Smoking on the Risk of COVID-19: A Large Scale Retrospective Cohort Study. Nicotine Tob. Res. 2021, 23, 1398–1404. [Google Scholar] [CrossRef] [PubMed]
- Tsigaris, P.; da Silva, J.A.T. Smoking Prevalence and COVID-19 in Europe. Nicotine Tob. Res. 2020, 22, 1646–1649. [Google Scholar] [CrossRef]
- Killerby, M.E.; Link-Gelles, R.; Haight, S.C.; Schrodt, C.A.; England, L.; Gomes, D.J.; Shamout, M.; Pettrone, K.; O’Laughlin, K.; Kimball, A.; et al. Characteristics Associated with Hospitalization Among Patients with COVID-19—Metropolitan Atlanta, Georgia, March–April 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Karanasos, A.; Aznaouridis, K.; Latsios, G.; Synetos, A.; Plitaria, S.; Tousoulis, D.; Toutouzas, K. Impact of Smoking Status on Disease Severity and Mortality of Hospitalized Patients with COVID-19 Infection: A Systematic Review and Meta-Analysis. Nicotine Tob. Res. 2020, 22, 1657–1659. [Google Scholar] [CrossRef]
- Chimsimbe, M.; Mucheto, P.; Gombe, N.T.; Govha, E.; Juru, T.P.; Omondi, M.; Tshimanga, M. Factors Associated with Contracting Severe Acute Respiratory Syndrome Corona Virus Type-2 in Norton Town, Zimbabwe, 2021: A Case-Control Study. J. Interv. Epidemiol. Public Health 2022, 5, 9. [Google Scholar] [CrossRef]
- Albani, V.; Loria, J.; Massad, E.; Zubelli, J. COVID-19 Underreporting and Its Impact on Vaccination Strategies. BMC Infect. Dis. 2021, 21, 1111. [Google Scholar] [CrossRef]
Participant Characteristics | Unit | All Patients |
---|---|---|
Number of participants | n | 1000 |
Gender (biological) female | n (%) | 704 (70.4%) |
Age (median [IQR]) | years | 39 (30–49) |
BMI (median [IQR]) | kg/m2 | 28.6 (24.1–34.6) |
Job description | n (%) | |
Nurse | 165 (16.5%) | |
Doctor | 144 (14.4%) | |
Essential worker | 691 (69.1%) | |
Hypertension | n (%) | 174 (17.4%) |
Asthma | n (%) | 68 (6.8%) |
Diabetes mellitus | n (%) | 63 (6.3%) |
Cardiovascular disease | n (%) | 24 (2.4%) |
Self-reported smoker | n (%) | 274 (27.4%) |
Latent tuberculosis infection | n (%) | 485 (48.5%) |
Conversion from negative baseline to positive IGRA a | n (%) | 49 (4.9%) |
Conversion from positive baseline to negative IGRA a | n (%) | 62 (6.2%) |
Positive SARS-CoV-2 IgG serology at enrollment | n (%) | 153 (15.3%) |
Self-reported expected exposure to COVID-19 patients | n (%) | 628 (62.8%) |
South Africa District | n (%) | |
Cape Town | 950 (95.0%) | |
Garden Route | 50 (5.0%) |
Parameter | Description | Estimate | RSE% | 95% CI a |
---|---|---|---|---|
Respiratory tract infections including COVID-19 | ||||
λ | Scale factor in the Gompertz function | 2.679 × 10−3 | 10 | 2.282 × 10−3–3.189 × 10−3 |
α | Shape factor in the Gompertz function | −3.609 × 10−3 | 23 | −4.467 × 10−3–−2.761 × 10−3 |
Reported COVID-19 burden influence on the hazard | 0.237 | 13 | 0.178–0.296 | |
Nurse/doctor job category influence on the hazard | 0.434 | 20 | 0.262–0.599 | |
Positive SARS-CoV-2 IgG serology at enrollment influence on the hazard | −0.539 | 26 | −0.801–−0.269 | |
BMI > 30 influence on the hazard | 3.972 × 10−2 | 20 | 2.303 × 10−2–5.366 × 10−2 | |
COVID-19 | ||||
λ | Scale factor in the Gompertz function | 4.231 × 10−4 | 17 | 2.854 × 10−4–4.651 × 10−4 |
α | Shape factor in the Gompertz function | −3.666 × 10−3 | 22 | −5.186 × 10−3–2.493 × 10−3 |
Reported COVID-19 burden influence on the hazard | 0.669 | 6 | 0.577–0.753 | |
Nurse/doctor job category influence on the hazard | 0.515 | 29 | 0.226–0.814 | |
Positive SARS-CoV-2 IgG serology at enrollment influence on the hazard | −2.580 | 23 | −3.657–−1.553 | |
Smoking influence on the hazard | −0.843 | 24 | −1.257–−0.434 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mockeliunas, L.; van Wijk, R.C.; Upton, C.M.; Peter, J.; Diacon, A.H.; Simonsson, U.S.H. Risk Factors for COVID-19 and Respiratory Tract Infections during the Coronavirus Pandemic. Vaccines 2024, 12, 329. https://doi.org/10.3390/vaccines12030329
Mockeliunas L, van Wijk RC, Upton CM, Peter J, Diacon AH, Simonsson USH. Risk Factors for COVID-19 and Respiratory Tract Infections during the Coronavirus Pandemic. Vaccines. 2024; 12(3):329. https://doi.org/10.3390/vaccines12030329
Chicago/Turabian StyleMockeliunas, Laurynas, Rob C. van Wijk, Caryn M. Upton, Jonathan Peter, Andreas H. Diacon, and Ulrika S. H. Simonsson. 2024. "Risk Factors for COVID-19 and Respiratory Tract Infections during the Coronavirus Pandemic" Vaccines 12, no. 3: 329. https://doi.org/10.3390/vaccines12030329
APA StyleMockeliunas, L., van Wijk, R. C., Upton, C. M., Peter, J., Diacon, A. H., & Simonsson, U. S. H. (2024). Risk Factors for COVID-19 and Respiratory Tract Infections during the Coronavirus Pandemic. Vaccines, 12(3), 329. https://doi.org/10.3390/vaccines12030329