Inclusion of Pineapple By-Products as Natural Antioxidant Sources in Diets for European Sea Bass (Dicentrarchus labrax)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flours and Experimental Diets
2.2. Feed Trial and Sampling
2.3. Chemical Analysis
2.4. Radical-Scavenging Capacity and Lipid Peroxidation in Flours, Experimental Diets, and Fish Muscle
2.5. Oxidative Stress Biomarkers in Fish Liver
2.6. Acute Stress Response, Energetic Metabolism, and Immune System Status in Fish Plasma
2.7. Statistical Analysis
3. Results
3.1. Chemical Composition and Antioxidant Capacity of Pineapple Flours and Diets Before and After Storage
3.2. Growth, Intake, Whole-Body Composition, and Somatic Indexes
3.3. Oxidative Stress Biomarkers in the Liver and Muscle
3.4. Acute Stress Response, Energetic Metabolism, and Immune System Status in Fish Plasma
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABTS•+ | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
ABW | Average body weight |
ACH50 | Complement activity |
ANOVA | Analysis of variance |
AOAC | The Association of Official Analytical Chemists |
BHA | 2,3-terc-butil-4-hidroxianisol, E320 |
BHT | 2,6-diterc-butil-p-creso, E321 |
CAT | Catalase |
CC | Carbonyl compounds |
CDNB | 1-chloro-2,4-dinitrobenzene |
CF | Crude fat |
CIIMAR | Interdisciplinary Centre of Marine and Environmental Research |
CP | Crude protein |
CTRL | Commercial diet without added antioxidants; negative control |
DGI | Daily growth index |
DHA | Docosahexaenoic acid |
DM | Dry matter |
DNA | Deoxyribonucleic acid |
DPPH• | 2,2-diphenyl-1-picrylhydrazyl |
EPA | Eicosapentaenoic acid |
EU | European Union |
FCR | Feed conversion ratio |
GAE | Gallic acid equivalents |
GPx | Glutathione peroxidase |
GR | Glutathione reductase |
GSH | Reduced glutathione |
GSSG | Oxidized glutathione |
GST | Glutathione s-transferase |
H2O2 | Hydrogen peroxide |
HCl | Hydrochloric acid |
Kf | Fulton’s condition index |
LPO | Lipid peroxidation |
MDA | Malondialdehyde |
MUFA | Monounsaturated fatty acids |
NADPH | 1-chloro-2,4-dinitrobenzene |
NaN3 | Sodium azide |
NaOH | Sodium hydroxide |
NEFA | Non-esterified fatty acids |
ORAC | Oxygen radical antioxidant capacity |
P2 | VITE with 2% pineapple peel flour |
PER | Protein efficiency ratio |
PMS | Post mitochondrial supernatant |
PUFA | Polyunsaturated fatty acid |
ROS | Reactive oxygen species |
S2 | VITE with 2% pineapple stem flour |
SGR | Specific growth rate |
SOD | Superoxide dismutase |
TAC | Total antioxidant capacity |
TBARS | Thiobarbituric acid reactive substances |
TE | Trolox equivalents |
TG | Total glutathione |
TNB | 5-thio-2-nitrobenzoic acid |
VFI | Voluntary feed intake |
VITE | CTRL diet with 100 mg kg−1 of vitamin E; positive control |
References
- FAO. The State of World Fisheries and Aquaculture 2022; FAO: Rome, Italy, 2022; 266p. [Google Scholar] [CrossRef]
- Bharathi, S.; Cheryl, A.; Rajagopalasamy, C.; Uma, A.; Ahilan, B.; Aanand, S. Functional feed additives used in fish feeds. Int. J. Fish. Aquat. Stud. 2019, 3, 44–52. [Google Scholar]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-year retrospective review of global aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Naylor, R.L.; Hardy, R.W.; Bureau, D.P.; Chiu, A.; Elliott, M.; Farrell, A.P.; Forster, I.; Gatlin, D.M.; Goldburg, R.J.; Hua, K.; et al. Feeding aquaculture in an era of finite resources. Proc. Natl. Acad. Sci. USA 2009, 106, 15103–15110. [Google Scholar] [CrossRef] [PubMed]
- Encarnação, P. 5—Functional feed additives in aquaculture feeds. In Aquafeed Formulation; Nates, S.F., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 217–237. [Google Scholar]
- Colombo, S.M.; Foroutani, M.B.; Parrish, C.C. Fats and Oils in Aquafeed Formulations. In Bailey’s Industrial Oil and Fat Products, 7th ed.; Shahidi, F., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2020; Volume 7, pp. 1–28. [Google Scholar]
- Olmos-Soto, J. Functional Feeds In Aquaculture. In Handbook Of Marine Technology; Kim, S.-K., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1303–1319. [Google Scholar]
- Reverter, M.; Bontemps, N.; Lecchini, D.; Banaigs, B.; Sasal, P. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current status and future perspectives. Aquaculture 2014, 433, 50–61. [Google Scholar] [CrossRef]
- Poljsak, B.; Suput, D.; Milisav, I. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxid. Med. Cell Longev. 2013, 2013, 956792. [Google Scholar] [CrossRef]
- Guilherme, S.; Válega, M.; Pereira, M.E.; Santos, M.A.; Pacheco, M. Antioxidant and biotransformation responses in Liza aurata under environmental mercury exposure—Relationship with mercury accumulation and implications for public health. Mar. Pollut. Bull. 2008, 56, 845–859. [Google Scholar] [CrossRef]
- Aklakur, M. Natural antioxidants from sea: A potential industrial perspective in aquafeed formulation. Rev. Aquac. 2018, 10, 385–399. [Google Scholar] [CrossRef]
- NRC. National Research Council (NRC): Nutrient Requirements of Fish and Shrimp; National Research Council: Washington, DC, USA, 2011; Volume 20, pp. 601–602.
- Sanches-Silva, A.; Costa, D.; Albuquerque, T.G.; Buonocore, G.G.; Ramos, F.; Castilho, M.C.; Machado, A.V.; Costa, H.S. Trends in the use of natural antioxidants in active food packaging: A review. Food. Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2014, 31, 374–395. [Google Scholar] [CrossRef]
- Lanigan, R.S.; Yamarik, T.A. Final report on the safety assessment of BHT. Int. J. Toxicol. 2002, 21, 19–94. [Google Scholar] [CrossRef]
- Nieva-Echevarría, B.; Manzanos, M.J.; Goicoechea, E.; Guillén, M.D. 2,6-Di-Tert-Butyl-Hydroxytoluene and Its Metabolites in Foods. Compr. Rev. Food Sci. Food Saf. 2015, 14, 67–80. [Google Scholar] [CrossRef]
- Anders, W.M.; Bull, R.; Cantor, K.; Chakraborti, D.; Chen, C.; DeAngelo, A.B.; DeMarini, D.M.; Ferreccio, C.; Fukushima, S.; Gebel, T.W. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; World Health Organization: Geneva, Switzerland, 1987; p. 60. [Google Scholar]
- European Comission. Commission Implementing Regulation (EU) 2022/1375 of 5 August 2022 concerning the denial of authorisation of ethoxyquin as a feed additive belonging to the functional group of antioxidants and repealing Implementing Regulation (EU) 2017/962 (Text with EEA relevance). Off. J. Eur. Union 2022, L 206, 39–41. [Google Scholar]
- Ehsani, A.; Jasour, M.S.; Agh, N.; Hashemi, M.; Khodadadi, M. Rancidity development of refrigerated rainbow trout (Oncorhynchus mykiss) fillets: Comparative effects of in vivo and in vitro lycopene. J. Sci. Food Agric. 2018, 98, 559–565. [Google Scholar] [CrossRef]
- Elseady, Y.; Zahran, E. Ameliorating effect of β-carotene on antioxidant response and hematological parameters of mercuric chloride toxicity in Nile tilapia (Oreochromis niloticus). Fish Physiol. Biochem. 2013, 39, 1031–1041. [Google Scholar] [CrossRef] [PubMed]
- Kousoulaki, K.; Sæther, B.-S.; Albrektsen, S.; Noble, C. Review on European sea bass (Dicentrarchus labrax, Linnaeus, 1758) nutrition and feed management: A practical guide for optimizing feed formulation and farming protocols. Aquacult. Nutr. 2015, 21, 129–151. [Google Scholar] [CrossRef]
- Bai, S.C.; Katya, K.; Yun, H. 7—Additives in aquafeed: An overview. In Feed and Feeding Practices in Aquaculture; Davis, D.A., Ed.; Woodhead Publishing: Oxford, UK, 2015; pp. 171–202. [Google Scholar]
- Shahbandeh, M. Leading Global Producers of Fresh Vegetables 2017; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Porter, S.D.; Reay, D.S.; Bomberg, E.; Higgins, P. Avoidable food losses and associated production-phase greenhouse gas emissions arising from application of cosmetic standards to fresh fruit and vegetables in Europe and the UK. J. Clean. Prod. 2018, 201, 869–878. [Google Scholar] [CrossRef]
- Kumar, H.; Bhardwaj, K.; Sharma, R.; Nepovimova, E.; Kuča, K.; Dhanjal, D.S.; Verma, R.; Bhardwaj, P.; Sharma, S.; Kumar, D. Fruit and Vegetable Peels: Utilization of High Value Horticultural Waste in Novel Industrial Applications. Molecules 2020, 25, 2812. [Google Scholar] [CrossRef] [PubMed]
- Wu, D. Recycle Technology for Potato Peel Waste Processing: A Review. Procedia Environ. Sci. 2016, 31, 103–107. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Habotta, O.A.E.; Elsabagh, M.; Azra, M.N.; Van Doan, H.; Kari, Z.A.; Sewilam, H. Fruit processing by-products in the aquafeed industry: A feasible strategy for aquaculture sustainability. Rev. Aquac. 2022, 14, 1945–1965. [Google Scholar] [CrossRef]
- Pereira, R.; Velasco, C.; Gómez-Garcia, R.; Dias, J.; Pintado, M.; Valente, L.M.P. Unravelling the effects of extrusion and drying temperatures on the radical scavenging capacity of aquafeeds supplemented with mango and pineapple by-products. Anim. Feed Sci. Technol. 2024, 316, 116061. [Google Scholar] [CrossRef]
- Lizarraga, C.; Hernández, C.; Aguilar, G.; Heredia, J. Propiedades antioxidantes e inmunoestimulantes de polifenoles en peces carnívoros de cultivo. CienciaUAT 2018, 12, 127. [Google Scholar] [CrossRef]
- Lizárraga-Velázquez, C.E.; Hernández, C.; González-Aguilar, G.A.; Heredia, J.B. Effect of dietary intake of phenolic compounds from mango peel extract on growth, lipid peroxidation and antioxidant enzyme activities in zebrafish (Danio rerio). Lat. Am. J. Aquat. Res. 2019, 47, 602–611. [Google Scholar] [CrossRef]
- Salem, M.E.-S.; Abdel-Ghany, H.M.; Sallam, A.E.; El-Feky, M.M.M.; Almisherfi, H.M. Effects of dietary orange peel on growth performance, antioxidant activity, intestinal microbiota and liver histology of Gilthead sea bream (Sparus aurata) larvae. Aquac. Nut. 2019, 25, 1087–1097. [Google Scholar] [CrossRef]
- Lopes, J.M.; Marques, N.C.; dos Santos, M.D.d.M.C.; Souza, C.F.; Baldissera, M.D.; Carvalho, R.C.; Santos, L.L.; Pantoja, B.T.S.; Heinzmann, B.M.; Baldisserotto, B. Dietary limon Citrus latifolia fruit peel essential oil improves antioxidant capacity of tambaqui (Colossoma macropomum) juveniles. Aquac. Res. 2020, 51, 4852–4862. [Google Scholar] [CrossRef]
- Hamed, H.S.; Abdel-Tawwab, M. Dietary pomegranate (Punica granatum) peel mitigated the adverse effects of silver nanoparticles on the performance, haemato-biochemical, antioxidant, and immune responses of Nile tilapia fingerlings. Aquaculture 2021, 540, 736742. [Google Scholar] [CrossRef]
- Riaz, M.; Ali, R. Stability of Vitamins during Extrusion. Crit. Rev. Food Sci. Nutr. 2009, 49, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Sukri, S.A.M.; Andu, Y.; Sarijan, S.; Khalid, H.-N.M.; Kari, Z.A.; Harun, H.C.; Rusli, N.D.; Mat, K.; Khalif, R.I.A.R.; Wei, L.S.; et al. Pineapple waste in animal feed: A review of nutritional potential, impact and prospects. Ann. Anim. Sci. 2023, 23, 339–352. [Google Scholar] [CrossRef]
- Campos, D.A.; Ribeiro, T.B.; Teixeira, J.A.; Pastrana, L.; Pintado, M.M. Integral Valorization of Pineapple (Ananas comosus L.) By-Products through a Green Chemistry Approach towards Added Value Ingredients. Foods 2020, 9, 60. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.-T.; Xu, X.-R.; Gan, R.-Y.; Zhang, Y.; Xia, E.-Q.; Li, H.-B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef]
- Upadhyay, A.; Lama, J.P.; Tawata, S. Utilization of pineapple waste: A review. J. Food Sci. Technol. Nepal 2010, 6, 10–18. [Google Scholar] [CrossRef]
- Nguyen, T.M.; Lam, N.C.; Le, P.T.K.; Tran, V.T.; Nguyen, N.T.; Hoang, H.A. Composting of Pineapple Residues and Food Waste: A Pilot-Scale Study. Chem. Eng. Trans. 2021, 83, 301–306. [Google Scholar] [CrossRef]
- Van Doan, H.; Hoseinifar, S.H.; Harikrishnan, R.; Khamlor, T.; Punyatong, M.; Tapingkae, W.; Yousefi, M.; Palma, J.; El-Haroun, E. Impacts of pineapple peel powder on growth performance, innate immunity, disease resistance, and relative immune gene expression of Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 2021, 114, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Blancheton, J.P. Developments in recirculation systems for Mediterranean fish species. Aquac. Eng. 2000, 22, 17–31. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International, 18th ed.; AOAC: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Basto, A.; Matos, E.; Valente, L.M.P. Nutritional value of different insect larvae meals as protein sources for European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 2020, 521, 735085. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Moreno, C. Review: Methods Used to Evaluate the Free Radical Scavenging Activity in Foods and Biological Systems. Food Sci. Technol. Int. 2002, 8, 121–137. [Google Scholar] [CrossRef]
- Gonçalves, B.; Falco, V.; Moutinho-Pereira, J.; Bacelar, E.; Peixoto, F.; Correia, C. Effects of Elevated CO2 on Grapevine (Vitis vinifera L.): Volatile Composition, Phenolic Content, and in Vitro Antioxidant Activity of Red Wine. J. Agric. Food Chem. 2009, 57, 265–273. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Techno. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Gómez-García, R.; Campos, D.A.; Oliveira, A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. A chemical valorisation of melon peels towards functional food ingredients: Bioactives profile and antioxidant properties. Food Chem. 2021, 335, 127579. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Güçlü, K.; Demirata, B.; Ozyürek, M.; Celik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Ozyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef]
- Valente, L.M.P.; Rema, P.; Ferraro, V.; Pintado, M.; Sousa-Pinto, I.; Cunha, L.M.; Oliveira, M.B.; Araújo, M. Iodine enrichment of rainbow trout flesh by dietary supplementation with the red seaweed Gracilaria vermiculophylla. Aquaculture 2015, 446, 132–139. [Google Scholar] [CrossRef]
- Ribeiro, T.B.; Oliveira, A.; Campos, D.; Nunes, J.; Vicente, A.A.; Pintado, M. Simulated digestion of an olive pomace water-soluble ingredient: Relationship between the bioaccessibility of compounds and their potential health benefits. Food Func. 2020, 11, 2238–2254. [Google Scholar] [CrossRef] [PubMed]
- Bird, R.P.; Draper, H.H. [35] Comparative studies on different methods of malonaldehyde determination. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1984; Volume 105, pp. 299–305. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Greenwald, R. CRC Handbook of Methods for Oxygen Radical Research. Free Radic. Biol. Med. 1987, 3, 161. [Google Scholar] [CrossRef]
- Mohandas, J.; Marshall, J.J.; Duggin, G.G.; Horvath, J.S.; Tiller, D.J. Differential distribution of glutathione and glutathione-related enzymes in rabbit kidney. Possible implications in analgesic nephropathy. Biochem. Pharmacol. 1984, 33, 1801–1807. [Google Scholar] [CrossRef] [PubMed]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases: The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef] [PubMed]
- Cribb, A.E.; Leeder, J.S.; Spielberg, S.P. Use of a microplate reader in an assay of glutathione reductase using 5,5′-dithiobis(2-nitrobenzoic acid). Anal. Biochem. 1989, 183, 195–196. [Google Scholar] [CrossRef]
- Baker, M.A.; Cerniglia, G.J.; Zaman, A. Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal. Biochem. 1990, 190, 360–365. [Google Scholar] [CrossRef]
- Quade, M.J.; Roth, J.A. A rapid, direct assay to measure degranulation of bovine neutrophil primary granules. Vet. immunol. immunopathol. 1997, 58, 239–248. [Google Scholar] [CrossRef]
- Costas, B.; Conceição, L.E.C.; Dias, J.; Novoa, B.; Figueras, A.; Afonso, A. Dietary arginine and repeated handling increase disease resistance and modulate innate immune mechanisms of Senegalese sole (Solea senegalensis Kaup, 1858). Fish Shellfish Immunol. 2011, 31, 838–847. [Google Scholar] [CrossRef]
- Parry, R.M.; Chandan, R.C.; Shahani, K.M. A Rapid and Sensitive Assay of Muramidase. Proc. Soc. Exp. Biol. Med. 1965, 119, 384–386. [Google Scholar] [CrossRef]
- Hutchinson, T.H.; Manning, M.J. Seasonal trends in serum lysozyme activity and total protein concentration in dab (Limanda limanda L.) sampled from Lyme Bay, U.K. Fish Shellfish Immunol. 1996, 6, 473–482. [Google Scholar] [CrossRef]
- Sunyer, J.O.; Tort, L. Natural hemolytic and bactericidal activities of sea bream Sparus aurata serum are effected by the alternative complement pathway. Vet. Immunol. Immunopathol. 1995, 45, 333–345. [Google Scholar] [CrossRef]
- Gunathilake, T.; Akanbi, T.O.; Suleria, H.A.R.; Nalder, T.D.; Francis, D.S.; Barrow, C.J. Seaweed Phenolics as Natural Antioxidants, Aquafeed Additives, Veterinary Treatments and Cross-Linkers for Microencapsulation. Mar. Drugs 2022, 20, 445. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, S.C.; Campos, D.A.; Gómez-García, R.; Pintado, M.; Oliveira, M.C.; Santos, D.I.; Corrêa-Filho, L.C.; Moldão-Martins, M.; Alves, V.D. Optimization of Natural Antioxidants Extraction from Pineapple Peel and Their Stabilization by Spray Drying. Foods 2021, 10, 1255. [Google Scholar] [CrossRef] [PubMed]
- Springer, N.P.; Schmitt, J. The price of byproducts: Distinguishing co-products from waste using the rectangular choice-of-technologies model. Resour. Conserv. Recycl. 2018, 138, 231–237. [Google Scholar] [CrossRef]
- Bors, W.; Michel, C. Chemistry of the Antioxidant Effect of Polyphenols. Ann. N. Y. Acad. Sci. 2002, 957, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Lee, C.Y.; Sharma, A.; Semenya, J.; Anamoah, C.; Chapman, K.N.; Barone, V. Computational Study of Ortho-Substituent Effects on Antioxidant Activities of Phenolic Dendritic Antioxidants. Antioxidants 2020, 9, 189. [Google Scholar] [CrossRef]
- Hossain, M.A.; Rahman, S.M.M. Total phenolics, flavonoids and antioxidant activity of tropical fruit pineapple. Food Res. Int. 2011, 44, 672–676. [Google Scholar] [CrossRef]
- Huang, C.W.; Lin, I.J.; Liu, Y.M.; Mau, J.L. Composition, enzyme and antioxidant activities of pineapple. Int. J. Food Prop. 2021, 24, 1244–1251. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef]
- Shen, Y.; Song, X.; Li, L.; Sun, J.; Jaiswal, Y.; Huang, J.; Liu, C.; Yang, W.; Williams, L.; Zhang, H.; et al. Protective effects of p-coumaric acid against oxidant and hyperlipidemia-an in vitro and in vivo evaluation. Biomed. Pharmacother. 2019, 111, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Rezaeiroshan, A.; Saeedi, M.; Morteza-Semnani, K.; Akbari, J.; Hedayatizadeh-Omran, A.; Goli, H.; Nokhodchi, A. Vesicular Formation of Trans-Ferulic Acid: An Efficient Approach to Improve the Radical Scavenging and Antimicrobial Properties. J. Pharm. Innov. 2022, 17, 652–661. [Google Scholar] [CrossRef]
- Rocchetti, G.; Gregorio, R.P.; Lorenzo, J.M.; Barba, F.J.; Oliveira, P.G.; Prieto, M.A.; Simal-Gandara, J.; Mosele, J.I.; Motilva, M.-J.; Tomas, M.; et al. Functional implications of bound phenolic compounds and phenolics–food interaction: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 811–842. [Google Scholar] [CrossRef] [PubMed]
- Ahmadifar, E.; Yousefi, M.; Karimi, M.; Fadaei Raieni, R.; Dadar, M.; Yilmaz, S.; Dawood, M.A.O.; Abdel-Latif, H.M.R. Benefits of Dietary Polyphenols and Polyphenol-Rich Additives to Aquatic Animal Health: An Overview. Rev. Fish. Sci. Aquac. 2021, 29, 478–511. [Google Scholar] [CrossRef]
- Leopoldini, M.; Chiodo, S.G.; Russo, N.; Toscano, M. Detailed Investigation of the OH Radical Quenching by Natural Antioxidant Caffeic Acid Studied by Quantum Mechanical Models. J. Chem. Theory Comput. 2011, 7, 4218–4233. [Google Scholar] [CrossRef]
- Barden, L.; Decker, E.A. Lipid Oxidation in Low-moisture Food: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2467–2482. [Google Scholar] [CrossRef]
- Gumus, C.E.; Decker, E.A. Oxidation in Low Moisture Foods as a Function of Surface Lipids and Fat Content. Foods 2021, 10, 860. [Google Scholar] [CrossRef]
- Hwang, E.-S.; Yeom, M.S. Effects of storage temperature on the bioactive compound content and antioxidant activity of aronia (Aronia melanocarpa) fruit. Korean J. Food Preserv. 2019, 26, 455–465. [Google Scholar] [CrossRef]
- Al-Khalaifah, H.S.; Khalil, A.A.; Amer, S.A.; Shalaby, S.I.; Badr, H.A.; Farag, M.F.M.; Altohamy, D.E.; Abdel Rahman, A.N. Effects of Dietary Doum Palm Fruit Powder on Growth, Antioxidant Capacity, Immune Response, and Disease Resistance of African Catfish, Clarias gariepinus (B.). Animals 2020, 10, 1407. [Google Scholar] [CrossRef] [PubMed]
- Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J. 2015, 15, 71. [Google Scholar] [CrossRef] [PubMed]
- Tucker, J.M.; Townsend, D.M. Alpha-tocopherol: Roles in prevention and therapy of human disease. Biomed. Pharmacother. 2005, 59, 380–387. [Google Scholar] [CrossRef]
- Bouayed, J.; Bohn, T. Exogenous Antioxidants—Double-Edged Swords in Cellular Redox State: Health Beneficial Effects at Physiologic Doses versus Deleterious Effects at High Doses. Oxid. Med. Cell. Longev. 2010, 3, 267025. [Google Scholar] [CrossRef]
- Betancor, M.B.; Atalah, E.; Caballero, M.; Benítez-Santana, T.; Roo, J.; Montero, D.; Izquierdo, M. α-Tocopherol in weaning diets for European sea bass (Dicentrarchus labrax) improves survival and reduces tissue damage caused by excess dietary DHA contents. Aquac. Nut. 2011, 17, e112–e122. [Google Scholar] [CrossRef]
- Gatta, P.P.; Pirini, M.; Testi, S.; Vignola, G.; Monetti, P.G. The influence of different levels of dietary vitamin E on sea bass Dicentrarchus labrax flesh quality. Aquac. Nut. 2000, 6, 47–52. [Google Scholar] [CrossRef]
- Pereira, R.; Costa, M.; Velasco, C.; Cunha, L.M.; Lima, R.C.; Baião, L.F.; Batista, S.; Marques, A.; Sá, T.; Campos, D.A.; et al. Comparative Analysis between Synthetic Vitamin E and Natural Antioxidant Sources from Tomato, Carrot and Coriander in Diets for Market-Sized Dicentrarchus labrax. Antioxidants 2022, 11, 636. [Google Scholar] [CrossRef] [PubMed]
- Arfaoui, L. Dietary Plant Polyphenols: Effects of Food Processing on Their Content and Bioavailability. Molecules 2021, 26, 2959. [Google Scholar] [CrossRef]
- Resende, D.; Pereira, R.; Domínguez, D.; Pereira, M.; Pereira, C.; Pintado, M.; Valente, L.M.P.; Velasco, C. Stress response of European seabass (Dicentrarchus labrax) fed plant-based diets supplemented with swine blood hydrolysates. Aquac. Rep. 2023, 30, 101600. [Google Scholar] [CrossRef]
- Hamed, R.R.; Maharem, T.M.; Guinidi, R.A. Glutathione and its related enzymes in the Nile fish. Fish Physiol. Biochem. 2004, 30, 189–199. [Google Scholar] [CrossRef]
- Guardiola, F.A.; Porcino, C.; Cerezuela, R.; Cuesta, A.; Faggio, C.; Esteban, M.A. Impact of date palm fruits extracts and probiotic enriched diet on antioxidant status, innate immune response and immune-related gene expression of European seabass (Dicentrarchus labrax). Fish Shellfish Immunol. 2016, 52, 298–308. [Google Scholar] [CrossRef]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.-K.; Wang, Y.; Ketchimenin, P.; Yuen, K.-H. Replacement of dietary fish oil with palm fatty acid distillate elevates tocopherol and tocotrienol concentrations and increases oxidative stability in the muscle of African catfish, Clarias gariepinus. Aquaculture 2004, 233, 423–437. [Google Scholar] [CrossRef]
- Sen, C.K.; Rink, C.; Khanna, S. Palm oil-derived natural vitamin E alpha-tocotrienol in brain health and disease. J. Am. Coll. Nutr. 2010, 29, 314s–323s. [Google Scholar] [CrossRef]
- Martinez-Porchas, M.; Martinez-Cordova, L.R.; Ramos-Enriquez, R. Cortisol and Glucose: Reliable indicators of fish stress? Pan-Am. J. Aquat. Sci. 2009, 4, 158–178. [Google Scholar]
- Fanouraki, E.; Mylonas, C.; Papandroulakis, N.; Pavlidis, M. Species specificity in the magnitude and duration of the acute stress response in Mediterranean marine fish in culture. Gen. Comp. Endocrinol. 2011, 173, 313–322. [Google Scholar] [CrossRef]
- Di Marco, P.; Priori, A.; Finoia, M.G.; Massari, A.; Mandich, A.; Marino, G. Physiological responses of European sea bass Dicentrarchus labrax to different stocking densities and acute stress challenge. Aquaculture 2008, 275, 319–328. [Google Scholar] [CrossRef]
- Shearer, G.C.; Savinova, O.V.; Harris, W.S. Fish oil—How does it reduce plasma triglycerides? Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2012, 1821, 843–851. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Adeshina, I.; Jenyo-Oni, A.; Ajani, E.K.; Emikpe, B.O. Growth, physiological, antioxidants, and immune response of African catfish, Clarias gariepinus (B.), to dietary clove basil, Ocimum gratissimum, leaf extract and its susceptibility to Listeria monocytogenes infection. Fish Shellfish Immunol. 2018, 78, 346–354. [Google Scholar] [CrossRef]
- Gabriel, N.N.; Wilhelm, M.R.; Habte-Tsion, H.-M.; Chimwamurombe, P.; Omoregie, E.; Iipinge, L.N.; Shimooshili, K. Effect of dietary Aloe vera polysaccharides supplementation on growth performance, feed utilization, hemato-biochemical parameters, and survival at low pH in African catfish (Clarias gariepinus) fingerlings. Int. Aquat. Res. 2019, 11, 57–72. [Google Scholar] [CrossRef]
- Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 2011, 35, 1366–1375. [Google Scholar] [CrossRef] [PubMed]
Peel Flour | Stem Flour | |
---|---|---|
Proximate composition 1 | ||
Dry matter | 92.7 ± 0.1 | 89.4 ± 0.1 |
Crude protein | 5.2 ± 0.01 | 4.8 ± 0.04 |
Crude fat | 0.5 ± 0.01 | 0.9 ± 0.02 |
Ash | 3.2 ± 0.01 | 2.8 ± 0.01 |
Gross energy | 16.7 ± 0.2 | 17.8 ± 0.01 |
Carbohydrates | 91.2 ± 0.1 | 91.4 ± 0.1 |
Free phenolic extracts 2 | ||
DPPH• | 322.0 ± 0.7 | 223.8 ± 2.6 |
ABTS•+ | 845.6 ± 10.3 | 941.0 ± 103.7 |
ORAC | 3722.7 ± 65.9 | 1613.9 ± 74.9 |
Total phenolic compounds | 1157.6 ± 97.8 | 622.6 ± 2.4 |
Bound phenolic extracts 2 | ||
DPPH• | 886.3 ± 143.6 | 702.7 ± 19.1 |
ABTS•+ | 9232.2 ± 931.6 | 6089.3 ± 101.7 |
ORAC | 9377.5 ± 957.4 | 6487.2 ± 529.1 |
Total phenolic compounds | 953.8 ± 13.2 | 502.1 ± 35.4 |
Lipid peroxidation 3 | ||
TBARS | 167.1 ± 1.5 | 121.0 ± 2.8 |
CTRL | VITE | P2 | S2 | |
---|---|---|---|---|
Ingredients (%) | ||||
Fishmeal Super Prime 1 | 15.0 | 15.0 | 15.0 | 15.0 |
Poultry meal 2 | 10.0 | 10.0 | 10.0 | 10.0 |
Porcine blood meal 3 | 2.0 | 2.0 | 2.0 | 2.0 |
Soy protein concentrate 4 | 15.0 | 15.0 | 15.0 | 15.0 |
Wheat gluten 5 | 6.0 | 6.0 | 6.0 | 6.0 |
Corn gluten meal 6 | 10.0 | 10.0 | 10.0 | 10.0 |
Soybean meal 44 7 | 8.0 | 8.0 | 8.0 | 8.0 |
Sunflower meal 40 8 | 5.0 | 5.0 | 5.0 | 5.0 |
Wheat meal 9 | 10.0 | 10.0 | 7.9 | 7.9 |
Wheat bran 9 | 4.1 | 4.1 | 4.1 | 4.1 |
Pineapple peel 10 | 2.0 | |||
Pineapple stem 10 | 2.0 | |||
Vitamin and Mineral Premix PV02 11 | 1.0 | 1.0 | 1.0 | 1.0 |
Vitamin C35 12 | 0.03 | 0.03 | 0.03 | 0.03 |
Vitamin E50 12 | 0.02 | 0.02 | 0.02 | |
Yttrium (III) oxide | 0.02 | 0.02 | 0.02 | 0.02 |
Monoammonium phosphate | 0.97 | 0.97 | 0.97 | 0.97 |
Fish oil 13 | 7.0 | 7.0 | 7.0 | 7.0 |
Soybean oil 14 | 5.9 | 5.9 | 6.0 | 6.0 |
Proximate composition 15 | ||||
Dry matter | 96.2 ± 0.3 | 98.1 ± 0.02 | 94.8 ± 0.02 | 97.1 ± 0.1 |
Ash | 6.3 ± 0.05 | 6.4 ± 0.1 | 6.4 ± 0.03 | 6.4 ± 0.0 |
Protein | 55.8 ± 0.02 | 55.1 ± 0.3 | 55.3 ± 0.1 | 56.3 ± 0.2 |
Lipids | 17.3 ± 0.4 | 17.0 ± 0.4 | 16.7 ± 0.4 | 17.5 ± 0.5 |
Gross energy | 22.5 ± 0.02 | 21.7 ± 0.1 | 22.7 ± 0.1 | 22.7 ± 0.01 |
Carbohydrates | 20.4 ± 0.3 | 21.5 ± 0.3 | 21.3 ± 0.6 | 20.7 ± 0.4 |
CTRL | VITE | P2 | S2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Initial | 4 °C | 24 °C | Initial | 4 °C | 24 °C | Initial | 4 °C | 24 °C | Initial | 4 °C | 24 °C | |
Free phenolic extracts 1 | ||||||||||||
DPPH• | 187.0 ± 2.0 | 178.4 ± 25.6 | 229.4 ± 22.4 | 211.9 ± 6.8 | 185.4 ± 8.3 | 210.0 ± 25.3 | 194.2 ± 11.4 | 197.6 ± 2.3 | 180.1 ± 9.2 | 186.0 ± 4.5 | 195.1 ± 13.8 | 180.1 ± 14.5 |
ABTS•+ | 596.1 ± 4.9 | 577.9 ± 77.3 | 654. ± 8.9 | 689.0 ± 60.5 | 482.8 ± 14.0 | 563.9 ± 83.2 | 701.0 ± 5.0 | 518.8 ± 25.0 | 519.7 ± 22.6 | 597.1 ± 25.8 | 513.3 ± 33.5 | 518.4 ± 60.5 |
ORAC | 1828.3 ± 176.6 | 2076.5 ± 73.7 | 1655.1 ± 278.3 | 2046.3 ± 8.0 | 2314.4 ± 202.7 | 2709.6 ± 39.1 | 1911.8 ± 52.1 | 2974.4 ± 213.8 | 2142.9 ± 64.2 | 1746.4 ± 161.9 | 2061.3 ± 120.5 | 1794.5 ± 229.3 |
Phenolic compounds | 606.5 ± 11.2 | 585.4 ± 8.9 | 614.6 ± 15.4 | 646.0 ± 7.2 | 594.0 ± 8.5 | 592.7 ± 21.6 | 676.2 ± 11.7 | 652.3 ± 7.3 | 655.4 ± 29.3 | 645.3 ± 27.5 | 624.4 ± 11.3 | 631.8 ± 8.4 |
Bound phenolic extracts 1 | ||||||||||||
DPPH• | 43.9 ± 10.6 | 50.8 ± 7.3 | 48.9 ± 4.1 | 35.4 ± 1.2 | 45.3 ± 2.8 | 55.7 ± 7.5 | 45.0 ± 5.2 | 51.4 ± 1.2 | 56.1 ± 1.8 | 62.3 ± 7.5 | 44.8 ± 2.6 | 42.1 ± 2.0 |
ABTS•+ | 71.3 ± 6.2 | 74.1 ± 3.0 | 62.9 ± 5.9 | 64.4 ± 4.8 | 70.4 ± 8.2 | 77.3 ± 8.5 | 76.1 ± 9.6 | 94.4 ± 8.1 | 87.8 ± 6.5 | 94.9 ± 2.2 | 114.9 ± 8.2 | 105.6 ± 7.1 |
ORAC | 1315.4 ± 75.3 | 1750.1 ± 74.5 | 1399.6 ± 61.2 | 1086.7 ± 88.3 | 1708.7 ± 50.2 | 1477.3 ± 89.6 | 1306.5 ± 113.5 | 1994.0 ± 89.4 | 1926.2 ± 141.4 | 1329.7 ± 62.2 | 1567.1 ± 95.0 | 1507.7 ± 180.1 |
Phenolic compounds | 265.3 ± 0.2 | 266.6 ± 4.3 | 257.9 ± 3.8 | 265.2 ± 1.0 | 269.9 ± 1.5 | 265.5 ± 4.5 | 279.5 ± 2.0 | 278.9 ± 0.4 | 282.0 ± 1.6 | 272.9 ± 0.8 | 272.7 ± 0.5 | 272.5 ± 0.7 |
Lipid peroxidation 2 | ||||||||||||
TBARS | 59.7 ± 3.1 | 140.8 ± 4.3 | 140.6 ± 7.4 | 58.8 ± 3.5 | 133.6 ± 5.6 | 134.5 ± 5.4 | 63.0 ± 2.5 | 131.5 ± 4.6 | 133.1 ± 3.4 | 63.7 ± 2.6 | 128.3 ± 5.2 | 136.6 ± 4.8 |
CTRL | VITE | P2 | S2 | p-Value | |
---|---|---|---|---|---|
Growth performance 1 | |||||
Initial body weight (g) | 13.5 ± 0.2 | 13.5 ± 0.03 | 13.5 ± 0.1 | 13.5 ± 0.2 | 0.9 |
Final body weight (g) | 64.5 ± 2.4 | 59.0 ± 3.4 | 59.5 ± 4.4 | 62.3 ± 2.2 | 0.1 |
Initial length (cm) | 11.2 ± 0.1 | 11.1 ± 0.1 | 11.1 ± 0.1 | 11.1 ± 0.02 | 0.9 |
Final length (cm) | 17.8 ± 0.1 | 17.6 ± 0.2 | 17.4 ± 0.2 | 17.6 ± 0.2, | 0.1 |
Kf | 1.1 ± 0.03 | 1.1 ± 0.1 | 1.1 ± 0.05 | 1.2 ± 0.02 | 0.3 |
SGR | 1.9 ± 0.04 | 1.8 ± 0.1 | 1.8 ± 0.1 | 1.9 ± 0.04 | 0.1 |
DGI | 2.0 ± 0.1 | 1.9 ± 0.1 | 1.9 ± 0.1 | 1.9 ± 0.1 | 0.1 |
VFI | 1.5 ± 0.1 | 1.5 ± 0.2 | 1.5 ± 0.1 | 1.5 ± 0.03 | 0.9 |
FCR | 1.0 ± 0.04 | 1.0 ± 0.1 | 1.0 ± 0.1 | 1.0 ± 0.03 | 0.8 |
PER | 1.9 ± 0.1 | 1.8 ± 0.2 | 1.9 ± 0.1 | 1.9 ± 0.1 | 1.0 |
Intake 2 | |||||
Dry matter | 16.0 ± 0.6 | 15.8 ± 1.6 | 15.8 ± 0.6 | 15.5 ± 0.3 | 0.9 |
Protein | 8.9 ± 0.4 | 8.7 ± 0.9 | 8.8 ± 0.4 | 8.7 ± 0.2 | 0.9 |
Lipids | 2.8 ± 0.1 | 2.7 ± 0.3 | 2.6 ± 0.1 | 2.7 ± 0.1 | 0.8 |
Gross energy | 358.9 ± 14.3 | 342.2 ± 34.9 | 359.0 ± 14.4 | 351.3 ± 7.6 | 0.6 |
Whole-Body Composition 3 | |||||
Dry matter | 31.0 ± 0.3 | 31.2 ± 1.7 | 31.8 ± 0.6 | 30.6 ± 0.5 | 0.4 |
Ash | 3.5 ± 0.5 | 3.9 ± 0.4 | 4.0 ± 0.4 | 3.6 ± 0.2 | 0.3 |
Protein | 17.1 ± 0.3 | 17.3 ± 1.5 | 17.7 ± 0.5 | 16.8 ± 0.3 | 0.5 |
Lipids | 11.0 ± 0.3 | 10.9 ± 1.1 | 11.1 ± 0.3 | 11.0 ± 0.9 | 1.0 |
Gross energy | 7.7 ± 0.2 | 7.5 ± 0.6 | 7.8 ± 0.4 | 7.7 ± 0.3 | 0.8 |
Somatic Indexes | |||||
Viscerosomatic index | 6.6 ± 0.4 | 6.9 ± 0.7 | 6.8 ± 0.8 | 7.0 ± 0.5 | 0.1 |
Hepatosomatic index | 1.1 ± 0.04 | 1.2 ± 0.2 | 1.1 ± 0.2 | 1.1 ± 0.04 | 0.3 |
Non-Stressed | Stressed | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CTRL | VITE | P2 | S2 | CTRL | VITE | P2 | S2 | Stress | Diet | SxD | |
Plasma biomarkers | |||||||||||
Lactate 1 | 3.3 ± 0.3 | 3.4 ± 0.2 | 4.5 ± 0.7 | 3.4 ± 0.2 | 6.6 ± 0.8 * | 6.6 ± 0.7 * | 6.0 ± 0.7 * | 6.6 ± 0.6 * | <0.001 | 1.0 | 0.3 |
Glucose 1 | 4.2 ± 0.2 | 4.3 ± 0.3 | 4.1 ± 0.3 | 4.6 ± 0.2 | 7.0 ± 0.3* | 6.6 ± 0.2 * | 6.8 ± 0.3 * | 6.3 ± 0.3 * | <0.001 | 0.9 | 0.2 |
Cortisol 2 | 412.0 ± 43.4 | 394.7 ± 46.4 | 405.0 ± 23.3 | 379.8 ± 39.5 | 480.7 ± 44.9 * | 518.8 ± 32.1 * | 493.0 ± 57.7 * | 425.1 ± 31.9 * | 0.01 | 0.5 | 0.7 |
Cholesterol 1 | 3.8 ± 0.5 | 2.1 ± 0.4 | 3.4 ± 0.5 | 2.7 ± 0.4 | 3.6 ± 0.3 | 3.5 ± 0.4 | 2.8 ± 0.5 | 2.8 ± 0.5 | 0.1 | 0.4 | 0.1 |
Triglycerides 1 | 2.1 ± 0.3 | 1.3 ± 0.2 | 2.1 ± 0.4 | 1.8 ± 0.2 | 1.8 ± 0.1 | 1.6 ± 0.2 | 2.2 ± 0.2 | 1.7 ± 0.1 | 0.1 | 0.8 | 0.8 |
NEFA 1 | 0.14 ± 0.01 A,B | 0.10 ± 0.01 B | 0.16 ± 0.02 A | 0.15 ± 0.01 A | 0.15 ± 0.01 A | 0.14 ± 0.01 A,B | 0.14 ± 0.01 A,B | 0.13 ± 0.003 A,B | 0.03 | 0.4 | 0.01 |
Immune parameters 3 | |||||||||||
Lysozyme | 14.1 ± 4.1 | 13.1 ± 4.0 | 11.4 ± 4.0 | 14.7 ± 4.2 | 15.4 ± 4.9 | 13.9 ± 4.2 | 12.8 ± 3.7 | 16.1 ± 5.1 | 0.5 | 0.3 | 0.6 |
Peroxidase | 55.5 ± 12.0 | 72.8 ± 30.4 | 47.0 ± 8.6 | 50.9 ± 10.0 | 64.6 ± 14.0 * | 77.6 ± 9.2 * | 62.4 ± 10.6 * | 68.9 ± 9.1 * | 0.02 | 0.7 | 0.9 |
ACH50 | 194.2 ± 28.3 * | 217.0 ± 28.8 * | 198.9 ± 21.7 * | 192.9 ± 24.1 * | 160.2 ± 15.0 | 163.8 ± 31.6 | 111.7 ± 29.0 | 108.8 ± 23.2 | 0.02 | 0.7 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, R.; Basto, A.; Pintado, M.; Valente, L.M.P.; Velasco, C. Inclusion of Pineapple By-Products as Natural Antioxidant Sources in Diets for European Sea Bass (Dicentrarchus labrax). Antioxidants 2025, 14, 333. https://doi.org/10.3390/antiox14030333
Pereira R, Basto A, Pintado M, Valente LMP, Velasco C. Inclusion of Pineapple By-Products as Natural Antioxidant Sources in Diets for European Sea Bass (Dicentrarchus labrax). Antioxidants. 2025; 14(3):333. https://doi.org/10.3390/antiox14030333
Chicago/Turabian StylePereira, Ricardo, Ana Basto, Manuela Pintado, Luisa M. P. Valente, and Cristina Velasco. 2025. "Inclusion of Pineapple By-Products as Natural Antioxidant Sources in Diets for European Sea Bass (Dicentrarchus labrax)" Antioxidants 14, no. 3: 333. https://doi.org/10.3390/antiox14030333
APA StylePereira, R., Basto, A., Pintado, M., Valente, L. M. P., & Velasco, C. (2025). Inclusion of Pineapple By-Products as Natural Antioxidant Sources in Diets for European Sea Bass (Dicentrarchus labrax). Antioxidants, 14(3), 333. https://doi.org/10.3390/antiox14030333