The Health-Benefits and Phytochemical Profile of Salvia apiana and Salvia farinacea var. Victoria Blue Decoctions
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. Preparation of Extracts
2.4. Identification and Quantification of Phenolic Compounds
2.5. Antioxidant Activity
2.5.1. DPPH● Scavenging Test
2.5.2. Ferric Reducing Power Assay
2.5.3. Thiobarbituric Acid Reactive Substances (TBARS)
2.5.4. β-Carotene Bleaching Assay
2.6. Anti-Inflammatory Activity
2.7. Cytotoxic Effect in Four Human Tumor Cell Lines
2.8. Cytotoxic Effect in Non-Tumor Liver Cells
2.9. Antimicrobial Activity
2.10. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Activity
3.2. Anti-Inflammatory Aactivity
3.3. Cytotoxic Activity
3.4. Antibacterial Activity
3.5. Characterization of the Extracts
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef] [PubMed]
- Guillaumet-Adkins, A.; Yañez, Y.; Peris-Diaz, M.D.; Calabria, I.; Palanca-Ballester, C.; Sandoval, J. Epigenetics and Oxidative Stress in Aging. Oxid. Med. Cell. Longev. 2017, 14, 17643–17663. [Google Scholar] [CrossRef] [PubMed]
- Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H.B. Resources and biological activities of natural polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef] [PubMed]
- Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Walker, J.B.; Sytsma, K.J.; Treutlein, J.; Wink, M. Salvia (Lamiaceae) is not monophyletic: Implications for the systematics, radiation and ecological specializations. Am. J. Bot. 2004, 91, 1115–1125. [Google Scholar] [CrossRef]
- Jeshvaghani, Z.A.; Rahimmalek, M.; Talebi, M.; Goli, S.A.H. Comparison of total phenolic content and antioxidant activity in different Salvia species using three model systems. Ind. Crops Prod. 2015, 77, 409–414. [Google Scholar] [CrossRef]
- Alimpić, A.; Knežević, A.; Milutinović, M.; Stević, T.; Šavikin, K.; Stajić, M.; Marković, S.; Marin, P.D.; Matevski, V.; Duletić-Laušević, S. Biological activities and chemical composition of Salvia amplexicaulis Lam. extracts. Ind. Crops Prod. 2017, 105, 1–9. [Google Scholar] [CrossRef]
- Jassbi, A.R.; Zare, S.; Firuzi, O.; Xiao, J. Bioactive phytochemicals from shoots and roots of Salvia species. Phytochem. Rev. 2016, 15, 829–867. [Google Scholar] [CrossRef]
- Sytar, O.; Bruckova, K.; Hunkova, E.; Zivcak, M.; Konate, K.; Brestic, M. The application of multiplex fluorimetric sensor for the analysis of flavonoids content in the medicinal herbs family Asteraceae, Lamiaceae, Rosaceae. Biol. Res. 2015, 48, 5. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013. [Google Scholar] [CrossRef]
- Turner, B.L. Recension of Salvia sect. farinaceae (lamiaceae). Phytologia 2008, 90, 163–175. [Google Scholar]
- Zhang, X.; Sawhney, V.K.; Davis, A.R. Annular floral nectary with oil-producing trichomes in Salvia farinacea (lamiaceae): Anatomy, histochemistry, ultrastructure, and significance. Am. J. Bot. 2014, 101, 1849–1867. [Google Scholar] [CrossRef] [PubMed]
- Giffen, J.E.; Lesiak, A.D.; Dane, A.J.; Cody, B.; Musah, R.A. Rapid Species-level Identification of Salvias by Chemometric Processing of Ambient Ionisation Mass Spectrometry-derived Chemical Profiles. Phytochem. Anal. 2017, 28, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Tabanca, N.; Demirci, B.; Blythe, E.K. Chemical Composition and Biological Activity of Four Salvia Essential Oils and Individual Compounds against Two Species of Mosquitoes. J. Agric. Food Chem. 2015, 63, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Ott, D.; Hühn, P.; Claßen-bockhoff, R. Salvia apiana—A carpenter bee flower? Flora 2016, 221, 82–91. [Google Scholar] [CrossRef]
- Borek, T.T.; Hochrien, J.M.; Irwin, A.N. Composition of the essential oil of white sage, Salvia apiana. Flavour Fragr. J. 2006, 21, 571–572. [Google Scholar] [CrossRef]
- Srivedavyasasri, R.; Hayes, T.; Ross, S.A. Phytochemical and biological evaluation of Salvia apiana. Nat. Prod. Res. 2017, 31, 2058–2061. [Google Scholar] [CrossRef]
- Luis, J.G.; Lahlou, E.H.; Andros, L.S.; Islands, C. Hassananes: C23 terpenoids with a new type of skeleton from Salvia apiana Jeps. Tetrahedron 1996, 52, 12309–12312. [Google Scholar] [CrossRef]
- Saeed, M.E.M.; Meyer, M.; Hussein, A.; Efferth, T. Cytotoxicity of South-African medicinal plants towards sensitive and multidrug-resistant cancer cells. J. Ethnopharmacol. 2016, 186, 209–223. [Google Scholar] [CrossRef]
- Ferreira, F.M.; Dinis, L.T.; Azedo, P.; Galhano, C.I.C.; Simões, A.; Cardoso, S.M.; Domingues, M.R.M.; Pereira, O.R.; Palmeira, C.M.; Peixoto, F.P. Antioxidant capacity and toxicological evaluation of Pterospartum tridentatum flower extracts. CYTA-J. Food 2012, 10, 92–102. [Google Scholar] [CrossRef]
- Afonso, A.F.; Pereira, O.R.; Neto, R.T.; Silva, A.M.S.; Cardoso, S.M. Health-promoting effects of Thymus herba-barona, Thymus pseudolanuginosus, and Thymus caespititius decoctions. Int. J. Mol. Sci. 2017, 18, 1879. [Google Scholar] [CrossRef] [PubMed]
- Afonso, A.F.; Pereira, O.R.; Cardoso, S.M. Metabolites and Biological Activities of Thymus zygis, Thymus pulegioides, and Thymus fragrantissimus Grown under Organic Cultivation. Molecules 2018, 23, 1514. [Google Scholar] [CrossRef] [PubMed]
- Catarino, M.D.; Silva, A.M.S.; Saraiva, S.C.; Sobral, A.J.F.N.; Cardoso, S.M. Characterization of phenolic constituents and evaluation of antioxidant properties of leaves and stems of Eriocephalus africanus. Arab. J. Chem. 2018, 11, 62–69. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Henriques, M.; Silva, S.; Ferreira, I.C.F.R. Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L. Food Chem. 2015, 170, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Ferreira, M.J.; Queirós, B.; Ferreira, I.C.F.R.; Baptista, P. Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem. 2007, 103, 413–419. [Google Scholar] [CrossRef]
- Souza, A.H.P.; Corrêa, R.C.G.; Barros, L.; Calhelha, R.C.; Santos-buelga, C.; Peralta, R.M.; Bracht, A.; Matsushita, M.; Ferreira, I.C.F.R. Phytochemicals and bioactive properties of Ilex paraguariensis: An in-vitro comparative study between the whole plant, leaves and stems. Food Res. Int. 2015, 78, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48, 5–16. [Google Scholar] [CrossRef]
- Shami, A.M.M.; Philip, K.; Muniandy, S. Synergy of antibacterial and antioxidant activities from crude extracts and peptides of selected plant mixture. BMC Complement. Altern. Med. 2013, 13, 1–11. [Google Scholar] [CrossRef]
- Piluzza, G.; Bullitta, S. Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area Correlations between phenolic content and antioxidant properties in twenty-four plant species of tra. Pharm. Biol. 2011, 49, 240–247. [Google Scholar] [CrossRef]
- Koşar, M.; Göger, F.; Hüsnü Can Başer, K. In vitro antioxidant properties and phenolic composition of Salvia halophila Hedge from Turkey. Food Chem. 2011, 129, 374–379. [Google Scholar] [CrossRef]
- Kostic, M.; Petrovic, M.B.; Jevtovic, T.; Jovic, M.; Petrovic, A.; Slavoljub, Ž. Anti-inflammatory effect of the Salvia sclarea L. ethanolic extract on lipopolysaccharide-induced periodontitis in rats. J. Ethnopharmacol. 2017, 199, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Azab, A.; Nassar, A.; Azab, A.N. Anti-inflammatory activity of natural products. Molecules 2016, 21, 1321. [Google Scholar] [CrossRef] [PubMed]
- Ravipati, A.S.; Zhang, L.; Koyyalamudi, S.R.; Jeong, S.C.; Reddy, N.; Bartlett, J.; Smith, P.T.; Shanmugam, K.; Münch, G.; Wu, M.J.; et al. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. BMC Complement. Altern. Med. 2012, 12, 173. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.H.; Cho, S.Y.; Kim, M.J.; Kim, J.B.; Lee, S.H.; Lee, M.Y.; Lee, Y.M. Anti-nflammatory effects of Salvia plebeia R. Br extract in vitro and in ovalbumin-induced mouse model. Biol. Res. 2016, 49, 41. [Google Scholar] [CrossRef] [PubMed]
- Firuzi, O.; Miri, R.; Asadollahi, M.; Eslami, S.; Jassbi, A.R. Cytotoxic, Antioxidant and Antimicrobial Activities and Phenolic Contents of Eleven Salvia Species from Iran. Iran J. Pharm. Res. 2013, 12, 801–810. [Google Scholar] [PubMed]
- Jiang, Y.; Zhang, L.; Rupasinghe, H.P.V. Antiproliferative effects of extracts from Salvia officinalis L. and Saliva miltiorrhiza Bunge on hepatocellular carcinoma cells. Biomed. Pharmacother. 2017, 85, 57–67. [Google Scholar] [CrossRef]
- Shahneh, F.Z.; Baradaran, B.; Orangi, M.; Zamani, F. In vitro Cytotoxic Activity of Four Plants Used in Persian Traditional Medicine. Adv. Farm. Bull. 2013, 3, 453–455. [Google Scholar]
- Córdova-guerrero, I.; Aragon-martinez, O.H.; Díaz-rubio, L. Actividad antibacteriana y antifúngica de un extracto de Salvia apiana frente a microorganismos de importancia clínica. Rev. Argent. Microbiol. 2016, 48, 217–221. [Google Scholar] [CrossRef][Green Version]
- Ibrahim, T.A. Chemical composition and biological activity of extracts from Salvia bicolor desf. growing in Egypt. Molecules 2012, 17, 11315–11334. [Google Scholar] [CrossRef]
- Pereira, O.R.; Catarino, M.D.; Afonso, A.F.; Silva, A.M.S.; Cardoso, S.M. Salvia elegans, Salvia greggii and Salvia officinalis Decoctions: Antioxidant Activities and Inhibition of Carbohydrate and Lipid Metabolic Enzymes. Molecules 2018, 23, 3169. [Google Scholar] [CrossRef]
- Abreu, M.E.; Maren, M. Phenolic diterpene and α-tocopherol contents in leaf extracts of 60 Salvia. J. Sci. Food Agric. 2008, 88, 2648–2653. [Google Scholar] [CrossRef]
- Zimmermann, B.F.; Walch, S.G.; Tinzoh, L.N.; Stühlinger, W.; Lachenmeier, D.W. Rapid UHPLC determination of polyphenols in aqueous infusions of Salvia officinalis L. (sage tea). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 2459–2464. [Google Scholar] [CrossRef] [PubMed]
- Cvetkovikj, I.; Stefkov, G.; Acevska, J.; Stanoeva, J.P.; Karapandzova, M.; Stefova, M.; Dimitrovska, A.; Kulevanova, S. Polyphenolic characterization and chromatographic methods for fast assessment of culinary Salvia species from South East Europe. J. Chromatogr. A 2013, 1282, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Milevskaya, V.V.; Temerdashev, Z.A.; Butyl, T.S.; Kiseleva, N.V. Determination of Phenolic Compounds in Medicinal Plants from the Lamiaceae Family. J. Anal. Chem. 2017, 72, 342–348. [Google Scholar] [CrossRef]
- González, M.A. Aromatic Abietane Diterpenoids: Their Biological Activity and Synthesis. Nat. Prod. Rep. 2013, 32, 684–704. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, K.; Matsuda, H.; Shimoda, H.; Nishida, N.; Kasajima, N.; Yoshino, T.; Morikawa, T.; Yoshikawa, M. Carnosic acid, a new class of lipid absorption inhibitor from sage. Bioorg. Med. Chem. Lett. 2004, 14, 1943–1946. [Google Scholar] [CrossRef]
- Johnson, J.J. Carnosol: A promising anti-cancer and anti-inflammatory agent. Cancer Lett. 2011, 305, 1–7. [Google Scholar] [CrossRef]

| Assay | S. apiana | S. farinacea var. Victoria Blue | Standard | ||
|---|---|---|---|---|---|
| AA | BHA | Trolox | |||
| DPPH• | 13.3 ± 1.1 a | 17.4 ± 5.5 a | 6.7 ± 0.7 b | ||
| Ferric reducing power | 55.0 ± 5.6 a | 59.9 ± 3.6 a | 16.1 ± 2.0 b | ||
| TBARS | 2.79 ± 0.1 a | 42.2 ± 0.6 b | 23.0 ± 1.0 c | ||
| β-carotene bleaching inhibition | 41.2 ± 1.6 a | 153.5 ± 2.2 b | 41.7 ± 0.3 a | ||
| Effect | S. apiana | S. farinacea var. Victoria Blue | Standard |
|---|---|---|---|
| Anti-inflammatory activity | Dexamethasone | ||
| NO● production | 49.9 ± 2.5 a | 80.8 ± 0.4 b | 16.0 ± 1.0 c |
| Cytotoxicity to tumor cell lines | Ellipticine | ||
| HepG2 (hepatocellular carcinoma) | 40.9 ± 3.3 a | 87.4 ± 5.4 b | 1.0 ± 0.2 c |
| HeLa (cervical carcinoma) | 57.3 ± 5.1 a | 77.8 ± 3.5 b | 2.0 ± 0.1 c |
| MCF-7 (breast carcinoma) | 60.2 ± 4.2 a | 59.8 ± 0.1 a | 1.0 ± 0.04 b |
| NCI-H460 (non-small cell lung cancer) | 245.7 ± 6.3 a | 279.5 ± 10.1 b | 1.0 ± 0.1 c |
| Cytotoxicity to non-tumor cells | |||
| PLP2 growth inhibition | 361.7 ± 5.3 a | 335.4 ± 8.0 b | 3.0 ± 1.0 c |
| Bacteria | S. apiana | S. farinacea var. Victoria Blue | Nisin | |||
|---|---|---|---|---|---|---|
| MIC | MBC | MIC | MBC | MIC | MBC | |
| Gram-positive | ||||||
| S. epidermidis | 0.34 | 0.69 | 8.50 | 8.50 | <0.63 | <0.63 |
| S. aureus | 0.69 | 0.69 | 1.06 | 2.12 | <0.63 | <0.63 |
| Gram-negative | ||||||
| S. typhimurium | 2.75 | 2.75 | >8.5 | >8.5 | 0.5 | 0.5 |
| E. coli | 2.75 | 2.75 | 8.5 | 8.5 | 0.5 | 1.0 |
| P. aeruginosa | 2.75 | 2.75 | >8.5 | >8.5 | 1.0 | 1.0 |
| NF | Rt | UVmax (nm) | [H–M]− | MS/MS Fragments (m/z) | Probable Compound | S. apiana * | S. farinacea Var. Victoria Blue * |
|---|---|---|---|---|---|---|---|
| 1 | 1.5 | 275 | 149 | 103, 87, 131, 59 | DimethylBA | - | 5.9 ± 0.1 |
| 2 | 1.7 | 205 | 191 | 111, 173 | Quinic Ac | 5.0 ± 0.3 | 0.4 ± 0.01 |
| 3 | 3.6 | 280 | 197 | 179, 73, 153 | Danshensu | D | D |
| 4 | 4.4 | 261, 289 | 153 | 109 | Protoc Ac | D | - |
| 5 | 5.1 | 290sh, 324 | 353 | 191, 179, 135 | cis 3-O-CQA | D | - |
| 6 | 5.4 | 294sh, 322 | 353 | 191, 179, 135 | trans 3-O-CQA | - | D |
| 7 | 7.9 | 309 | 337 | 163 | Coum Quinic Ac | D | 0.3 ± 0.03 |
| 8 | 8.3 | 313 | 295 | 163 | p-Coum Ac Pent | 0.4 ± 0.04 | - |
| 9 | 8.8 | 290sh, 325 | 353 | 191 | trans 5-O-CQA | - | 0.6 ± 0.03 |
| 10 | 9.5 | 290sh, 325 | 353 | 173, 179, 191 | 4-O-CQA | 5.5 ± 0.1 | - |
| 11 | 9.7 | 290sh, 323 | 179 | 135 | Caffeic Ac | - | 0.8 ± 0.0 |
| 12 | 9.8 | 314 | 325 | 265, 235, 163 | Coum Hex | - | 0.3 ± 0.0 |
| 13 | 11.8 | 311 | 337 | 191, 163 | Coum Quinic Ac | D | 0.2 ± 0.0 |
| 14 | 12.8 | 287sh, 324 | 367 | 173, 191 | Fer Quinic Ac | - | D |
| 15 | 13.0 | 309 | 225 | 207, 181, 165, 163 | Coum Ac Der | 1.8 ± 0.1 | - |
| 16 | 13.1 | 291sh, 311 | 637 | 351, 285, 193 | Ferulic Ac Der | - | 0.5 ± 0.0 |
| 17 | 13.5 | 274 | 571 | 527, 483, 439, 373 | YA E (isom1) | - | 8.4 ± 0.01 |
| 18 | 13.9 | 256, 267, 345 | 447 | 327, 357 | Lut-C-Hex | - | 3.2 ± 0.02 |
| 19 | 14.7 | 274 | 571 | 527, 509, 553, 483, 285 | YA E (isom2) | - | 4.5 ± 0.2 |
| 20 | 15.0 | 235, 277 | 539 | 297, 359, 377, 279, 315 | YA D/isomer | - | 3.9 ± 0.3 |
| 21 | 15.2 | 268, 336 | 431 | 311, 341, 269 | Api-C-Hex | - | 5.9 ± 0.6 |
| 22 | 15.6 | 285, 315 | 555 | 409, 391, 537, 511, 365 | SA K | - | D |
| 23 | 15.8 | 255, 350 | 463 | 301 | Querc-O-Hex | 14.6 ± 0.3 | - |
| 593 | 285 | Lut Rut | D | - | |||
| 24 | 16.1 | 255, 266, 345 | 461 | 285 | Lut-7-O-GlcA | - | 15.8 ± 0.02 |
| 25 | 16.5 | 274 | 571 | 527, 409 | YA E (isom3) | - | 1.0 ± 0.08 |
| 26 | 17.6 | 268, 336 | 575 | 431, 341, 311, 513, 413 | Api Hex HMG | - | 6.3 ± 0.02 |
| 27 | 17.9 | 283 | 719 | 359, 539, 521, 341 | Sag Ac (isom1) | D | 2.1 ± 0.08 |
| 28 | 18.1 | 269, 329 | 431 | 269 | Api-O-Hex | - | 16.7 ± 0.05 |
| 29 | 18.3 | 238, 341 | 607 | 299, 284 | Chrys-O-Rut | D | - |
| 30 | 18.4 | 267, 337 | 445 | 269, 175 | Api-O-GlcA | - | 2.2 ± 0.01 |
| 31 | 18.6 | 270, 291, 326sh | 717 | 555, 519, 475, 357 | SA B (isom1) | - | D |
| 32 | 18.7 | 284, 330sh | 609 | 301 | Hesperidin | 41.3 ± 2.2 | - |
| 33 | 19.0 | 290sh, 328 | 359 | 161, 179, 197, 223 | RA | 56.8 ± 0.6 | 17.8 ± 0.1 |
| 34 | 19.5 | 285sh, 305 | 537 | 493, 295 | CaffRA (isom1) | - | 1.0 ± 0.04 |
| 35 | 19.8 | 278 | 719 | 521, 341, 359 | Sag Ac (isom2) | - | 2.2 ± 0.02 |
| 36 | 20.2 | 290sh, 333 | 537 | 493, 359, 375 | CaffRA/ SA I (isom2) | D | - |
| 37 | 20.6 | 267, 336 | 517 | 269, 473 | Api malonyl Hex | - | 2.5 ± 0.03 |
| 38 | 21.5 | 287sh, 320 | 373 | 179, 161, 135, 197, 355, 329 | Methyl Rosmarinate | - | 0.6 ± 0.02 |
| 39 | 21.8 | 290 | 491 | 163, 329, 119 | Coumaric Ac Der | 0.5 ± 0.01 | - |
| 40 | 22.4 | 281, 330sh | 717 | 537, 357 | SA B (isom2) | 6.6 ± 0.4 | - |
| 41 | 23.7 | 199, 229, 287 | 361 | 299, 269, 281, 213, 343 | Sageone Der | 174.1 ± 14.1 | - |
| 42 | 24.3 | 275, 333sh | 313 | 298, 283, 269 | Cirsimaritin | 25.9 ± 0.6 | - |
| 43 | 25.0 | 207, 237sh, 285 | 345 | 301, 271, 283 | Rosmanol | 192.4 ± 17.1 | - |
| 44 | 25.2 | 286 | 347 | 303, 273 | Hydroxycarnosic Ac | 69.7 ± 11.2 | - |
| 45 | 25.7 | 286 | 329 | 285 | Carnosol | 17.3 ± 0.7 | - |
| 46 | 26.3 | 262 | 331 | 287 | Carnosic Ac | 14.3 ± 0.7 | - |
| 47 | 26.4 | 277 | 301 | 271, 283 | Tetrahydrohydroxyrosmariquinone | 17.4 ± 0.2 | - |
| Total | 643.3 ± 18.9 | 102.1 ± 0.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afonso, A.F.; Pereira, O.R.; Fernandes, Â.S.F.; Calhelha, R.C.; Silva, A.M.S.; Ferreira, I.C.F.R.; Cardoso, S.M. The Health-Benefits and Phytochemical Profile of Salvia apiana and Salvia farinacea var. Victoria Blue Decoctions. Antioxidants 2019, 8, 241. https://doi.org/10.3390/antiox8080241
Afonso AF, Pereira OR, Fernandes ÂSF, Calhelha RC, Silva AMS, Ferreira ICFR, Cardoso SM. The Health-Benefits and Phytochemical Profile of Salvia apiana and Salvia farinacea var. Victoria Blue Decoctions. Antioxidants. 2019; 8(8):241. https://doi.org/10.3390/antiox8080241
Chicago/Turabian StyleAfonso, Andrea F., Olívia R. Pereira, Ângela S. F. Fernandes, Ricardo C. Calhelha, Artur M. S. Silva, Isabel C.F.R. Ferreira, and Susana M. Cardoso. 2019. "The Health-Benefits and Phytochemical Profile of Salvia apiana and Salvia farinacea var. Victoria Blue Decoctions" Antioxidants 8, no. 8: 241. https://doi.org/10.3390/antiox8080241
APA StyleAfonso, A. F., Pereira, O. R., Fernandes, Â. S. F., Calhelha, R. C., Silva, A. M. S., Ferreira, I. C. F. R., & Cardoso, S. M. (2019). The Health-Benefits and Phytochemical Profile of Salvia apiana and Salvia farinacea var. Victoria Blue Decoctions. Antioxidants, 8(8), 241. https://doi.org/10.3390/antiox8080241
