Maternal Supplementation with Antioxidant Vitamins in Sheep Results in Increased Transfer to the Fetus and Improvement of Fetal Antioxidant Status and Development
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Procedure
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brodsky, D.; Christou, H. Current concepts in intrauterine growth restriction. J. Intens. Care Med. 2004, 19, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Nardozza, L.M.; Araujo Júnior, E.; Barbosa, M.M.; Caetano, A.C.; Lee, D.J.; Moron, A.F. Fetal growth restriction: current knowledge to the general Obs/Gyn. Arch. Gynecol. Obstet. 2012, 286, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Cetin, I.; Mando, C.; Calabrese, S. Maternal predictors of intrauterine growth restriction. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Bulnes, A.; Astiz, S.; Parraguez, V.H.; Garcia-Contreras, C.; Vazquez-Gomez, M. Empowering Translational Research in Fetal Growth Restriction: Sheep and Swine. Anim. Mod. Curr. Pharm. Biotechnol. 2016, 17, 848–855. [Google Scholar] [CrossRef]
- Charlton, V.; Johengen, M. Effects of intrauterine nutritional supplementation on fetal growth retardation. Biol. Neonate 1985, 48, 125–142. [Google Scholar] [CrossRef] [PubMed]
- Rumball, C.W.H.; Harding, J.E.; Oliver, M.H.; Bloomfield, F.H. Effects of twin pregnancy and periconceptional undernutrition on maternal metabolism, fetal growth and glucose-insulin axis function in ovine pregnancy. J. Physiol. 2008, 586, 1399–1411. [Google Scholar] [CrossRef] [PubMed]
- Freetly, H.C.; Leymaster, K.A. Relationship between litter birth weight and litter size in six breeds of sheep. J. Anim. Sci. 2004, 82, 612–618. [Google Scholar] [CrossRef]
- Gootwine, E.; Spencer, T.E.; Bazer, F.W. Litter-size-dependent intrauterine growth restriction in sheep. Animal 2007, 1, 547–564. [Google Scholar] [CrossRef]
- Gardner, D.S.; Buttery, P.J.; Daniel, Z.; Symonds, M.E. Factors affecting birth weight in sheep: Maternal environment. Reproduction 2007, 133, 297–307. [Google Scholar] [CrossRef]
- van der Linden, D.S.; Sciascia, Q.; Sales, F.; McCoard, S.A. Placental nutrient transport is affected by pregnancy rank in sheep. J. Anim. Sci. 2014, 91, 644–653. [Google Scholar] [CrossRef]
- Westgate, J.A.; Wassink, G.; Bennet, L.; Gunn, A.J. Spontaneous hypoxia in multiple pregnancies is associated with early fetal decompensation and enhanced T-wave elevation during brief repeated cord occlusion in near-term fetal sheep. Am. J. Obstet. Gynecol. 2005, 193, 1526–1533. [Google Scholar] [CrossRef] [PubMed]
- Rurak, D.; Bessette, N.W. Changes in fetal lamb arterial blood gas and acid-base status with advancing gestation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 304, R908–R916. [Google Scholar] [CrossRef] [PubMed]
- Parraguez, V.H.; Atlagich, M.; Araneda, O.; García, C.; Muñoz, A.; De los Reyes, M.; Urquieta, B. Effects of antioxidant vitamins on newborn and placental traits in gestations at high altitude: Comparative study in high and low altitude native sheep. Reprod. Fert. Dev. 2011, 23, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Sales, F.; Peralta, O.A.; Narbona, E.; McCoard, S.; De los Reyes, M.; González-Bulnes, A.; Parraguez, V.H. Hypoxia and Oxidative Stress Are Associated with Reduced Fetal Growth in Twin and Undernourished Sheep Pregnancies. Animals 2018, 8, 217. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Narang, M.; Banerjee, B.D.; Basu, S. Oxidative stress in term small for gestational age neonates born to undernourished mothers: A case control study. BMC Pediatr. 2004, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Biri, A.; Bozkurt, N.; Turp, A.; Kavutcu, M.; Himmetoglu, O. Role of oxidative stress in intrauterine growth restriction. Gynecol. Obstet. Investig. 2007, 64, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Yung, H.W.; Cindrova-Davies, T.; Charnock-Jones, D.S. Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta 2009, 30 (Suppl. A), S43–S48. [Google Scholar] [CrossRef] [PubMed]
- Myatt, L. Review: Reactive oxygen and nitrogen species and functional adaptation of the placenta. Placenta 2010, 31, S66–S69. [Google Scholar] [CrossRef] [PubMed]
- Jauniaux, E.; Burton, G.J. The role of oxidative stress in placental-related diseases of pregnancy. J. Gynecol. Obstet. Biol. Reprod. (Paris) 2016, 45, 775–785. [Google Scholar] [CrossRef]
- Parraguez, V.H.; Urquieta, B.; De los Reyes, M.; González-Bulnes, A.; Astiz, S.; Muñoz, A. Steroidogenesis in sheep pregnancy with intrauterine growth retardation by high-altitude hypoxia: effects of maternal altitudinal status and antioxidant treatment. Reprod. Fert. Dev. 2013, 25, 639–645. [Google Scholar] [CrossRef]
- Jefferies, B.C. Body condition scoring and its use in management. Tasm. J. Agric. 1961, 32, 19–21. [Google Scholar]
- Richter, H.G.; Hansell, J.A.; Raut, S.; Giussani, D.A. Melatonin improves placental efficiency and birth weight and increases the placental expression of antioxidant enzymes in undernourished pregnancy. J. Pineal. Res. 2009, 46, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Cofré, E.; Peralta, O.A.; Raggi, A.; De Los Reyes, M.; Sales, F.; González-Bulnes, A.; Parraguez, V.H. Ram semen deterioration by short-term exposure to high altitude is prevented by improvement of antioxidant status. Animal 2017, 12, 1007–1014. [Google Scholar] [CrossRef]
- Knight, C.A.; Dutcher, R.A.; Guerrant, N.B.; Bechtel, S. Destruction of ascorbic acid in the rumen of dairy cows. J. Dairy Sci. 1941, 24, 567–577. [Google Scholar] [CrossRef]
- Hidiroglou, M.; Batra, T.R.; Zhao, X. Comparison of vitamin C bioavailability after multiple or single oral dosing of diferente formulations in sheep. Reprod. Nutr. Dev. 1997, 37, 443–448. [Google Scholar] [CrossRef]
- Ocak, S.; Emsen, E.; Köycegiz, F.; Kutluca, M.; Önder, H. Comparison of placental traits and their relation to litter size and parity weight in sheep. J. Anim. Sci. 2009, 87, 3196–3201. [Google Scholar] [CrossRef]
- Dhakal, K.; Maltecca, C.; Cassady, J.P.; Baloche, G.; Williams, C.M.; Washburn, S.P. Calf birth weight, gestation length, calving ease, and neonatal calf mortality in Holstein, Jersey, and crossbred cows in a pasture system. J. Dairy Sci. 2013, 96, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Blickstein, I. Normal and abnormal growth of multiples. Semin. Neonatol. 2002, 7, 177–185. [Google Scholar] [CrossRef]
- Meyer, K.M.; Koch, J.M.; Jayanth Ramadoss, J.; Kling, P.J.; Magness, R.R. Ovine surgical model of uterine space restriction: Interactive effects of uterine anomalies and multifetal gestations on fetal and placental growth. Biol. Reprod. 2010, 83, 799–806. [Google Scholar] [CrossRef]
- Lekatz, L.A.; Caton, J.S.; Taylor, J.B.; Reynolds, L.P.; Redmer, D.A.; Vonnahme, K.A. Maternal selenium supplementation and timing of nutrient restriction in pregnant sheep: Effects on maternal endocrine status and placental characteristics. J. Anim. Sci. 2010, 88, 955–971. [Google Scholar] [CrossRef]
- Lemley, C.O.; Meyer, A.; Camacho, L.E.; Neville, T.L.; Newman, D.J.; Caton, J.S.; Vonnahme, K.A. Melatonin supplementation alters uteroplacental hemodynamics and fetal development in an ovine model of intrauterine growth restriction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302, R454–R467. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, C.M.; Calvert, S.K.; Farish, M.; Donbavand, J.; Pickup, H.E. Breed, litter and parity effects on placental weight and placentome number, and consequences for the neonatal behaviour of the lamb. Theriogenology 2005, 63, 1092–1110. [Google Scholar] [CrossRef] [PubMed]
- Lemley, C.O.; Vonnahme, K.A. Physiology and endocrinology symposium: Alterations in uteroplacental hemodynamics during melatonin supplementation in sheep and cattle. J. Anim. Sci. 2017, 95, 2211–2221. [Google Scholar] [CrossRef] [PubMed]
- Norkus, E.P.; Bassi, J.; Rosso, P. Maternal-fetal transfer of ascorbic acid in the guinea pig. J. Nutr. 1979, 109, 2205–2212. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Powers, H.J. The effects of maternal intake and gestational age on materno-fetal transport of vitamin C in the guinea-pig. Br. J. Nutr. 1998, 80, 485–491. [Google Scholar] [CrossRef]
- Thakor, A.S.; Richter, H.G.; Kane, A.D.; Dunster, C.; Kelly, F.J.; Poston, L.; Giussani, D.A. Redox modulation of the fetal cardiovascular defense to hypoxemia. J. Physiol. 2010, 588, 4235–4247. [Google Scholar] [CrossRef]
- Thakor, A.S.; Herrera, E.A.; Serón-Ferré, M.; Giussani, D.A. Melatonin and vitamin C increase umbilical blood flow via nitric oxide-dependent mechanisms. J. Pineal. Res. 2010, 49, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Mahan, D.C.; Vallet, J.L. Vitamin and mineral transfer during fetal development and the early postnatal period in pigs. J. Anim. Sci. 1997, 75, 2731–2738. [Google Scholar] [CrossRef]
- Léger, C.L.; Dumontier, C.; Fouret, G.; Boulot, P.; Descomps, B. A short-term supplementation of pregnant women before delivery does not improve significantly the vitamin E status of neonates--low efficiency of the vitamin E placental transfer. Int. J. Vitam. Nutr. Res. 1998, 68, 293–299. [Google Scholar]
- Herrera, E.; Ortega, H.; Alvino, G.; Giovannini, N.; Amusquivar, E.; Cetin, I. Relationship between plasma fatty acid profile and antioxidant vitamins during normal pregnancy. Eur. J. Clin Nutr. 2004, 58, 1231–1238. [Google Scholar] [CrossRef]
- Didenco, S.; Gillingham, M.B.; Go, M.D.; Leonard, S.W.; Traber, M.G.; McEvoy, C.T. Increased vitamin E intake is associated with higher alpha-tocopherol concentration in the maternal circulation but higher alpha-carboxyethyl hydroxychroman concentration in the fetal circulation. Am. J. Clin. Nutr. 2011, 93, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Malone, J.I. Vitamin passage across the placenta. Clin. Perinatol. 1975, 2, 295–307. [Google Scholar] [PubMed]
- Etzl, R.P.; Vrekoussis, T.; Kuhn, C.; Schulze, S.; Pöschl, J.M.; Makrigiannakis, A.; Jeschke, U.; Rotzoll, D.E. Oxidative stress stimulates α-tocopherol transfer protein in human trophoblast tumor cells BeWo. J. Perinat. Med. 2012, 40, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Mohd Mutalip, S.S.; Ab-Rahim, S.; Rajikin, M.H. Vitamin E as an antioxidant in female reproductive health. Antioxidants 2018, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Kasimanickam, R.K.; Kasimanickam, V.R.; Rodriguez, J.S.; Pelzer, K.D.; Sponenberg, P.D.; Thatcher, C.D. Tocopherol induced angiogenesis in placental vascular network in late pregnant ewes. Reprod. Biol. Endocrinol. 2010, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Kegley, E.B.; Ball, J.J.; Beck, P.A. Impact of mineral and vitamin status on beef cattle immune function and health. J. Anim. Sci. 2016, 94, 5401–5413. [Google Scholar] [CrossRef] [PubMed]
- Vieira-Filho, L.D.; Lara, L.S.; Silva, P.A.; Santos, F.T.J.; Luzardo, R.; Oliveira, F.S.T.; Paixão, A.D.O.; Vieyra, A. Placental malnutrition changes the regulatory network of renal Na-ATPase in adult rat progeny: Reprogramming by maternal a-tocopherol during lactation. Arch. Biochem. Biophys. 2011, 505, 91–97. [Google Scholar] [CrossRef]
- Chan, A.C. Partners in defense, vitamin E and vitamin C. Can. J. Physiol. Pharmacol. 1993, 71, 725–731. [Google Scholar] [CrossRef]
SC | SV | TC | TV | p-Value | |||
---|---|---|---|---|---|---|---|
V | R | VxR | |||||
Maternal vit. C (µg/mL) | 5.21 ± 0.69 | 8.09 ± 1.73 | 5.24 ± 0.27 | 7.60 ± 0.76 | 0.028 | ns | ns |
Maternal vit. E (µg/mL) | 3.33 ± 0.33 | 4.40 ± 0.25 | 3.18 ± 0.16 | 5.01 ± 0.39 | 0.001 | ns | ns |
Fetal Cord vit. C (µg/mL) | 2.26 ± 0.17 | 2.72 ± 0.28 | 3.26 ± 0.18 | 4.45 ± 0.19 | 0.007 | <0.001 | ns |
Fetal Cord vit. E (µg/mL) | 0.47 ± 0.03 | 0.55 ± 0.03 | 0.61 ± 0.04 | 0.72 ± 0.04 | 0.022 | <0.001 | ns |
Fetal Cord TAC (mM Trolox equiv.) | 0.43 ± 0.32 | 1.06 ± 0.16 | 0.21 ± 0.10 | 0.64 ± 0.08 | 0.006 | 0.060 | ns |
Fetal body weight (kg) | 3.81 ± 0.19 | 4.03 ± 0.21 | 2.82 ± 0.08 | 3.23 ± 0.07 | 0.023 | <0.01 | ns |
Total placentome weight (g) | 473.5 ± 26.5 | 431.4 ± 31,8 | 322.8 ± 17.8 | 307.9 ± 18.8 | ns | <0.001 | ns |
Placental efficiency | 7.70 ± 0.56 | 9.51 ± 0.45 | 9.53 ± 0.51 | 11.18 ± 0.51 | 0.007 | 0.007 | ns |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sales, F.; Peralta, O.A.; Narbona, E.; McCoard, S.; Lira, R.; De Los Reyes, M.; González-Bulnes, A.; Parraguez, V.H. Maternal Supplementation with Antioxidant Vitamins in Sheep Results in Increased Transfer to the Fetus and Improvement of Fetal Antioxidant Status and Development. Antioxidants 2019, 8, 59. https://doi.org/10.3390/antiox8030059
Sales F, Peralta OA, Narbona E, McCoard S, Lira R, De Los Reyes M, González-Bulnes A, Parraguez VH. Maternal Supplementation with Antioxidant Vitamins in Sheep Results in Increased Transfer to the Fetus and Improvement of Fetal Antioxidant Status and Development. Antioxidants. 2019; 8(3):59. https://doi.org/10.3390/antiox8030059
Chicago/Turabian StyleSales, Francisco, Oscar A. Peralta, Eileen Narbona, Sue McCoard, Raúl Lira, Mónica De Los Reyes, Antonio González-Bulnes, and Víctor H. Parraguez. 2019. "Maternal Supplementation with Antioxidant Vitamins in Sheep Results in Increased Transfer to the Fetus and Improvement of Fetal Antioxidant Status and Development" Antioxidants 8, no. 3: 59. https://doi.org/10.3390/antiox8030059
APA StyleSales, F., Peralta, O. A., Narbona, E., McCoard, S., Lira, R., De Los Reyes, M., González-Bulnes, A., & Parraguez, V. H. (2019). Maternal Supplementation with Antioxidant Vitamins in Sheep Results in Increased Transfer to the Fetus and Improvement of Fetal Antioxidant Status and Development. Antioxidants, 8(3), 59. https://doi.org/10.3390/antiox8030059