Bioprocessing and the Production of Antiviral Biologics in the Prevention and Treatment of Viral Infectious Disease
Abstract
1. Introduction
2. Host Response to Viral Infection
2.1. Traditional Production of Vaccines
2.2. The Role of Bioprocessing
2.3. Novel Vaccine Approaches
2.3.1. Viral-like Particles
2.3.2. Viral Vector Vaccines
2.3.3. Nucleic Acid-Based Vaccines
2.3.4. Whole Yeast-Based Vaccines
2.4. Production of Interferons and Monoclonal Antibodies
2.5. Other Antiviral Intervention Strategies
Expression System | Interferon Produced | Monoclonal Antibody Produced | Comments | |
---|---|---|---|---|
Bacterial | E. coli, Bacillus subtillis [33] | IFNα-2a, IFNα-2b, IFNα-2c, IFNα-con-1, INFβ-1b, INFγ-1b [92] | No approved products | Lack of PTMs limits the production of full-length mAbs, though research is ongoing [118] |
Fungal | P. pastoris, S. cerevisiae Filamentous fungi Aspergillus species, Trichoderma reesei and Neurospora crassa [33] | IFNα-2b [97] | No approved products | Glycoengineered yeast can produce interferons and functional full-length mAbs, however extensive clinical research is still required [119] |
Plant | Tobacco (Nicotiana benthamiana) | IFN-α2b, IFN-γ [97] | Polyclonal antibody of 3 mAB ZMapp (Ebola) [33,120] | Very-large-scale processes for plant production are still in development and require substantial investments [97,120] |
Insect | B. mori | Chicken IFN-λ [18] (Not approved for use) | No approved products | Extensive research is still necessary to exploit these systems from preclinical applications to clinical trials [121] |
Mammalian (animal) | Hamster (CHOs) | No approved products | Casirivimab and Imdevimab mAbs approved for emergency use against COVID-19 [102] | Although CHO cells continue to dominate, there remain inherent limitations in the synthesis and secretion of many complex RTPs for viral treatment [122,123] |
Mouse | Palivizumab (RSV) and Ibalizumab (HIV) [123] | Only approved antiviral mAbs | ||
Mammalian (human) | Leukocytes | IFNα-n3 [92] | No approved products | Although there are still no approved mAbs produced in this system, there are ongoing clinical and preclinical studies being carried out [124] |
Lymphoblastoid cells | IFNα-n1 [92] | |||
Microalgae | Chlamydomonas reinhardtii (C. reinhardtii), Phaeodactylum tricornutum, Dunaliella salina (D. salina) and Chlorella vulgaris [50] | No approved products | Offers a green mode of production, affected by low yield. |
3. Transitioning from Discrete Batch Operation to Sustainable Integrated Continuous Bioprocessing Requires a Rethink in Viral Inactivation and Clearance Strategies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andrews, C.D.; Huang, Y.; Ho, D.D.; Liberatore, R.A. In Vivo expressed biologics for infectious disease prophylaxis: Rapid delivery of DNA-based antiviral antibodies. Emerg. Microbes Infect. 2020, 9, 1523–1533. [Google Scholar] [CrossRef]
- Sang, Y.; Zhang, Z.; Liu, F.; Lu, H.; Yu, C.; Sun, H.; Long, J.; Cao, Y.; Mai, J.; Miao, Y. Monkeypox virus quadrivalent mRNA vaccine induces immune response and protects against vaccinia virus. Signal Transduct. Target. Ther. 2023, 8, 172. [Google Scholar] [CrossRef]
- Swed, S.; Bohsas, H.; Alibrahim, H.; Rakab, A.; Hafez, W.; Sawaf, B.; Amir, R.M.; Motawei, A.S.; Aljabali, A.; Shoib, S. Monkeypox Post-COVID-19: Knowledge, Worrying, and Vaccine Adoption in the Arabic General Population. Vaccines 2023, 11, 759. [Google Scholar] [CrossRef]
- Shenge, J.A.; Opayele, A.V. The Impact and Control of Emerging and Re-Emerging Viral Diseases in the Environment: An African Perspective. In Current Microbiological Research in Africa; Springer: Berlin/Heidelberg, Germany, 2020; pp. 185–202. [Google Scholar]
- Meganck, R.M.; Baric, R.S. Developing therapeutic approaches for twenty-first-century emerging infectious viral diseases. Nat. Med. 2021, 27, 401–410. [Google Scholar] [CrossRef]
- Cui, X.; Fan, K.; Liang, X.; Gong, W.; Chen, W.; He, B.; Chen, X.; Wang, H.; Wang, X.; Zhang, P. Virus diversity, wildlife-domestic animal circulation and potential zoonotic viruses of small mammals, pangolins and zoo animals. Nat. Commun. 2023, 14, 2488. [Google Scholar] [CrossRef]
- Nii-Trebi, N.I. Emerging and neglected infectious diseases: Insights, advances, and challenges. BioMed Res. Int. 2017, 2017, 5245021. [Google Scholar] [CrossRef][Green Version]
- Bankar, N.J.; Tidake, A.A.; Bandre, G.R.; Ambad, R.; Makade, J.G.; Hawale, D.V. Emerging and Re-Emerging Viral Infections: An Indian Perspective. Cureus 2022, 14, e30062. [Google Scholar] [CrossRef]
- Neri, M.; Brassel, S.; Schirrmacher, H.; Mendes, D.; Vyse, A.; Steuten, L.; Hamson, E. Vaccine-Preventable Hospitalisations from Seasonal Respiratory Diseases: What Is Their True Value? Vaccines 2023, 11, 945. [Google Scholar] [CrossRef]
- Tompa, D.R.; Immanuel, A.; Srikanth, S.; Kadhirvel, S. Trends and strategies to combat viral infections: A review on FDA approved antiviral drugs. Int. J. Biol. Macromol. 2021, 172, 524–541. [Google Scholar] [CrossRef]
- Kumar, M.; Kuroda, K.; Dhangar, K.; Mazumder, P.; Sonne, C.; Rinklebe, J.; Kitajima, M. Potential emergence of antiviral-resistant pandemic viruses via environmental drug exposure of animal reservoirs. Environ. Sci. Technol. 2020, 54, 8503–8505. [Google Scholar] [CrossRef]
- Decker, J.S.; Menacho-Melgar, R.; Lynch, M.D. Low-cost, large-scale production of the anti-viral lectin griffithsin. Front. Bioeng. Biotechnol. 2020, 8, 1020. [Google Scholar] [CrossRef]
- Chawla, K.; Subramanian, G.; Rahman, T.; Fan, S.; Chakravarty, S.; Gujja, S.; Demchak, H.; Chakravarti, R.; Chattopadhyay, S. Autophagy in Virus Infection: A Race between Host Immune Response and Viral Antagonism. Immuno 2022, 2, 153–169. [Google Scholar] [CrossRef]
- Domingo-Calap, P. Viral evolution and Immune responses. J. Clin. Microbiol. Biochem. Technol. 2019, 5, 013–018. [Google Scholar] [CrossRef][Green Version]
- Meade, E.; Savage, M.; Garvey, M. Current Control Measures for SARS-CoV-2 the Aetiological Agent of COVID-19. Microbiol. Infect. Dis. 2021, 5, 1–9. [Google Scholar] [CrossRef]
- Kopitar-Jerala, N. The role of interferons in inflammation and inflammasome activation. Front. Immunol. 2017, 8, 873. [Google Scholar] [CrossRef][Green Version]
- Katze, M.G.; He, Y.; Gale, M. Viruses and interferon: A fight for supremacy. Nat. Rev. Immunol. 2002, 2, 675–687. [Google Scholar] [CrossRef]
- Feng, M.; Zhang, N.; Xie, T.; Ren, F.; Cao, Z.; Zeng, X.; Swevers, L.; Zhang, X.; Sun, J. Chichen type III interferon produced by silkworm bioreactor induces ISG expression and restricts ALV-J infection In Vitro. Appl. Microbiol. Biotechnol. 2019, 103, 8473–8483. [Google Scholar] [CrossRef]
- Simmons, R.A.; Willberg, C.B.; Paul, K. Immune Evasion by Viruses. eLS; John Wiley & Sons, Ltd.: Chichester, UK, 2013; Volume 10, p. a0024790. [Google Scholar]
- Mellors, J.; Tipton, T.; Longet, S.; Carroll, M. Viral evasion of the complement system and its importance for vaccines and therapeutics. Front. Immunol. 2020, 11, 1450. [Google Scholar] [CrossRef]
- Tam, J.C.H.; Bidgood, S.R.; McEwan, W.A.; James, L.C. Intracellular sensing of complement C3 activates cell autonomous immunity. Science 2014, 345, 1256070. [Google Scholar] [CrossRef][Green Version]
- Borkar, T.G.; Goenka, V. Techniques employed in production of traditional vaccines commonly used by military forces: A review. J. Arch. Mil. Med. 2019, 7, e96149. [Google Scholar] [CrossRef]
- Stanley, P.; Plotkin, S.A. History of vaccination. Proc. Natl. Acad. Sci. USA 2014, 111, 12283–12287. [Google Scholar]
- Fang, E.; Li, M.; Liu, X.; Hu, K.; Liu, L.; Zhang, Z.; Li, X.; Peng, Q.; Li, Y. NS1 Protein N-Linked Glycosylation Site Affects the Virulence and Pathogenesis of Dengue Virus. Vaccines 2023, 11, 959. [Google Scholar] [CrossRef]
- Liu, M.A. Immunologic basis of vaccine vectors. Immunity 2010, 33, 504–515. [Google Scholar] [CrossRef][Green Version]
- Deng, S.; Liu, Y.; Tam, R.C.-Y.; Chen, P.; Zhang, A.J.; Mok, B.W.-Y.; Long, T.; Kukic, A.; Zhou, R.; Xu, H. An intranasal influenza virus-vectored vaccine prevents SARS-CoV-2 replication in respiratory tissues of mice and hamsters. Nat. Commun. 2023, 14, 2081. [Google Scholar] [CrossRef]
- Pollard, A.J.; Bijker, E.M. A guide to vaccinology: From basic principles to new developments. Nat. Rev. Immunol. 2021, 21, 83–100. [Google Scholar] [CrossRef] [PubMed]
- Babb, R.; Chan, J.; Khairat, J.E.; Furuya, Y.; Alsharifi, M. Gamma-irradiated influenza A virus provides adjuvant activity to a co-administered poorly immunogenic SFV vaccine in mice. Front. Immunol. 2014, 5, 267. [Google Scholar] [CrossRef][Green Version]
- Assawawiroonhakarn, S.; Apiwattanakul, N.; Pakakasama, S.; Hongeng, S.; Anurathapan, U.; Yoksan, S.; Klinmalai, C.; Sae-Chew, P.; Techasaensiri, C. Immunogenicity of Vero Cell Culture-derived Japanese Encephalitis Vaccine in Pediatric and Young Hematopoietic Stem Cell Transplantation Recipients. Pediatr. Infect. Dis. J. 2021, 40, 264–268. [Google Scholar] [CrossRef]
- Pulendran, B.S.; Arunachalam, P.; O’Hagan, D.T. Emerging concepts in the science of vaccine adjuvants. Nat. Rev. Drug Discov. 2021, 20, 454–475. [Google Scholar] [CrossRef]
- Gutierrez, J.M.; Lewis, N.E. Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling. Biotechnol. J. 2015, 10, 939–949. [Google Scholar] [CrossRef]
- Barone, P.W.; Wiebe, M.E.; Leung, J.C.; Hussein, I.; Keumurian, F.J.; Bouressa, J.; Brussel, A.; Chen, D.; Chong, M.; Dehghani, H. Viral contamination in biologic manufacture and implications for emerging therapies. Nat. Biotechnol. 2020, 38, 563–572. [Google Scholar] [CrossRef]
- Nosaki, S.; Hoshikawa, K.; Ezura, H.; Miura, K. Transient protein expression systems in plants and their applications. Plant Biotechnol. 2021, 38, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J. Production of biopharmaceutical proteins by yeast: Advances through metabolic engineering. Bioengineered 2013, 4, 207–211. [Google Scholar] [CrossRef][Green Version]
- Ojha, R.; Prajapati, V.K. Cognizance of posttranslational modifications in vaccines: A way to enhanced immunogenicity. J. Cell. Physiol. 2021, 236, 8020–8034. [Google Scholar] [CrossRef] [PubMed]
- Garvey, M. Non-Mammalian Eukaryotic Expression Systems Yeast and Fungi in the Production of Biologics. J. Fungi 2022, 8, 1179. [Google Scholar] [CrossRef] [PubMed]
- Vieira Gomes, A.M.; Souza Carmo, T.; Silva Carvalho, L.; Mendonça Bahia, F.; Parachin, N.S. Comparison of yeasts as hosts for recombinant protein production. Microorganisms 2018, 6, 38. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kim, H.J.; Kim, H.J. Yeast as an expression system for producing virus-like particles: What factors do we need to consider? Lett. Appl. Microbiol. 2017, 64, 111–123. [Google Scholar] [CrossRef]
- Gallo–Ramírez, L.E.; Nikolay, A.; Genzel, Y.; Reichl, U. Bioreactor concepts for cell culture-based viral vaccine production. Expert Rev. Vaccines 2015, 14, 1181–1195. [Google Scholar] [CrossRef]
- Kulagina, N.; Besseau, S.; Godon, C.; Goldman, G.H.; Papon, N.; Courdavault, V. Yeasts as Biopharmaceutical Production Platforms. Front. Fungal Biol. 2021, 2, 733492. [Google Scholar] [CrossRef]
- Mohsen, M.O.; Zha, L.; Cabral-Miranda, G.; Bachmann, M.F. Major findings and recent advances in virus–like particle (VLP)-based vaccines. Semin. Immunol. 2017, 34, 123–132. [Google Scholar] [CrossRef]
- Legastelois, I.; Buffin, S.; Peubez, I.; Mignon, C.; Sodoyer, R.; Werle, B. Non-conventional expression systems for the production of vaccine proteins and immunotherapeutic molecules. Hum. Vaccin. Immunother. 2017, 13, 947–961. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cid, R.; Bolívar, J. Platforms for production of protein-based vaccines: From classical to next-generation strategies. Biomolecules 2021, 11, 1072. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wang, X.; Zhang, J.; Xia, N.; Zhao, Q. Escherichia coli-derived virus-like particles in vaccine development. npj Vaccines 2017, 2, 3. [Google Scholar] [CrossRef] [PubMed][Green Version]
- de Sá Magalhães, S.; Keshavarz-Moore, E. Pichia pastoris (Komagataella phaffii) as a cost-effective tool for vaccine production for low-and middle-income countries (LMICs). Bioengineering 2021, 8, 119. [Google Scholar] [CrossRef] [PubMed]
- Burnett, M.J.B.; Burnett, A.C. Therapeutic recombinant protein production in plants: Challenges and opportunities. Plants People Planet 2020, 2, 121–132. [Google Scholar] [CrossRef][Green Version]
- Stander, J.; Mbewana, S.; Meyers, A.E. Plant-Derived Human Vaccines: Recent Developments. BioDrugs 2022, 36, 573–589. [Google Scholar] [CrossRef]
- Duong, D.; Vogel, L. Why is WHO pushing back on a Health Canada-approved Medicago SARS-CoV-2 vaccine? Cmaj 2022, 194, E504–E505. [Google Scholar] [CrossRef]
- Dumont, J.; Euwart, D.; Mei, B.; Estes, S.; Kshirsagar, R. Human cell lines for biopharmaceutical manufacturing: History, status, and future perspectives. Crit. Rev. Biotechnol. 2016, 36, 1110–1122. [Google Scholar] [CrossRef][Green Version]
- Kiesslich, S.; Kamen, A.A. Vero cell upstream bioprocess development for the production of viral vectors and vaccines. Biotechnol. Adv. 2020, 44, 107608. [Google Scholar] [CrossRef]
- Abaandou, L.; Quan, D.; Shiloach, J. Affecting HEK293 Cell Growth and Production Performance by Modifying the Expression of Specific Genes. Cells 2021, 10, 1667. [Google Scholar] [CrossRef]
- Tan, E.; Chin, C.S.H.; Lim, Z.F.S.; Ng, S.K. HEK293 Cell Line as a Platform to Produce Recombinant Proteins and Viral Vectors. Front. Bioeng. Biotechnol. 2021, 9, 796991. [Google Scholar] [CrossRef]
- Khavari, F.; Saidijam, M.; Taheri, M.; Nouri, F. Microalgae: Therapeutic potentials and applications. Mol. Biol. Rep. 2021, 48, 4757–4765. [Google Scholar] [CrossRef]
- Nooraei, S.; Bahrulolum, H.; Hoseini, Z.S.; Katalani, C.; Hajizade, A.; Easton, A.J.; Ahmadian, G. Virus-like particles: Preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnol. 2021, 19, 59. [Google Scholar] [CrossRef] [PubMed]
- Brisse, M.; Vrba, S.M.; Kirk, N.; Liang, Y.; Ly, H. Emerging Concepts and Technologies in Vaccine Development. Front. Immunol. 2020, 11, 583077. [Google Scholar] [CrossRef]
- Fuenmayor, J.; Gòdia, F.; Cervera, L. Production of virus-like particles for vaccines. New Biotechnol. 2017, 39, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, F.; Liang, M.; Zhang, Q.; Wang, X.; Wang, T.; Li, J.; Li, D. Hantavirus-like particles generated in CHO cells induce specific immune responses in C57BL/6 mice. Vaccine 2010, 28, 4294–4300. [Google Scholar] [CrossRef]
- Gutiérrez-Granados, S.; Cervera, L.; Segura, M.d.l.M.; Wölfel, J.; Gòdia, F. Optimized production of HIV-1 virus-like particles by transient transfection in CAP-T cells. Appl. Microbiol. Biotechnol. 2016, 100, 3935–3947. [Google Scholar] [CrossRef]
- Dai, S.; Wang, H.; Deng, F. Advances and challenges in enveloped virus-like particle (VLP)-based vaccines. J. Immunol. Sci. 2018, 2, 36–41. [Google Scholar]
- Urakami, A.; Sakurai, A.; Ishikawa, M.; Yap, M.L.; Flores-Garcia, Y.; Haseda, Y.; Aoshi, T.; Zavala, F.P.; Rossmann, M.G.; Kuno, S. Development of a novel virus-like particle vaccine platform that mimics the immature form of alphavirus. Clin. Vaccine Immunol. 2017, 24, e00090-17. [Google Scholar] [CrossRef][Green Version]
- Travieso, T.; Li, J.; Mahesh, S.; Mello, J.D.F.R.E.; Blasi, M. The use of viral vectors in vaccine development. npj Vaccines 2022, 7, 75. [Google Scholar] [CrossRef]
- Mendonça, S.A.; Lorincz, R.; Boucher, P.; Curiel, D.T. Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic. npj Vaccines 2021, 6, 97. [Google Scholar] [CrossRef] [PubMed]
- Coughlan, L. Factors which contribute to the immunogenicity of non-replicating adenoviral vectored vaccines. Front. Immunol. 2020, 11, 909. [Google Scholar] [CrossRef] [PubMed]
- Tapia, M.D.; Sow, S.O.; Mbaye, K.D.; Thiongane, A.; Ndiaye, B.P.; Ndour, C.T.; Mboup, S.; Keshinro, B.; Kinge, T.N.; Vernet, G.; et al. Safety, reactogenicity, and immunogenicity of a chimpanzee adenovirus vectored Ebola vaccine in children in Africa: A randomised, observer-blind, placebo-controlled, phase 2 trial. Lancet Infect. Dis. 2020, 20, 719–730. [Google Scholar] [CrossRef]
- Steffen, T.; Hassert, M.; Hoft, S.G.; Stone, E.T.; Zhang, J.; Geerling, E.; Grimberg, B.T.; Roberts, M.S.; Pinto, A.K.; Brien, J.D. Immunogenicity and efficacy of a recombinant human adenovirus type 5 vaccine against Zika virus. Vaccines 2020, 8, 170. [Google Scholar] [CrossRef][Green Version]
- Fernandes, P.; Silva, A.C.; Coroadinha, A.S.; Alves, P.M. Upstream Bioprocess for Adenovirus Vectors. In Adenoviral Vectors Gene Therapy; Academic Press: Cambridge, MA, USA, 2016; pp. 139–161. [Google Scholar]
- Altaras, N.E.; Aunins, J.G.; Evans, R.K.; Kamen, A.; Konz, J.O.; Wolf, J.J. Production and formulation of adenovirus vectors. Gene Ther. Gene Deliv. Syst. 2005, 99, 193–260. [Google Scholar]
- Wang, Z.; Zhang, X. Adenovirus vector-attributed hepatotoxicity blocks clinical application in gene therapy. Cytotherapy 2021, 23, 1045–1052. [Google Scholar] [CrossRef]
- Lopez-Gordo, E.; Podgorski, I.I.; Downes, N.; Alemany, R. Circumventing antivector immunity: Potential use of nonhuman adenoviral vectors. Hum. Gene Ther. 2014, 25, 285–300. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Conrad, S.J.; Liu, J. Poxviruses as Gene Therapy Vectors: Generating Poxviral Vectors Expressing Therapeutic Transgenes. Methods Mol. Biol. 2019, 1937, 189–209. [Google Scholar] [CrossRef]
- Offerman, K.; Deffur, A.; Carulei, O.; Wilkinson, R.; Douglass, N.; Williamson, A.-L. Six host-range restricted poxviruses from three genera induce distinct gene expression profiles in an In Vivo mouse model. BMC Genom. 2015, 16, 510. [Google Scholar] [CrossRef][Green Version]
- Volz, A.; Sutter, G. Modified vaccinia virus Ankara: History, value in basic research, and current perspectives for vaccine development. Adv. Virus Res. 2017, 97, 187–243. [Google Scholar]
- Ivanova, E. Yeasts in nanotechnology-enabled oral vaccine and gene delivery. Bioengineered 2021, 12, 8325–8335. [Google Scholar] [CrossRef]
- Qin, F.; Xia, F.; Chen, H.; Cui, B.; Feng, Y.; Zhang, P.; Chen, J.; Luo, M. A Guide to Nucleic Acid Vaccines in the Prevention and Treatment of Infectious Diseases and Cancers: From Basic Principles to Current Applications. Front. Cell. Dev. Biol. 2021, 9, 633776. [Google Scholar] [CrossRef]
- Piyush, R.; Rajarshi, K.; Chatterjee, A.; Khan, R.; Ray, S. Nucleic acid-based therapy for coronavirus disease 2019. Heliyon 2020, 6, e05007. [Google Scholar] [CrossRef]
- Chavda, V.P.; Hossain, M.K.; Beladiya, J.; Apostolopoulos, V. Nucleic acid vaccines for COVID-19: A paradigm shift in the vaccine development arena. Biologics 2021, 1, 337–356. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Lin, A.; Xu, C.; Li, Z.; Liu, K.; Liu, B.; Ma, X.; Zhao, F.; Jiang, H. Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 2023. [Google Scholar] [CrossRef]
- Scanlan, C.; Pattnaik, P.; Waghmare, R.; Gousseinov, E.; Kozlov, M.; Hammons, A.; Bei, L.; Benchek, Y.; Pirani, K. Bioprocessing technology trends of RNA-based therapeutics and vaccines. BioPharm Int. 2016, 29, 30–36. [Google Scholar]
- van den Berg, A.I.S.; Yun, C.-O.; Schiffelers, R.M.; Hennink, W.E. Polymeric delivery systems for nucleic acid therapeutics: Approaching the clinic. J. Control. Release 2021, 331, 121–141. [Google Scholar] [CrossRef] [PubMed]
- Rosa, S.S.; Prazeres, D.M.F.; Azevedo, A.M.; Marques, M.P.C. mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine 2021, 39, 2190–2200. [Google Scholar] [CrossRef]
- Chen, G.; Zhao, B.; Ruiz, E.F.; Zhang, F. Advances in the polymeric delivery of nucleic acid vaccines. Theranostics 2022, 12, 4081. [Google Scholar] [CrossRef]
- Liu, Y.; Crowe, W.N.; Wang, L.; Lu, Y.; Petty, W.J.; Habib, A.A.; Zhao, D. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases. Nat. Commun. 2019, 10, 5108. [Google Scholar] [CrossRef][Green Version]
- Rashidzadeh, H.; Danafar, H.; Rahimi, H.; Mozafari, F.; Salehiabar, M.; Rahmati, M.A.; Rahamooz-Haghighi, S.; Mousazadeh, N.; Mohammadi, A.; Ertas, Y.N.; et al. Nanotechnology against the novel coronavirus (severe acute respiratory syndrome coronavirus 2): Diagnosis, treatment, therapy and future perspectives. Nanomedicine 2021, 16, 497–516. [Google Scholar] [CrossRef]
- Gurunathan, S.; Qasim, M.; Choi, Y.; Do, J.T.; Park, C.; Hong, K.; Kim, J.-H.; Song, H. Antiviral potential of nanoparticles—Can nanoparticles fight against coronaviruses? Nanomaterials 2020, 10, 1645. [Google Scholar] [CrossRef]
- Ulmer, J.B.; Liu, M.A. Path to Success and Future Impact of Nucleic Acid Vaccines: DNA and mRNA. Mol. Front. J. 2021, 5, 38–57. [Google Scholar] [CrossRef]
- Hossain, M.K.; Hassanzadeganroudsari, M.; Apostolopoulos, V. The emergence of new strains of SARS-CoV-2. What does it mean for COVID-19 vaccines? Expert Rev. Vaccines 2021, 20, 635–638. [Google Scholar] [CrossRef]
- Lok, A.S.; Pan, C.Q.; Han, S.-H.B.; Trinh, H.N.; Fessel, W.J.; Rodell, T.; Massetto, B.; Lin, L.; Gaggar, A.; Subramanian, G.M. Randomized phase II study of GS-4774 as a therapeutic vaccine in virally suppressed patients with chronic hepatitis B. J. Hepatol. 2016, 65, 509–516. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, P. Yeast-based vaccines: New perspective in vaccine development and application. FEMS Yeast Res. 2019, 19, foz007. [Google Scholar] [CrossRef][Green Version]
- Lei, H.; Xie, B.; Gao, T.; Cen, Q.; Ren, Y. Yeast display platform technology to prepare oral vaccine against lethal H7N9 virus challenge in mice. Microb. Cell Factories 2020, 19, 53. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ardiani, A.; Higgins, J.P.; Hodge, J.W. Vaccines based on whole recombinant Saccharomyces cerevisiae cells. FEMS Yeast Res. 2010, 10, 1060–1069. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jh, Z.; Yn, W.; Ma, P.; Hu, Y.; Cao, X. Type III interferons in viral infection and antiviral immunity. Cell. Physiol. Biochem. 2018, 51, 173–185. [Google Scholar]
- Castro, L.S.; Lobo, G.S.; Pereira, P.; Freire, M.G.; Neves, M.C.; Pedro, A.Q. Interferon-based biopharmaceuticals: Overview on the production, purification, and formulation. Vaccines 2021, 9, 328. [Google Scholar] [CrossRef]
- Platis, D.; Foster, G.R. Interferon Proteins: Structure, Production and Purification. In The Interferons: Characterization and Application; Wiley: Hoboken, NJ, USA, 2006; pp. 73–83. [Google Scholar]
- Morowvat, M.H.; Babaeipour, V.; Memari, H.R.; Vahidi, H. Optimization of fermentation conditions for recombinant human interferon beta production by Escherichia coli using the response surface methodology. Jundishapur J. Microbiol. 2015, 8, e16236. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Spohner, S.C.; Schaum, V.; Quitmann, H.; Czermak, P. Kluyveromyces lactis: An emerging tool in biotechnology. J. Biotechnol. 2016, 222, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.M.; Pedro, A.Q.; Maia, C.; Sousa, F.; Queiroz, J.A.; Passarinha, L.A. Pichia pastoris: A recombinant microfactory for antibodies and human membrane proteins. J. Microbiol. Biotechnol. 2013, 23, 587–601. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cao, L.; Zhang, L.; Zhang, X.; Liu, J.; Jia, M.-A.; Zhang, J.; Liu, J.; Wang, F. Types of Interferons and Their Expression in Plant Systems. J. Interferon Cytokine Res. Off. J. Int. Soc. Interferon Cytokine Res. 2022, 42, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.-M.; Zhang, W.-J.; Ma, F.-L.; Li, J.-S.; Zhang, Q.; Zheng, L.-S. IFN-λ1 in CHO cells: Its expression and biological activity. Cell. Mol. Biol. Lett. 2017, 22, 26. [Google Scholar] [CrossRef][Green Version]
- Marasco, W.A.; Sui, J. The growth and potential of human antiviral monoclonal antibody therapeutics. Nat. Biotechnol. 2007, 25, 1421–1434. [Google Scholar] [CrossRef]
- Pelegrin, M.; Naranjo-Gomez, M.; Piechaczyk, M. Antiviral Monoclonal Antibodies: Can They Be More Than Simple Neutralizing Agents? Trends Microbiol. 2015, 23, 653–665. [Google Scholar] [CrossRef]
- Aleem, A.; Slenker, A.K. Monoclonal Antibody Therapy for High-Risk Coronavirus (COVID 19) Patients with Mild to Moderate Disease Presentations. In StatPearls; StatPearls PublishingLLC.: Treasure Island, FL, USA, 2022. [Google Scholar]
- Plichta, J.; Kuna, P.; Panek, M. Monoclonal Antibodies as Potential COVID-19 Therapeutic Agents. COVID 2022, 2, 599–620. [Google Scholar] [CrossRef]
- Imai, M.; Ito, M.; Kiso, M.; Yamayoshi, S.; Uraki, R.; Fukushi, S.; Watanabe, S.; Suzuki, T.; Maeda, K.; Sakai-Tagawa, Y. Efficacy of Antiviral Agents against Omicron Subvariants BQ. 1.1 and XBB. N. Engl. J. Med. 2023, 388, 89–91. [Google Scholar] [CrossRef]
- Iacobucci, G. Covid-19: FDA removes US authorisation for antibody drug Evusheld. Br. Med. J. Publ. Group 2023, 380, 264. [Google Scholar] [CrossRef]
- Mode, D. AstraZeneca: Evusheld Long-Acting Antibody Combination Approved in the EU for the Treatment of COVID-19. Available online: https://www.astrazeneca.com/media-centre/press-releases/2022/evusheld-approved-in-eu-for-covid-19-treatment.html (accessed on 21 April 2023).
- Jaki, L.; Weigang, S.; Kern, L.; Kramme, S.; Wrobel, A.G.; Grawitz, A.B.; Nawrath, P.; Martin, S.R.; Dähne, T.; Beer, J. Total escape of SARS-CoV-2 from dual monoclonal antibody therapy in an immunocompromised patient. Nat. Commun. 2023, 14, 1999. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Perez-Pinera, P.; Lowenhaupt, K.; Wu, M.-R.; Purcell, O.; De La Fuente-Nunez, C.; Lu, T.K. Versatile and on-demand biologics co-production in yeast. Nat. Commun. 2018, 9, 77. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Budzianowski, J. Tobacco against Ebola virus disease. Prz. Lek. 2015, 72, 567–571. [Google Scholar]
- Chen, R.E.; Zhang, X.; Case, J.B.; Winkler, E.S.; Liu, Y.; VanBlargan, L.A.; Liu, J.; Errico, J.M.; Xie, X.; Suryadevara, N.; et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat. Med. 2021, 27, 717–726. [Google Scholar] [CrossRef]
- Tang, Q.; Wang, X.; Gao, G. The Short Form of the Zinc Finger Antiviral Protein Inhibits Influenza a Virus Protein Expression and Is Antagonized by the Virus-Encoded NS1. J. Virol. 2017, 91, e01909-16. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Syed Lal, B.; Ullah, A.; Syed, S. The Role of Zinc-Finger Antiviral Proteins in Immunity against Viruses. Mol. Genet. Microbiol. Virol. 2020, 35, 78–84. [Google Scholar] [CrossRef]
- Esposito, S.; D’Abrosca, G.; Antolak, A.; Pedone, P.V.; Isernia, C.; Malgieri, G. Host and Viral Zinc-Finger Proteins in COVID-19. Int. J. Mol. Sci. 2022, 23, 3711. [Google Scholar] [CrossRef] [PubMed]
- Behl, T.; Rocchetti, G.; Chadha, S.; Zengin, G.; Bungau, S.; Kumar, A.; Mehta, V.; Uddin, M.S.; Khullar, G.; Setia, D.; et al. Phytochemicals from Plant Foods as Potential Source of Antiviral Agents: An Overview. Pharmaceuticals 2021, 14, 381. [Google Scholar] [CrossRef] [PubMed]
- Di Petrillo, A.; Orrù, G.; Fais, A.; Fantini, M.C. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother. Res. 2022, 36, 266–278. [Google Scholar] [CrossRef]
- Ghildiyal, R.; Prakash, V.; Chaudhary, V.K.; Gupta, V.; Gabrani, R. Phytochemicals as Antiviral Agents: Recent Updates. In Plant-Derived Bioactives; Springer Nature Singapore Pte Ltd.: Singapore, 2020; pp. 279–295. [Google Scholar]
- Ben-Shabat, S.; Yarmolinsky, L.; Porat, D.; Dahan, A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv. Transl. Res. 2020, 10, 354–367. [Google Scholar] [CrossRef][Green Version]
- Rand, U.; Kupke, S.Y.; Shkarlet, H.; Hein, M.D.; Hirsch, T.; Marichal-Gallardo, P.; Cicin-Sain, L.; Reichl, U.; Bruder, D. Antiviral activity of influenza A virus defective interfering particles against SARS-CoV-2 replication in vitro through stimulation of innate immunity. Cells 2021, 10, 1756. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.H. Full-length recombinant antibodies from Escherichia coli: Production, characterization, effector function (Fc) engineering, and clinical evaluation. MAbs 2022, 14, 2111748. [Google Scholar] [CrossRef]
- Madhavan, A.; Arun, K.B.; Sindhu, R.; Krishnamoorthy, J.; Reshmy, R.; Sirohi, R.; Pugazhendi, A.; Awasthi, M.K.; Szakacs, G.; Binod, P. Customized yeast cell factories for biopharmaceuticals: From cell engineering to process scale up. Microb. Cell. Fact. 2021, 20, 124. [Google Scholar] [CrossRef] [PubMed]
- Glumińska, N.; Krzesłowska, M. Plants as alternative platforms for monoclonal antibodies productions. Authorea, 2021; preprint. [Google Scholar] [CrossRef]
- Kumar, N.; Pandey, D.; Halder, A. Preventive, Diagnostic and Therapeutic Applications of Baculovirus Expression Vector System. In Trends in Insect Molecular Biology and Biotechnology; Kumar, D., Gong, C., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 163–191. [Google Scholar]
- Li, Z.-M.; Fan, Z.-L.; Wang, X.-Y.; Wang, T.-Y. Factors Affecting the Expression of Recombinant Protein and Improvement Strategies in Chinese Hamster Ovary Cells. Front. Bioeng. Biotechnol. 2022, 10, 880155. [Google Scholar] [CrossRef] [PubMed]
- Ahangarzadeh, S.; Payandeh, Z.; Arezumand, R.; Shahzamani, K.; Yarian, F.; Alibakhshi, A. An update on antiviral antibody-based biopharmaceuticals. Int. Immunopharmacol. 2020, 86, 106760. [Google Scholar] [CrossRef] [PubMed]
- Jane Zveiter de, M.; Barbara, H.; Camila, B.; Enzo, S.; Fernanda, C.; Gabriela, S.; Juliana, O.; Rodrigo, A.; Tauane, P. Alternative Methods to Animal Use for Monoclonal Antibody Generation and Production. In Monoclonal Antibodies; Nima, R., Ed.; IntechOpen: Rijeka, Italy, 2020; p. Ch. 2. [Google Scholar]
- Schofield, M. Current state of the art in continuous bioprocessing. Biotechnol. Lett. 2018, 40, 1303–1309. [Google Scholar] [CrossRef]
- Martins, D.L.; Sencar, J.; Hammerschmidt, N.; Flicker, A.; Kindermann, J.; Kreil, T.R.; Jungbauer, A. Truly continuous low pH viral inactivation for biopharmaceutical process integration. Biotechnol. Bioeng. 2020, 117, 1406–1417. [Google Scholar] [CrossRef][Green Version]
- Macdonald, G.J. Continuous Processing Requires a Rethink of Viral Strategies: The biopharma industry has yet to define preferred approaches, technologies, and protocols for viral safety in continuous operations. Genet. Eng. Biotechnol. News 2019, 39, 44–46. [Google Scholar] [CrossRef][Green Version]
- Ozturk, S.S. Opportunities and challenges for the implementation of continuous processing in biomanufacturing. In Continuous Processing in Pharmaceutical Manufacturing; Wiley-VCH: Weinheim, Germany, 2014; pp. 457–478. [Google Scholar]
- Steinebach, F.; Müller-Späth, T.; Morbidelli, M. Continuous counter-current chromatography for capture and polishing steps in biopharmaceutical production. Biotechnol. J. 2016, 11, 1126–1141. [Google Scholar] [CrossRef] [PubMed]
- Walther, J.; Lu, J.; Hollenbach, M.; Yu, M.; Hwang, C.; McLarty, J.; Brower, K. Perfusion cell culture decreases process and product heterogeneity in a head-to-head comparison with fed-batch. Biotechnol. J. 2019, 14, 1700733. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.A.; Wolfe, L.S.; Mostafa, S.S.; Norman, C. Evolving trends in mAb production processes. Bioeng. Transl. Med. 2017, 2, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Konstantinov, K.B.; Cooney, C.L. White paper on continuous bioprocessing May 20–21 2014 continuous manufacturing symposium. J. Pharm. Sci. 2015, 104, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.A.; Brown, M.R.; Lute, S.C.; Brorson, K.A. Adapting viral safety assurance strategies to continuous processing of biological products. Biotechnol. Bioeng. 2017, 114, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Goodrich, E. Continuous Inline Viral Inactivation for Next-Generation Bioprocessing; Pharma’s Almanac: New York, NY, USA, 2021. [Google Scholar]
Expression System | Advantages | Limitations | Vaccine Produced | |
---|---|---|---|---|
Bacterial | E. coli Pseudomonas fluorescens, Ralstonia eutropha, Bacillus or Lactococcus species are possible alternatives to E. coli [42] | Simple structure, rapid growth rate, high product yield, easy genetic manipulations, low cost, scalable [43] | Inability to perform PTMs, expression of misfolded, insoluble, or non-functional proteins, endotoxin contamination [43] | Hepatitis E, human papillomavirus, and meningococcal vaccines [43,44] |
Fungal | S. cerevisiae | Rapid growth rate, high product yield, easy genetic manipulations, secretory expression, low cost and scalable, capacity to perform PTMs [43] | Low yields of protein expression, hyperglycosylation [43] | Hepatitis B and human papillomavirus vaccines [43] |
P. pastoris Yarrowia lipolitica, Arxula adeninivorans and Kluyveromyces lactis [42] Filamentous fungi Aspergillus and Trichoderma [33] | Glycosylation differs to mammalian cells Large volumes of methanol required [45] | Hepatitis B vaccine [45] Infectious bursal disease (IBD) in poultry [42] IFN alpha 2, IL-6 [42] | ||
Plant | Nicotiana benthamiana Transgenic plants, e.g., Lemna duckweed | Cost effective production high product yield, reduced contamination risk, capacity to perform PTMS, oral administration, scalable [46] | Lack of regulation and GMP, glycosylation differs to mammalian cells [47] | COVID-19 (Covifenz®) vaccine [48] |
Insect | Spodoptera frugiperda Baculovirus expression vector system (BEVS), Spodoptera frugiperda, rosophila Schneider line 2 (S2 cells) [43] | High product yield, capacity to perform PTMs, BEVS increases expression levels and safety [43] | Demand higher costs, more laborious, difficult to scale-up, glycosylation differs to mammalian cells [43] | Human papillomavirus, and influenza vaccines [43] |
Mammalian (animal) | Hamster (CHOs) | Capacity to perform complex human-like PTMs, high product yield, scalable, well-established regulatory track record [43] | Slow production speed, expensive, contamination with animal viruses, produce PTMs not expressed in humans, i.e., α-gal and NGNA [43,49] | Herpes zoster vaccine [43] |
Monkey (VERO) | Influenza, polio, rabies and Ebola virus vaccines [50] | |||
Mammalian (human) | HEK293 | Capacity to perform complex, fully human PTMs, easy to reproduce, maintain, manipulate and transiently transfect [49] | Potential for human-specific viral contamination, lack of extensive clinical experience compared to other cell lines [51] | COVID-19 (Ad5-nCOV and ChAdOX1-nCoV) vaccine [52] |
Transgenic animals | Goat milk, cow milk, hens (embryo) [42] | Large yield, PTMs | Ethical issues | Human recombinant albumin, insulin [42] not established for vaccine production |
Microalgae | Chlamydomonas reinhardtii (C. reinhardtii), Phaeodactylum tricornutum, Dunaliella salina (D. salina) and Chlorella vulgaris and non-photosynthetic microalgae such as Schizochytrium sp. [43]. | Including rapid transformation, high growth rate, ease of growth, low cost, PTMs, absence of toxin compounds | Low expression, improper PTMs | Good potential for oral vaccine delivery, malaria, HPV, Zika are currently investigated [43], viral protein 28 (VP 28) [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meade, E.; Rowan, N.; Garvey, M. Bioprocessing and the Production of Antiviral Biologics in the Prevention and Treatment of Viral Infectious Disease. Vaccines 2023, 11, 992. https://doi.org/10.3390/vaccines11050992
Meade E, Rowan N, Garvey M. Bioprocessing and the Production of Antiviral Biologics in the Prevention and Treatment of Viral Infectious Disease. Vaccines. 2023; 11(5):992. https://doi.org/10.3390/vaccines11050992
Chicago/Turabian StyleMeade, Elaine, Neil Rowan, and Mary Garvey. 2023. "Bioprocessing and the Production of Antiviral Biologics in the Prevention and Treatment of Viral Infectious Disease" Vaccines 11, no. 5: 992. https://doi.org/10.3390/vaccines11050992
APA StyleMeade, E., Rowan, N., & Garvey, M. (2023). Bioprocessing and the Production of Antiviral Biologics in the Prevention and Treatment of Viral Infectious Disease. Vaccines, 11(5), 992. https://doi.org/10.3390/vaccines11050992