Characterization, Antioxidant Capacity, and In Vitro Bioaccessibility of Ginger (Zingiber officinale Roscoe) in Different Pharmaceutical Formulations
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Ginger Root Extract Sample and Derived Formulations
2.3. HPLC-DAD Characterization of Ginger Extract and Formulations
2.3.1. Chromatographic Conditions
2.3.2. Preparation of Standards and Calibration Curve
2.3.3. Sample Preparation
2.4. Determination of Antioxidant Capacity
2.4.1. Evaluation of Antioxidant Activity Using the DPPH Method
2.4.2. Evaluation of Oxygen Radical Absorbance Capacity (ORAC)
2.5. Evaluation of Bioaccessibility Through In Vitro Digestion
2.5.1. Preparation of Simulated Digestive Fluids
2.5.2. In Vitro Digestion Procedure
3. Results and Discussion
3.1. HPLC-DAD Quantification of Gingerols and Bioactive Compounds in Pharmaceutical Forms
3.1.1. Capsules and Powdered Pure Extract
3.1.2. Liquid Formulation
3.2. In Vitro Antioxidant Capacity
3.2.1. Antioxidant Capacity Determined by the DPPH Method
3.2.2. Antioxidant Capacity Determined Using the ORAC Method
3.2.3. Comparative Evaluation of Antioxidant Capacity Using DPPH and ORAC Assays
3.3. Bioaccessibility After In Vitro Digestion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.; Oettrich, J.; Ruskovska, T.; et al. Clinical Relevance of Biomarkers of Oxidative Stress. Antioxid. Redox Signal. 2015, 23, 1144–1170. [Google Scholar] [CrossRef]
- Arcusa, R.; Villaño, D.; Marhuenda, J.; Cano, M.; Cerdà, B.; Zafrilla, P. Potential Role of Ginger (Zingiber officinale Roscoe) in the Prevention of Neurodegenerative Diseases. Front. Nutr. 2022, 9, 809621. [Google Scholar] [CrossRef]
- Kadam, S.N.; Abhonkar, R.S.; Ahire, P.S. The Review on Medicinal Uses of Ginger. IJFMR Int. J. Multidiscip. Res. 2022, 4. [Google Scholar] [CrossRef]
- Syafitri, D.M.; Levita, J.; Mutakin, M.; Diantini, A. A Review: Is Ginger (Zingiber officinale Var. Roscoe) Potential for Future Phytomedicine? Indones. J. Appl. Sci. 2018, 8. [Google Scholar] [CrossRef]
- Shaukat, M.N.; Nazir, A.; Fallico, B. Ginger Bioactives: A Comprehensive Review of Health Benefits and Potential Food Applications. Antioxidants 2023, 12, 2015. [Google Scholar] [CrossRef]
- Cerdá, B.; Marhuenda, J.; Arcusa, R.; Villaño, D.; Ballester, P.; Zafrilla, P. El Jengibre En La Prevención de Enfermedades Cardiovasculares. In Jengibre: Propiedades Funcionales y Usos Terapéuticos; IntechOpen: London, UK, 2022. [Google Scholar]
- Mao, Q.Q.; Xu, X.Y.; Cao, S.Y.; Gan, R.Y.; Corke, H.; Beta, T.; Li, H.B. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods 2019, 8, 185. [Google Scholar] [CrossRef]
- Ahmed, S.H.H.; Gonda, T.; Agbadua, O.G.; Girst, G.; Berkecz, R.; Kúsz, N.; Tsai, M.C.; Wu, C.C.; Balogh, G.T.; Hunyadi, A. Preparation and Evaluation of 6-Gingerol Derivatives as Novel Antioxidants and Antiplatelet Agents. Antioxidants 2023, 12, 744. [Google Scholar] [CrossRef]
- Ezzat, S.M.; Ezzat, M.I.; Okba, M.M.; Menze, E.T.; Abdel-Naim, A.B. The Hidden Mechanism beyond Ginger (Zingiber officinale Rosc.) Potent in Vivo and in Vitro Anti-Inflammatory Activity. J. Ethnopharmacol. 2018, 214, 113–123. [Google Scholar] [CrossRef]
- Alolga, R.N.; Wang, F.; Zhang, X.; Li, J.; Tran, L.S.P.; Yin, X. Bioactive Compounds from the Zingiberaceae Family with Known Antioxidant Activities for Possible Therapeutic Uses. Antioxidants 2022, 11, 1281. [Google Scholar] [CrossRef]
- Dugasani, S.; Pichika, M.R.; Nadarajah, V.D.; Balijepalli, M.K.; Tandra, S.; Korlakunta, J.N. Comparative Antioxidant and Anti-Inflammatory Effects of [6]-Gingerol,[8]-Gingerol,[10]-Gingerol and [6]-Shogaol. J. Ethnopharmacol. 2010, 127, 515–520. [Google Scholar] [CrossRef]
- Naderi, Z.; Mozaffari-Khosravi, H.; Dehghan, A.; Nadjarzadeh, A.; Huseini, H.F. Effect of Ginger Powder Supplementation on Nitric Oxide and C-Reactive Protein in Elderly Knee Osteoarthritis Patients: A 12-Week Double-Blind Randomized Placebo-Controlled Clinical Trial. J. Tradit. Complement. Med. 2016, 6, 199–203. [Google Scholar] [CrossRef]
- Park, G.; Oh, D.-S.; Lee, M.G.; Lee, C.E.; Kim, Y. 6-Shogaol, an Active Compound of Ginger, Alleviates Allergic Dermatitis-like Skin Lesions via Cytokine Inhibition by Activating the Nrf2 Pathway. Toxicol. Appl. Pharmacol. 2016, 310, 51–59. [Google Scholar] [CrossRef]
- Peng, S.; Yao, J.; Liu, Y.; Duan, D.; Zhang, X.; Fang, J. Activation of Nrf2 Target Enzymes Conferring Protection against Oxidative Stress in PC12 Cells by Ginger Principal Constituent 6-Shogaol. Food Funct. 2015, 6, 2813–2823. [Google Scholar] [CrossRef]
- Crichton, M.; Davidson, A.R.; Innerarity, C.; Marx, W.; Lohning, A.; Isenring, E.; Marshall, S. Orally Consumed Ginger and Human Health: An Umbrella Review. Am. J. Clin. Nutr. 2022, 115, 1511–1527. [Google Scholar] [CrossRef]
- Mukkavilli, R.; Yang, C.; Tanwar, R.S.; Ghareeb, A.; Luthra, L.; Aneja, R. Absorption, Metabolic Stability, and Pharmacokinetics of Ginger Phytochemicals. Molecules 2017, 22, 553. [Google Scholar] [CrossRef]
- Mukkavilli, R.; Yang, C.; Tanwar, R.S.; Saxena, R.; Gundala, S.R.; Zhang, Y.; Ghareeb, A.; Floyd, S.D.; Vangala, S.; Kuo, W.-W.; et al. Pharmacokinetic-Pharmacodynamic Correlations in the Development of Ginger Extract as an Anticancer Agent. Sci. Rep. 2018, 8, 3056. [Google Scholar] [CrossRef]
- Jiménez-Pulido, I.J.; Martín-Diana, A.B.; Luis, D.D.; Rico, D. Comparative Bioaccesibility Study of Cereal-Based Nutraceutical Ingredients Using INFOGEST Static, Semi-Dynamic and Dynamic In Vitro Gastrointestinal Digestion. Antioxidants 2024, 13, 1244. [Google Scholar] [CrossRef]
- Barbari, R.; Bruggink, V.; Hofstetter, R.K.; Tupini, C.; Fagnani, S.; Baldini, E.; Durini, E.; Lampronti, I.; Vertuani, S.; Baldisserotto, A.; et al. Synthesis and Biological Activity Assessment of 2-Styrylbenzothiazoles as Potential Multifunctional Therapeutic Agents. Antioxidants 2024, 13, 1196. [Google Scholar] [CrossRef]
- Nam, D.G.; Kim, M.; Choi, A.J.; Choe, J.S. Health Benefits of Antioxidant Bioactive Compounds in Ginger (Zingiber officinale) Leaves by Network Pharmacology Analysis Combined with Experimental Validation. Antioxidants 2024, 13, 652. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicines & HealthCare (EDQM). European Pharmacopoeia; Council of Europe: Strasbourg, France, 2020; p. 3500. [Google Scholar]
- Arranz, S.; Cert, R.; Pérez-Jiménez, J.; Cert, A.; Saura-Calixto, F. Comparison between Free Radical Scavenging Capacity and Oxidative Stability of Nut Oils. Food Chem. 2008, 110, 985–990. [Google Scholar] [CrossRef]
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Chang, C.-M. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules 2022, 27, 1326. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Bondet, V.; Brand-Williams, W.; Berset, C. Cinética y Mecanismos de La Actividad Antioxidante Mediante El Método de Radicales Libres. LWT Food Sci. Technol. 1997, 30, 609–615. [Google Scholar] [CrossRef]
- Yen, G.-C.; Duh, P.-D. Antioxidant Activity of Methanolic Extracts of Peanut Hulls from Various Cultivars. J. Am. Oil Chem. Soc. 1995, 72, 1065–1067. [Google Scholar] [CrossRef]
- Sirivibulkovit, K.; Nouanthavong, S.; Sameenoi, Y. Paper-Based DPPH Assay for Antioxidant Activity Analysis. Anal. Sci. 2018, 34, 795–800. [Google Scholar] [CrossRef]
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Analysis of Antioxidant Activities of Common Vegetables Employing Oxygen Radical Absorbance Capacity (ORAC) and Ferric Reducing Antioxidant Power (FRAP) Assays: A Comparative Study. J. Agric. Food Chem. 2002, 50, 3122–3128. [Google Scholar] [CrossRef]
- Rodríguez-Bonilla, P.; Gandía-Herrero, F.; Matencio, A.; García-Carmona, F.; López-Nicolás, J.M. Comparative Study of the Antioxidant Capacity of Four Stilbenes Using ORAC, ABTS+, and FRAP Techniques. Food Anal. Methods 2017, 10, 2994–3000. [Google Scholar] [CrossRef]
- Dávalos, A.; Gómez-Cordovés, C.; Bartolomé, B. Extending Applicability of the Oxygen Radical Absorbance Capacity (ORAC-Fluorescein) Assay. J. Agric. Food Chem. 2004, 52, 48–54. [Google Scholar] [CrossRef]
- Moreno-Ortega, A.; Pereira-Caro, G.; Ordóñez, J.L.; Moreno-Rojas, R.; Ortíz-Somovilla, V.; Moreno-Rojas, J.M. Bioaccessibility of Bioactive Compounds of ‘Fresh Garlic’ and ‘Black Garlic’ Through In Vitro Gastrointestinal Digestion. Foods 2020, 9, 1582. [Google Scholar] [CrossRef]
- Gomes, T.M.; Toaldo, I.M.; da Silva Haas, I.C.; Burin, V.M.; Caliari, V.; Luna, A.S.; de Gois, J.S.; Bordignon-Luiz, M.T. Differential Contribution of Grape Peel, Pulp, and Seed to Bioaccessibility of Micronutrients and Major Polyphenolic Compounds of Red and White Grapes through Simulated Human Digestion. J. Funct. Foods 2019, 52, 699–708. [Google Scholar] [CrossRef]
- Egger, L.; Ménard, O.; Delgado-Andrade, C.; Alvito, P.; Assunção, R.; Balance, S.; Barberá, R.; Brodkorb, A.; Cattenoz, T.; Clemente, A.; et al. El Método Armonizado de Digestión in Vitro INFOGEST: Del Conocimiento a La Acción. Food Res. Int. 2016, 88, 217–225. [Google Scholar] [CrossRef]
- Dávila León, R.; González-Vázquez, M.; Lima-Villegas, K.E.; Mora-Escobedo, R.; Calderón-Domínguez, G. In Vitro Gastrointestinal Digestion Methods of Carbohydrate-rich Foods. Food Sci. Nutr. 2023, 12, 722–733. [Google Scholar] [CrossRef]
- Pawar, N.V.; Pai, S.R.; Nimbalkar, M.S.; Dixit, G.B. RP-HPLC Analysis of Phenolic Antioxidant Compound 6-Gingerol from in Vitro Cultures of Zingiber officinale Roscoe. Plant Sci Today 2015, 2, 24–28. [Google Scholar] [CrossRef]
- Semwal, R.B.; Semwal, D.K.; Combrinck, S.; Viljoen, A.M. Gingerols and Shogaols: Important Nutraceutical Principles from Ginger. Phytochemistry 2015, 117, 554–568. [Google Scholar] [CrossRef]
- Cha, J.; Kim, C.-T.; Cho, Y.-J. Optimizing Extraction Conditions for Functional Compounds from Ginger (Zingiber officinale Roscoe) Using Response Surface Methodology. Food Sci. Biotechnol. 2020, 29, 379–385. [Google Scholar] [CrossRef]
- Johnson, J.B.; Mani, J.S.; Walsh, K.B.; Naiker, M. Measurement of Gingerols and 6-Shogaol in Ginger Using Near-Infrared Spectroscopy. In Proceedings of the The International Conference on NIR; Springer: Berlin/Heidelberg, Germany, 2021; pp. 81–90. [Google Scholar]
- Moghaddasi, M.S.; Kashani, H.H. Ginger (Zingiber officinale): A Review. J. Med. Plants Res. 2012, 6, 4255–4258. [Google Scholar] [CrossRef]
- Jalali-Jivan, M.; Nejatian, M.; Fathi, M.; Rezaei, A.; McClements, D.J.; Jafari, S.M. Different Delivery Systems for Improving the Bioavailability of Ginger Bioactive Compounds: A Comprehensive Review. Phytochem. Rev. 2025, 1–26. [Google Scholar] [CrossRef]
- Gonzalez-Gonzalez, M.; Yerena-Prieto, B.J.; Carrera Fernández, C.A.; Vázquez Espinosa, M.; González-de-Peredo, A.V.; Garcia Alvarado, M.A.; Palma Lovillo, M.; del Carmen Rodríguez-Jimenes, G.; Fernández Barbero, G. Determination of Gingerols and Shogaols Content from Ginger (Zingiber officinale Rosc.) through Microwave-Assisted Extraction. Agronomy 2023, 13, 2288. [Google Scholar] [CrossRef]
- Ayustaningwarno, F.; Anjani, G.; Ayu, A.M.; Fogliano, V. A Critical Review of Ginger’s (Zingiber officinale) Antioxidant, Anti-Inflammatory, and Immunomodulatory Activities. Front. Nutr. 2024, 11, 1364836. [Google Scholar] [CrossRef]
- Tohma, H.; Gülçin, İ.; Bursal, E.; Gören, A.C.; Alwasel, S.H.; Köksal, E. Antioxidant Activity and Phenolic Compounds of Ginger (Zingiber officinale Rosc.) Determined by HPLC-MS/MS. J. Food Meas. Charact. 2017, 11, 556–566. [Google Scholar] [CrossRef]
- Juárez, U. Comparación de Dos Técnicas de Extracción de Jengibre (Zingiber officinale Roscoe) y Cuantificación de Fenólicos Totales y Capacidad Antioxidante. Investig. Desarro. Cienc. Tecnol. Aliment. 2019, 4, 813. [Google Scholar]
- Ezez, D.; Tefera, M. Effects of Solvents on Total Phenolic Content and Antioxidant Activity of Ginger Extracts. J. Chem. 2021, 2021, 6635199. [Google Scholar] [CrossRef]
- Jorge-Montalvo, P.; Vílchez-Perales, C.; Visitación-Figueroa, L. Evaluation of Antioxidant Capacity, Structure, and Surface Morphology of Ginger (Zingiber officinale) Using Different Extraction Methods. Heliyon 2023, 9, e16516. [Google Scholar] [CrossRef]
- Numan, E.M.; Jyad, J.S.; Alazawi, A.H.; Ibrahim, A.-J.; Essam, F.; Jwad, A.N.; Zehrawo, H.M.; Kamel, A.F.; Khayri, O.A. Comparison of different extraction methods of (Zingiber officinale) on chemical composition, antioxidant activity. Int. J. Pharm. Pharm. Sci. 2016, 5, 215–223. [Google Scholar]
- Quispe, B.D.L.C.; Pujaico, R.I.B.Q. Comparación Del Contenido de Compuestos Fenólicos y Capacidad Antioxidante de Los Extractos Hidroalcohólicos de Zingiber officinale (Jengibre) Colectados En Tres Zonas de Cultivo En El Departamento de Junín. Bachelor’s Thesis, Universidad María Auxiliadora, Lima, Peru, 2020. [Google Scholar]
- Stoilova, I.; Krastanov, A.; Stoyanova, A.; Denev, P.; Gargova, S. Antioxidant Activity of a Ginger Extract (Zingiber officinale). Food Chem. 2007, 102, 764–770. [Google Scholar] [CrossRef]
- Hussain, G.; Saeed, F.; Shahbaz, M.; Ahmed, A.; Imran, M.; Khan, M.A.; Faiz, F.; Bano, Y.; Munir, R.; Nadeem, M. Reconnoitring the Impact of Different Extraction Techniques on Ginger Bioactive Moieties Extraction, Antioxidant Characterization and Physicochemical Properties for Their Therapeutic Effect. Pak. J. Pharm. Sci. 2019, 32, 2223–2236. [Google Scholar]
- Mustafa, I.; Chin, N.L. Antioxidant Properties of Dried Ginger (Zingiber officinale Roscoe) Var. Bentong. Foods 2023, 12, 178. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.Z.E.; Rahmat, A. Antioxidant Activities, Total Phenolics and Flavonoids Content in Two Varieties of Malaysia Young Ginger (Zingiber officinale Roscoe). Molecules 2010, 15, 4324–4333. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.Z.E.; Baghdadi, A.; Tayebi-Meigooni, A. Formation of 6-, 8- and 10-Shogaol in Ginger through Application of Different Drying Methods: Altered Antioxidant and Antimicrobial Activity. Molecules 2018, 23, 1646. [Google Scholar] [CrossRef]
- Höferl, M.; Stoilova, I.; Wanner, J.; Schmidt, E.; Jirovetz, L.; Trifonova, D.; Stanchev, V.; Krastanov, A. Composition and Comprehensive Antioxidant Activity of Ginger (Zingiber officinale) Essential Oil from Ecuador. Nat. Prod. Commun. 2015, 10, 1085–1090. [Google Scholar] [CrossRef]
- Grabsk, A.H.A.; Avincola, A.S.; Claus, T.; Porto, C.; Visentainer, J.V.; Pilau, E.J. Direct Incorporation of Ginger and Oregano Antioxidants in Canola Oil. J. Braz. Chem. Soc. 2017, 28, 995–1002. [Google Scholar] [CrossRef]
- Taskeen, S.; Hafeez, M.A.; Ikram, I. Investigating the Role of Ginger Tea ORAC Value in Hypertension Management. Insights-J. Health Rehabil. 2025, 3, 302–310. [Google Scholar] [CrossRef]
- Pulido Torres, S.A.; Tamara Angulo, G.; Hernández Carrión, M. Comparación Entre Dos Materiales de Pared Para la Encapsulación de Extracto de Jengibre Orientado a la Producción de Una Bebida Anti-resaca; Universidad de los Andes, Departamento de Ingeniería Química y de Alimentos: Bogotá, Colombia, 2021; Available online: https://repositorio.uniandes.edu.co/entities/publication/62a11b86-492e-41da-b6eb-10eb8e13dc39 (accessed on 4 July 2025).
- Zagórska, J.; Pietrzak, K.; Kukula-Koch, W.; Czop, M.; Laszuk, J.; Koch, W. Influence of Diet on the Bioavailability of Active Components from Zingiber officinale Using an in Vitro Digestion Model. Foods 2023, 12, 3897. [Google Scholar] [CrossRef] [PubMed]
- Contreras-López, E.; Castañeda-Ovando, A.; Jaimez-Ordaz, J.; del Socorro Cruz-Cansino, N.; González-Olivares, L.G.; Rodríguez-Martínez, J.S.; Ramírez-Godínez, J. Release of Antioxidant Compounds of Zingiber officinale by Ultrasound-Assisted Aqueous Extraction and Evaluation of Their In Vitro Bioaccessibility. Appl. Sci. 2020, 10, 4987. [Google Scholar] [CrossRef]
- Szymczak, J.; Grygiel-Górniak, B.; Cielecka-Piontek, J. Zingiber officinale Roscoe: The Antiarthritic Potential of a Popular Spice—Preclinical and Clinical Evidence. Nutrients 2024, 16, 741. [Google Scholar] [CrossRef] [PubMed]
- Songvut, P.; Nakareangrit, W.; Cholpraipimolrat, W.; Kwangjai, J.; Worasuttayangkurn, L.; Watcharasit, P.; Satayavivad, J. Unraveling the Interconversion Pharmacokinetics and Oral Bioavailability of the Major Ginger Constituents: [6]-Gingerol, [6]-Shogaol, and Zingerone after Single-Dose Administration in Rats. Front. Pharmacol. 2024, 15, 1391019. [Google Scholar] [CrossRef]
- Shaker, N.O.; El-Naggar, M.E.; El-Sawey, M.M.; El-Rahman, H.N.A. Bioactivity of Ginger, Zingiber officinale Rhizomes Extract against Two-Spotted Spider Mite, Tetranychus Urticae Koch (Acari: Tetranychidae) and Characterization of Its Volatile Components Using GC/MS Technique. J. Plant Prot. Pathol. 2013, 4, 1035–1040. [Google Scholar] [CrossRef]
- Blank-Landeshammer, B.; Klanert, G.; Mitter, L.; Turisser, S.; Nusser, N.; König, A.; Iken, M.; Weghuber, J. Improved Bioavailability and Bioaccessibility of Lutein and Isoflavones in Cultured Cells In Vitro Through Interaction with Ginger, Curcuma and Black Pepper Extracts. Antioxidants 2022, 11, 1917. [Google Scholar] [CrossRef]
Sample | Bioactive Compound | Result | Total Gingerols | Total Active Compounds | ||
---|---|---|---|---|---|---|
Eq. | Eq. | |||||
20 mg capsule (500 mg of ginger rhizome) | 6-Gingerol | 0.26 ± 0.01 mg/cap | 0.44 ± 0.03 mg/cap | 0.87 ± 0.06 mg/g rhizome | 0.84 ± 0.03 mg/cap | 1.69 ± 0.07 mg/g rhizome |
8-Gingerol | 0.04 ± 0.01 mg/cap | |||||
10-Gingerol | 0.13 ± 0.02 mg/cap | |||||
6-Shogaol | 0.41 ± 0.02 mg/cap | |||||
40 mg capsule (1000 mg of ginger rhizome) | 6-Gingerol | 0.50 ± 0.02 mg/cap | 0.81 ± 0.04 mg/cap | 0.81 ± 0.04 mg/g rhizome | 1.63 ± 0.07 mg/cap | 1.63 ± 0.07 mg/g rhizome |
8-Gingerol | ND | |||||
10-Gingerol | 0.31 ± 0.02 mg/cap | |||||
6-Shogaol | 0.82 ± 0.04 mg/cap | |||||
80 mg capsule (2000 mg of Ginger rhizome) | 6-Gingerol | 1.04 ± 0.14 mg/cap | 1.60 ± 0.24 mg/cap | 0.80 ± 0.12 mg/g rhizome | 3.32 ± 0.48 mg/cap | 1.66 ± 0.24 mg/g rhizome |
8-Gingerol | 0.10 ± 0.04 mg/cap | |||||
10-Gingerol | 0.47 ± 0.06 mg/cap | |||||
6-Shogaol | 1.72 ± 0.24 mg/cap | |||||
Pure extract (6% purity) | 6-Gingerol | 1.187 ± 0.006% | 1.84 ± 0.01% | 1.84 ± 0.01 mg/g rhizome | 4.02 ± 0.01% | 4.02 ± 0.01 mg/g rhizome |
8-Gingerol | 0.215 ± 0.005% | |||||
10-Gingerol | 0.442 ± 0.013% | |||||
6-Shogaol | 2.173 ± 0.006% | |||||
Liquid formulation 300 mL (1000 mg of Zingiber officinale) | 6-Gingerol | 13.57 ± 0.13 mg/300 mL | 20.50 ± 0.30 mg/300 mL | 1.17 ± 0.02 mg/g rhizome | 45.55 ± 0.30 mg/300 mL | 2.60 ± 0.02 mg/g rhizome |
8-Gingerol | 2.56 ± 0.10 mg/300 mL | |||||
10-Gingerol | 4.37 ± 0.39 mg/300 mL | |||||
6-Shogaol | 25.05 ± 0.49 mg/300 mL |
Sample | Methanol | Water | Methanol/Water |
---|---|---|---|
20 mg capsule (500 mg of ginger rhizome) | 8.28 ± 0.03 | 0.90 ± 0.01 | 6.61 ± 0.01 |
40 mg capsule (1000 mg of ginger rhizome) | 15.30 ± 0.20 | 1.86 ± 0.01 | 12.09 ± 0.35 |
80 mg capsule (2000 mg of Ginger rhizome) | 28.20 ± 0.80 | 2.71 ± 0.02 | 21.42 ± 0.15 |
Pure extract (0.3 g) | 54.90 ± 0.40 | 2.44 ± 0.02 | 39.21 ± 0.08 |
Liquid formulation | 426.00 ± 0.05 | ND | 314.00 ± 0.04 |
Sample | Antioxidant Capacity |
---|---|
20 mg capsule (500 mg of ginger rhizome) | 15.65 ± 0.37 |
40 mg capsule (1000 mg of ginger rhizome) | 33.8 ± 0.57 |
80 mg capsule (2000 mg of ginger rhizome) | 66.80 ± 0.11 |
Pure extract (0.3g) | 791.3 ± 1.20 |
Liquid formulation | 11,336.7 ± 0.20 |
Sample | Bioactive Compound | Ci (mg) | Cf (mg) | Bioaccessibility (%) |
---|---|---|---|---|
Pure extract | 6-gingerol | 59.36 ± 0.29 | 1.87 ± 0.29 | 3.15 ± 0.49 |
8-gingerol | 10.74 ± 0.23 | 0.42 ± 0.17 | 3.88 ± 1.60 | |
10-gingerol | 22.08 ± 0.65 | 0.27 ± 0.06 | 1.24 ± 0.30 | |
6-shogaol | 108.64 ± 0.28 | 2.08 ± 0.54 | 1.92 ± 0.49 | |
Liquid Formulation | 6-gingerol | 0.23 ± 0.01 | 0.05 ± 0.03 | 23.44 ± 1.24 |
8-gingerol | 0.04 ± 0.01 | ND | ND | |
10-gingerol | 0.07 ± 0.01 | ND | ND | |
6-shogaol | 0.42 ± 0.01 | 0.05 ± 0.01 | 11.31 ± 1.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plana, L.; Marhuenda, J.; Arcusa, R.; García-Muñoz, A.M.; Ballester, P.; Cerdá, B.; Victoria-Montesinos, D.; Zafrilla, P. Characterization, Antioxidant Capacity, and In Vitro Bioaccessibility of Ginger (Zingiber officinale Roscoe) in Different Pharmaceutical Formulations. Antioxidants 2025, 14, 873. https://doi.org/10.3390/antiox14070873
Plana L, Marhuenda J, Arcusa R, García-Muñoz AM, Ballester P, Cerdá B, Victoria-Montesinos D, Zafrilla P. Characterization, Antioxidant Capacity, and In Vitro Bioaccessibility of Ginger (Zingiber officinale Roscoe) in Different Pharmaceutical Formulations. Antioxidants. 2025; 14(7):873. https://doi.org/10.3390/antiox14070873
Chicago/Turabian StylePlana, Lucía, Javier Marhuenda, Raúl Arcusa, Ana María García-Muñoz, Pura Ballester, Begoña Cerdá, Desirée Victoria-Montesinos, and Pilar Zafrilla. 2025. "Characterization, Antioxidant Capacity, and In Vitro Bioaccessibility of Ginger (Zingiber officinale Roscoe) in Different Pharmaceutical Formulations" Antioxidants 14, no. 7: 873. https://doi.org/10.3390/antiox14070873
APA StylePlana, L., Marhuenda, J., Arcusa, R., García-Muñoz, A. M., Ballester, P., Cerdá, B., Victoria-Montesinos, D., & Zafrilla, P. (2025). Characterization, Antioxidant Capacity, and In Vitro Bioaccessibility of Ginger (Zingiber officinale Roscoe) in Different Pharmaceutical Formulations. Antioxidants, 14(7), 873. https://doi.org/10.3390/antiox14070873