The Humoral Response to SARS-CoV-2 Vaccine in Hemodialysis Patients Is Correlated with Nutritional Status
Abstract
:1. Introduction
2. Methods
2.1. Study Population and Design
2.2. Nutritional Status Assessments
2.3. Antibody Response Assessment
2.4. Statistical Analyses
3. Results
3.1. Patients’ Characteristics
3.2. Anti-S1 Antibody Response
3.3. A Linear Correlation between Antibody Response and Nutritional Status
3.4. A Multivariate Analysis of Predictors of S1-IgG Antibody Levels in Response to BNT162b
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Windpessl, M.; Bruchfeld, A.; Anders, H.-J.; Kramer, H.; Waldman, M.; Renia, L.; Ng, L.F.P.; Xing, Z.; Kronbichler, A. COVID-19 vaccines and kidney disease. Nat. Rev. Nephrol. 2021, 17, 291–293. [Google Scholar] [CrossRef]
- Babel, N.; Hugo, C.; Westhoff, T.H. Vaccination in patients with kidney failure: Lessons from COVID-19. Nat. Rev. Nephrol. 2022, 18, 708–723. [Google Scholar] [CrossRef]
- Fabrizi, F.; Dixit, V.; Martin, P.; Jadoul, M.; Messa, P. Meta-Analysis: The Impact of Nutritional Status on the Immune Response to Hepatitis B Virus Vaccine in Chronic Kidney Disease. Dig. Dis. Sci. 2012, 57, 1366–1372. [Google Scholar] [CrossRef] [PubMed]
- Krueger, K.M.; Ison, M.G.; Ghossein, C. Practical Guide to Vaccination in All Stages of CKD, Including Patients Treated by Dialysis or Kidney Transplantation. Am. J. Kidney Dis. 2020, 75, 417–425. [Google Scholar] [CrossRef]
- Pollard, A.J.; Bijker, E.M. A guide to vaccinology: From basic principles to new developments. Nat. Rev. Immunol. 2021, 21, 83–100. [Google Scholar] [CrossRef] [PubMed]
- Betjes, M.G.H. Immune cell dysfunction and inflammation in end-stage renal disease. Nat. Rev. Nephrol. 2013, 9, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Rovshan, K.; Mortaza, H.; Aziz, E.; Nasibova, A.; Hasanzadeh, A.; Vahedi, P.; Hosain, H. Overview of the Environmental Distribution, Resistance, Mortality, and Genetic Diversity of New Coronavirus (COVID-19): Review. Adv. Biol. Earth Sci. 2020, 5, 7–12. [Google Scholar]
- Rozen-Zvi, B.; Yahav, D.; Agur, T.; Zingerman, B.; Ben-Zvi, H.; Atamna, A.; Tau, N.; Mashraki, T.; Nesher, E.; Rahamimov, R. Antibody response to SARS-CoV-2 mRNA vaccine among kidney transplant recipients: A prospective cohort study. Clin. Microbiol. Infect. 2021, 27, 1173.e1–1173.e4. [Google Scholar] [CrossRef]
- Danthu, C.; Hantz, S.; Dahlem, A.; Duval, M.; Ba, B.; Guibbert, M.; El Ouafi, Z.; Ponsard, S.; Berrahal, I.; Achard, J.-M.; et al. Humoral Response after SARS-CoV-2 mRNA Vaccination in a Cohort of Hemodialysis Patients and Kidney Transplant Recipients. J. Am. Soc. Nephrol. 2021, 32, 2153–2158. [Google Scholar] [CrossRef] [PubMed]
- Rincon-Arevalo, H.; Choi, M.; Stefanski, A.-L.; Halleck, F.; Weber, U.; Szelinski, F.; Jahrsdörfer, B.; Schrezenmeier, H.; Ludwig, C.; Sattler, A.; et al. Impaired humoral immunity to SARS-CoV-2 BNT162b2 vaccine in kidney transplant recipients and dialysis patients. Sci. Immunol. 2021, 6, eabj1031. [Google Scholar] [CrossRef]
- Polvere, J.; Fabbiani, M.; Pastore, G.; Rancan, I.; Rossetti, B.; Durante, M.; Zirpoli, S.; Morelli, E.; Pettini, E.; Lucchesi, S.; et al. B cell response after SARS-CoV-2 mRNA vaccination in people living with HIV. Commun. Med. 2023, 3, 13. [Google Scholar] [CrossRef]
- Campagna, R.; Mazzuti, L.; Guerrizio, G.; Nonne, C.; Migliara, G.; De Vito, C.; Mezzaroma, I.; Chiaretti, S.; Fimiani, C.; Pistolesi, V.; et al. Humoral and T-cell mediated response after administration of mRNA vaccine BNT162b2 in frail populations. Vaccine X 2022, 12, 100246. [Google Scholar] [CrossRef] [PubMed]
- Fiorino, F.; Sicuranza, A.; Ciabattini, A.; Santoni, A.; Pastore, G.; Simoncelli, M.; Polvere, J.; Galimberti, S.; Auddino, S.; Baratè, C.; et al. The Slower Antibody Response in Myelofibrosis Patients after Two Doses of mRNA SARS-CoV-2 Vaccine Calls for a Third Dose. Biomedicines 2021, 9, 1480. [Google Scholar] [CrossRef]
- Chen, J.-J.; Lee, T.H.; Tian, Y.-C.; Lee, C.-C.; Fan, P.-C.; Chang, C.-H. Immunogenicity Rates After SARS-CoV-2 Vaccination in People with End-stage Kidney Disease: A Systematic Review and Meta-analysis. JAMA Netw. Open 2021, 4, e2131749. [Google Scholar] [CrossRef]
- Espi, M.; Charmetant, X.; Barba, T.; Mathieu, C.; Pelletier, C.; Koppe, L.; Chalencon, E.; Kalbacher, E.; Mathias, V.; Ovize, A.; et al. A prospective observational study for justification, safety, and efficacy of a third dose of mRNA vaccine in patients receiving maintenance hemodialysis. Kidney Int. 2021, 101, 390–402. [Google Scholar] [CrossRef]
- Giot, M.; Fourié, T.; Lano, G.; Villarroel, P.M.S.; de Lamballeri, X.; Gully, M.; Samson, L.; Farault, J.; Bouchouareb, D.; Jehel, O.; et al. Spike and neutralizing antibodies response to COVID-19 vaccination in hemodialysis patients. Clin. Kidney J. 2021, 14, 2239–2245. [Google Scholar] [CrossRef]
- Agur, T.; Ben-Dor, N.; Herman-Edelstein, M.; Steinmetz, T.; Lichtenberg, S.; Schneider, S.; Yahav, D.; Rozen-Zvi, B.; Zingerman, B. Longevity of Humoral Response Six Months Following BNT162b2 Vaccine in Dialysis Patients. Front. Med. 2022, 9, 781888. [Google Scholar] [CrossRef] [PubMed]
- Herman-Edelstein, M.; Ben-Dor, N.; Agur, T.; Guetta, T.; Raiter, A.; Meisel, E.; Alkeesh, W.; Ori, Y.; Rozen-Zvi, B.; Zingerman, B. BNT162b2 Booster Vaccination Induced Immunity against SARS-CoV-2 Variants among Hemodialysis Patients. Vaccines 2022, 10, 967. [Google Scholar] [CrossRef]
- Fiorino, F.; Ciabattini, A.; Sicuranza, A.; Pastore, G.; Santoni, A.; Simoncelli, M.; Polvere, J.; Galimberti, S.; Baratè, C.; Sammartano, V.; et al. The third dose of mRNA SARS-CoV-2 vaccines enhances the spike-specific antibody and memory B cell response in myelofibrosis patients. Front. Immunol. 2022, 13, 1017863. [Google Scholar] [CrossRef] [PubMed]
- Agur, T.; Ben-Dor, N.; Goldman, S.; Lichtenberg, S.; Herman-Edelstein, M.; Yahav, D.; Rozen-Zvi, B.; Zingerman, B. Antibody response to mRNA SARS-CoV-2 vaccine among dialysis patients—a prospective cohort study. Nephrol. Dial. Transplant. 2021, 36, 1347–1349. [Google Scholar] [CrossRef] [PubMed]
- Agur, T.; Zingerman, B.; Ben-Dor, N.; Alkeesh, W.; Steinmetz, T.; Rachamimov, R.; Korzets, A.; Rozen-Zvi, B.; Herman-Edelstein, M. Humoral Response to the Third Dose of BNT162b2 COVID-19 Vaccine among Hemodialysis Patients. Nephron 2023, 147, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Broseta, J.J.; Rodríguez-Espinosa, D.; Rodríguez, N.; Mosquera, M.d.M.; Marcos, M.; Egri, N.; Pascal, M.; Soruco, E.; Bedini, J.L.; Bayés, B.; et al. Humoral and Cellular Responses to mRNA-1273 and BNT162b2 SARS-CoV-2 Vaccines Administered to Hemodialysis Patients. Am. J. Kidney Dis. 2021, 78, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Van Praet, J.; Reynders, M.; De Bacquer, D.; Viaene, L.; Schoutteten, M.K.; Caluwé, R.; Doubel, P.; Heylen, L.; De Bel, A.V.; Van Vlem, B.; et al. Predictors and Dynamics of the Humoral and Cellular Immune Response to SARS-CoV-2 mRNA Vaccines in Hemodialysis Patients: A Multicenter Observational Study. J. Am. Soc. Nephrol. 2021, 32, 3208–3220. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Cano, N.J.; Franch, H.; Fouque, D.; Himmelfarb, J.; Kalantar-Zadeh, K.; Kuhlmann, M.K.; Stenvinkel, P.; TerWee, P.; Teta, D.; et al. Prevention and treatment of protein energy wasting in chronic kidney disease patients: A consensus statement by the International Society of Renal Nutrition and Metabolism. Kidney Int. 2013, 84, 1096–1107. [Google Scholar] [CrossRef]
- Norman, K.; Haß, U.; Pirlich, M. Malnutrition in Older Adults—Recent Advances and Remaining Challenges. Nutrients 2021, 13, 2764. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.-J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76 (Suppl. 1), S1–S107. [Google Scholar] [CrossRef]
- Carrero, J.J.; Stenvinkel, P.; Cuppari, L.; Ikizler, T.A.; Kalantar-Zadeh, K.; Kaysen, G.; Mitch, W.E.; Price, S.R.; Wanner, C.; Wang, A.Y.; et al. Etiology of the Protein-Energy Wasting Syndrome in Chronic Kidney Disease: A Consensus Statement From the International Society of Renal Nutrition and Metabolism (ISRNM). J. Ren. Nutr. 2013, 23, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Venter, C.; Eyerich, S.; Sarin, T.; Klatt, K.C. Nutrition and the Immune System: A Complicated Tango. Nutrients 2020, 12, 818. [Google Scholar] [CrossRef]
- Garagarza, C.A.; Valente, A.T.; Oliveira, T.S.; Caetano, C.G. Effect of personalized nutritional counseling in maintenance hemodialysis patients. Hemodial. Int. 2015, 19, 412–418. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Cano, N.J.; Budde, K.; Chazot, C.; Kovesdy, C.P.; Mak, R.H.; Mehrotra, R.; Raj, D.S.; Sehgal, A.R.; Stenvinkel, P.; et al. Diets and enteral supplements for improving outcomes in chronic kidney disease. Nat. Rev. Nephrol. 2011, 7, 369–384. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Ikizler, T.A.; Block, G.; Avram, M.M.; Kopple, J.D. Malnutrition-inflammation complex syndrome in dialysis patients: Causes and consequences. Am. J. Kidney Dis. 2003, 42, 864–881. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Kopple, J.D.; Block, G.; Humphreys, M.H. A Malnutrition-Inflammation Score is correlated with morbidity and mortality in maintenance hemodialysis patients. Am. J. Kidney Dis. 2001, 38, 1251–1263. [Google Scholar] [CrossRef] [PubMed]
- Barril, G.; Nogueira, A.; Cigarrán, S.; La Torre, J.; Sanchez, R.; de Santos, A.; Hadad, F.; Amair, R.; Romaniouk, I.; Truissar, I. Differences in Malnutrition Inflammation Score of Hemodialysis Patients Associated With Hemodialysis Factors. A Spanish Multicenter Epidemiologic Study. J. Ren. Nutr. 2023, 33, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Marini, A.C.B.; Pimentel, G.D. Is body weight or muscle strength correlated with the Malnutrition Inflammation Score (MIS)? A cross-sectional study in hemodialysis patients. Clin. Nutr. ESPEN 2019, 33, 276–278. [Google Scholar] [CrossRef]
- Qureshi, A.R.; Alvestrand, A.; Danielsson, A.; Divino-Filho, J.C.; Gutierrez, A.; Lindholm, B.; Bergström, J. Factors predicting malnutrition in hemodialysis patients: A cross-sectional study. Kidney Int. 1998, 53, 773–782. [Google Scholar] [CrossRef]
- Ho, L.-C.; Wang, H.-H.; Peng, Y.-S.; Chiang, C.-K.; Huang, J.-W.; Hung, K.-Y.; Hu, F.-C.; Wu, K.-D. Clinical Utility of Malnutrition-Inflammation Score in Maintenance Hemodialysis Patients: Focus on Identifying the Best Cut-Off Point. Am. J. Nephrol. 2008, 28, 840–846. [Google Scholar] [CrossRef]
- Laboratories, A. SARS-CoV-2 IgG II Quant Assay User Manual, Abbott Laboratories, Diagnostics Division. 2020. Available online: https://www.corelaboratory.abbott/int/en/offerings/segments/infectious-disease/sars-cov-2 (accessed on 15 May 2023).
- Knezevic, I.; Mattiuzzo, G.; Page, M.; Minor, P.; Griffiths, E.; Nuebling, M.; Moorthy, V. WHO International Standard for evaluation of the antibody response to COVID-19 vaccines: Call for urgent action by the scientific community. Lancet Microbe 2021, 3, e235–e240. [Google Scholar] [CrossRef] [PubMed]
- Boaz, M.; Azoulay, O.; Schwartz, I.F.; Schwartz, D.; Assady, S.; Kristal, B.; Benshitrit, S.; Yanai, N.; Weinstein, T. Malnutrition Risk in Hemodialysis Patients in Israel: Results of the Status of Nutrition in Hemodialysis Patients Survey Study. Nephron 2019, 141, 166–176. [Google Scholar] [CrossRef]
- Carrero, J.J.; Thomas, F.; Nagy, K.; Arogundade, F.; Avesani, C.M.; Chan, M.; Chmielewski, M.; Cordeiro, A.C.; Espinosa-Cuevas, A.; Fiaccadori, E.; et al. Global Prevalence of Protein-Energy Wasting in Kidney Disease: A Meta-analysis of Contemporary Observational Studies from the International Society of Renal Nutrition and Metabolism. J. Ren. Nutr. 2018, 28, 380–392. [Google Scholar] [CrossRef]
- Dramé, M.; Godaert, L. The Obesity Paradox and Mortality in Older Adults: A Systematic Review. Nutrients 2023, 15, 1780. [Google Scholar] [CrossRef]
- Ahmadian, E.; Khatibi, S.M.H.; Soofiyani, S.R.; Abediazar, S.; Shoja, M.M.; Ardalan, M.; Vahed, S.Z. COVID-19 and kidney injury: Pathophysiology and molecular mechanisms. Rev. Med. Virol. 2021, 31, e2176. [Google Scholar] [CrossRef]
- Ikeya, T.; Shibutani, M.; Maeda, K.; Sugano, K.; Nagahara, H.; Ohtani, H.; Hirakawa, K. Maintenance of the nutritional prognostic index predicts survival in patients with unresectable metastatic colorectal cancer. J. Cancer Res. Clin. Oncol. 2015, 141, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Qin, W.; Zheng, Y.; Pang, J.; Zhong, N.; Fei, J.; Li, Y.; Jian, X.; Hou, X.; Hu, Z.; et al. Malnutrition Contributes to Low Lymphocyte Count in Early-Stage Coronavirus Disease-2019. Front. Nutr. 2021, 8, 739216. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-Y.; Hung, N.-K.; Hung, S.-C. Association of malnutrition with SARS-CoV-2 vaccine response in patients undergoing hemodialysis. Clin. Nutr. 2022, 41, 2683–2690. [Google Scholar] [CrossRef]
- Rytter, M.J.H.; Kolte, L.; Briend, A.; Friis, H.; Christensen, V.B. The Immune System in Children with Malnutrition—A Systematic Review. PLoS ONE 2014, 9, e105017. [Google Scholar] [CrossRef] [PubMed]
- Bourke, C.D.; Berkley, J.A.; Prendergast, A.J. Immune Dysfunction as a Cause and Consequence of Malnutrition. Trends Immunol. 2016, 37, 386–398. [Google Scholar] [CrossRef]
- Sinha, P.; Davis, J.; Saag, L.; Wanke, C.; Salgame, P.; Mesick, J.; Horsburgh, C.; Hochberg, N.S. Undernutrition and Tuberculosis: Public Health Implications. J. Infect. Dis. 2019, 219, 1356–1363. [Google Scholar] [CrossRef]
- Briguglio, M.; Pregliasco, F.E.; Lombardi, G.; Perazzo, P.; Banfi, G. The Malnutritional Status of the Host as a Virulence Factor for New Coronavirus SARS-CoV-2. Front. Med. 2020, 7, 146. [Google Scholar] [CrossRef]
- Detopoulou, P.; Tsouma, C.M.; Papamikos, V.M. COVID-19 and Nutrition: Summary of Official Recommendations. Top. Clin. Nutr. 2022, 37, 187–202. [Google Scholar] [CrossRef]
- Calder, P.C. Nutrition, immunity and COVID-19. BMJ Nutr. Prev. Health 2020, 3, 74–92. [Google Scholar] [CrossRef]
- Giefing-Kröll, C.; Berger, P.; Lepperdinger, G.; Grubeck-Loebenstein, B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell 2015, 14, 309–321. [Google Scholar] [CrossRef]
- Berbudi, A.; Rahmadika, N.; Tjahjadi, A.I.; Ruslami, R. Type 2 Diabetes and its Impact on the Immune System. Curr. Diabetes Rev. 2020, 16, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Daryabor, G.; Atashzar, M.R.; Kabelitz, D.; Meri, S.; Kalantar, K. The Effects of Type 2 Diabetes Mellitus on Organ Metabolism and the Immune System. Front. Immunol. 2020, 11, 1582. [Google Scholar] [CrossRef] [PubMed]
- Boroumand, A.B.; Forouhi, M.; Karimi, F.; Moghadam, A.S.; Naeini, L.G.; Kokabian, P.; Naderi, D. Immunogenicity of COVID-19 vaccines in patients with diabetes mellitus: A systematic review. Front. Immunol. 2022, 13, 940357. [Google Scholar] [CrossRef]
- Strengert, M.; Becker, M.; Ramos, G.M.; Dulovic, A.; Gruber, J.; Juengling, J.; Lürken, K.; Beigel, A.; Wrenger, E.; Lonnemann, G.; et al. Cellular and humoral immunogenicity of a SARS-CoV-2 mRNA vaccine in patients on haemodialysis. Ebiomedicine 2021, 70, 103524. [Google Scholar] [CrossRef] [PubMed]
Variable | All | Normal-Nourished a MIS ≤ 5 | Malnutrition b MIS > 5 | p-Value |
---|---|---|---|---|
Number | 115 | 72 (62.6%) | 43 (37.4) | |
MIS median (IQR) | 5 (0–22) | 3 (0–5) | 7 (6–22) | <0.001 |
Recipient sex | 0.564 | |||
Female sex (%) | 39 (33.9) | 23 (31.9) | 16 (37.2) | |
Male sex (%) | 76 (66.1) | 49 (68.1) | 27 (62.8) | |
Age (years) mean ± SD | 72.2 ± 12.65 | 69.9 ± 13.25 | 76.05 ± 10.65 | 0.011 |
Diabetes Mellitus (%) | 67 (58.2) | 41 (56.9) | 26 (60.4) | 0.711 |
Albumin (g/dL) mean ± SD | 3.94 ± 0.30 | 4.04 ± 0.22 | 3.78 ± 0.34 | <0.001 |
Hemoglobin (g/dL) mean ± SD | 10.64 ± 1.16 | 10.68 ± 1.22 | 10.58 ± 1.07 | 0.657 |
Lymphocyte count (K/micl) mean ± SD | 1.28 ± 0.58 | 1.38 ± 0.57 | 1.13 ± 0.57 | 0.029 |
KT/V mean ± SD | 1.43 ± 0.31 | 1.39 ± 0.30 | 1.48 ± 0.32 | 0.185 |
nPCR (gr/kg/d) | 1.1 ± 0.26 | 1.11 ± 0.25 | 1.08 ± 0.27 | 0.53 |
Creatinine (mg/dL) mean ± SD | 6.91 ± 1.95 | 7.15 ± 1.86 | 6.52 ± 2.07 | 0.098 |
Transferrin (mg/dL) mean ± SD | 39.21 ± 174.27 | 39.71 ± 186.81 | 25.21 ± 150.75 | <0.001 |
Ferritin (mg/dL) mean ± SD | 699.15 ± 459.96 | 442.66 ± 655.76 | 521.42 ± 781.44 | 0.236 |
Dry weight (kg) mean ± SD | 72.3 ± 18.4 | 75.12 ± 17.70 | 67.39 ± 19.02 | 0.038 |
BMI (kg/m2) mean ± SD | 26.63 ± 5.44 | 27.52 ± 5.46 | 25.09 ± 5.10 | 0.021 |
Dialysis vintage (months) mean ± SD | 33.1 ± 40.89 | 37.85 ± 33.52 | 45.52 ± 32.29 | 0.245 |
All | Normal-Nourished MIS ≤ 5 | Malnutrition MIS > 5 | p-Value | |
---|---|---|---|---|
Patients number (%) | 115 | 72 (62.6%) | 43 (37.3%) | |
Anti-S1 IgG (AU/mL) (median [IQR]) | 1559.80 (2.4–31,849.3) | 1848 (3.2–31,849.39) | 1151.5 (2.4–29,311.9) | |
LOG Anti-S1 IgG (mean ± SD) | 3.12 ± 0.78 | 3.25 ± 0.72 | 2.91 ± 0.83 | 0.024 |
Variable | HD Patients N = 115 | Univariate B (95% CI) | p Value | Multivariate B (95% CI) | p Value |
---|---|---|---|---|---|
Age (per year) mean ± SD | 72.2 ± 12.6 | −0.023 | <0.01 | −0.022 (−0.032 to −0.012) | <0.001 |
Female sex (%) | 39 (33.9) | −0.365 (−0.66 to −0.067) | 0.017 | –0.446 (−0.722 to −0.171) | 0.002 |
Hemoglobin (g/dL) mean ± SD | 10.64 ± 1.15 | −0.019 (−0.144 to −0.107) | 0.766 | - | |
Diabetes mellitus | 67 (58.2) | −0.079 (−0.372 to −0.214) | 0.595 | - | |
KT/V mean ± SD | 1.43 ± 0.30 | 0.208 (−0.271 to −0.688) | 0.391 | 0.578 (0.140 to −1.01) | 0.01 |
nPCR mean ± SD | 1.1 ± 0.25 | 0.342 (−0.233 to −0.908) | 0.233 | – | – |
Lymphocyte count (K/micl) mean ± SD | 1.28 ± 0.58 | 0.265 (0.020 to −0.511) | 0.34 | – | – |
MIS mean ± SD | 4.8 ± 2.56 | −0.087 (−0.141 to −0.032) | 0.02 | –0.066 (−0.117 to −0.015) | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacobson-Naftali, M.; Azoulay, O.; Frishman, S.; Godny, L.; Zingerman, B.; Rozen-Zvi, B.; Agur, T. The Humoral Response to SARS-CoV-2 Vaccine in Hemodialysis Patients Is Correlated with Nutritional Status. Vaccines 2023, 11, 1141. https://doi.org/10.3390/vaccines11071141
Jacobson-Naftali M, Azoulay O, Frishman S, Godny L, Zingerman B, Rozen-Zvi B, Agur T. The Humoral Response to SARS-CoV-2 Vaccine in Hemodialysis Patients Is Correlated with Nutritional Status. Vaccines. 2023; 11(7):1141. https://doi.org/10.3390/vaccines11071141
Chicago/Turabian StyleJacobson-Naftali, Merav, Odile Azoulay, Sigal Frishman, Lihi Godny, Boris Zingerman, Benaya Rozen-Zvi, and Timna Agur. 2023. "The Humoral Response to SARS-CoV-2 Vaccine in Hemodialysis Patients Is Correlated with Nutritional Status" Vaccines 11, no. 7: 1141. https://doi.org/10.3390/vaccines11071141
APA StyleJacobson-Naftali, M., Azoulay, O., Frishman, S., Godny, L., Zingerman, B., Rozen-Zvi, B., & Agur, T. (2023). The Humoral Response to SARS-CoV-2 Vaccine in Hemodialysis Patients Is Correlated with Nutritional Status. Vaccines, 11(7), 1141. https://doi.org/10.3390/vaccines11071141