Phytochemical Screening and Biological Activity of Female and Male Cones from Pinus nigra subsp. laricio (Poir.) Maire
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Solvents
2.2. Plant Material and Sample Preparation
2.3. GC-MS Analysis of Apolar Fractions
2.4. Total Phenolic and Flavonoid Content
2.5. Antioxidant Activity
2.5.1. Determination of Free Radical Scavenging Activity (DPPH Test)
2.5.2. Beta-Carotene Bleaching Test
2.6. In Vitro Evaluation of Nitric Oxide (NO) Production Inhibition and Cytotoxicity
2.7. Pancreatic Lipase Inhibition Assay
2.8. Alpha-Amylase Inhibition Assay
3. Results
3.1. Yields of Extraction and Phytochemical Profile
3.2. Evaluation of Antioxidant Potential
| Sample | Fraction | DPPH Test | β-Carotene Bleaching Test | |
|---|---|---|---|---|
| IC50 (µg/mL) | ||||
| 30 min | 60 min | |||
| Female cones | Raw extract | 4.50 ± 0.10 a | 3.03 ± 0.06 b | 10.77 ± 0.37 c |
| n-hexane | >1000 | 17.89 ± 0.39 g | 49.72 ± 2.42 f | |
| CH2Cl2 | 49.80 ± 2.41 b | 4.56 ± 0.13 c | 16.24 ± 0.64 d | |
| AcOEt | 5.52 ± 0.08 a | 4.44 ± 0.18 c | 18.21 ± 0.16 d | |
| H2 O | 107.17 ± 1.94 d | 9.57 ± 0.23 e | 40.24 ± 1.13 e | |
| Male cones | Raw extract | 178.03±1.29 e | 15.47 ± 0.27 f | >100 |
| n-hexane | >1000 | >100 | >100 | |
| CH2Cl2 | 389.70 ± 12.35 f | >100 | >100 | |
| AcOEt | 62.33 ± 0.50 c | 5.09 ± 0.08 d | 8.27 ± 0.10 b | |
| H2O | 69.88 ± 1.09 c | >100 | >100 | |
| Ascorbic acid * | 2.00 ± 0.01 a | - | - | |
| Propil gallate * | - | 1.00 ± 0.02 a | 1.00 ± 0.02 a | |
3.3. Quantification of Nitric Oxide Production
3.4. Pancreatic Lipase Inhibition Activity
3.5. Evaluation of α-Amylase Inhibitory Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sychrová, A.; Koláriková, I.; Žemlička, M.; Šmejkal, K. Natural compounds with dual antimicrobial and anti-inflammatory effects. Phytochem. Rev. 2020, 19, 1471–1502. [Google Scholar] [CrossRef]
- Fucile, M.; Macasoi, I.G.; Negrea, M.; Obistioiu, D.; Marrelli, M.; Alexa, E.; Dehelean, C.; Statti, G.; Conforti, F.; Pinzaru, I. Pharmaco-Toxicological Effects of Cachrys libanotis Extract: Antioxidant, Antimicrobial, and Cytotoxic Activities in Human Cell Lines and Embryonic Models. Antioxidants 2025, 14, 810. [Google Scholar] [CrossRef] [PubMed]
- Chopra, A.S.; Lordan, R.; Horbańczuk, O.K.; Atanasov, A.G.; Chopra, I.; Horbańczuk, J.O.; Jóźwik, A.; Huang, L.; Pirgozliev, V.; Banach, M.; et al. The Current Use and Evolving Landscape of Nutraceuticals. Pharmacol. Res. 2022, 175, 106001. [Google Scholar] [CrossRef]
- Naeem, A.; Hu, P.; Yang, M.; Zhang, J.; Liu, Y.; Zhu, W.; Zheng, Q. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules 2022, 27, 8367. [Google Scholar] [CrossRef]
- Atta, S.; Waseem, D.; Fatima, H.; Naz, I.; Rasheed, F.; Kanwal, N. Antibacterial potential and synergistic interaction between natural polyphenolic extracts and synthetic antibiotic on clinical isolates. Saudi J. Biol. Sci. 2023, 30, 103576. [Google Scholar] [CrossRef]
- Pattnaik, M.; Pandey, P.; Martin, G.J.O.; Mishra, H.N.; Ashokkumar, M. Innovative Technologies for Extraction and Microencapsulation of Bioactives from Plant-Based Food Waste and Their Applications in Functional Food Development. Foods 2021, 10, 279. [Google Scholar] [CrossRef]
- Domingo-Fernández, D.; Gadiya, Y.; Mubeen, S.; Bollerman, T.J.; Healy, M.D.; Chanana, S.; Sadovsky, R.G.; Healey, D.; Colluru, V. Modern drug discovery using ethnobotany: A large-scale cross-cultural analysis of traditional medicine reveals common therapeutic uses. iScience 2023, 26, 107729. [Google Scholar] [CrossRef]
- Lupia, A.; Lupia, C.; Lupia, R. Etnobotanica in Calabria: Viaggio Alla Scoperta di Antichi Saperi Intorno al Mondo Delle Piante; Rubbettino: Soveria Mannelli, Italy, 2017. [Google Scholar]
- Mincheva, I.; Naychov, Z.; Radev, C.; Aneva, I.; Rastrelli, L.; Kozuharova, E. Ethnobotanical and Ethnopharmacological Study in the Bulgarian Rhodopes Mountains—Part _I. Diversity 2022, 14, 686. [Google Scholar] [CrossRef]
- Mincheva, I.; Naychov, Z.; Radev, C.; Aneva, I.; Rastrelli, L.; Kamusheva, M.; Nikolov, N.; Kozuharova, E. Ethnobotanical and Ethnopharmacological Study in the Bulgarian Mountain Rhodopes: Part II—Contemporary Use of Medicinal Plants. Diversity 2023, 15, 482. [Google Scholar] [CrossRef]
- Papp, N.; Purger, D.; Czigle, S.; Czégényi, D.; Stranczinger, S.; Tóth, M.; Dénes, T.; Kocsis, M.; Takácsi-Nagy, A.; Filep, R. The Importance of Pine Species in the Ethnomedicine of Transylvania (Romania). Plants 2022, 11, 2331. [Google Scholar] [CrossRef]
- Janaćković, P.; Gavrilović, M.; Miletić, M.; Radulović, M.; Kolašinac, S.; Dajić Stevanović, Z. Small regions as key sources of traditional knowledge: A quantitative ethnobotanical survey in the central Balkans. J. Ethnobiol. Ethnomed. 2022, 18, 70. [Google Scholar] [CrossRef]
- Eraslan, G.; Kanbur, M.; Silici, S.; Karabacak, M. Beneficial effect of pine honey on trichlorfon induced some biochemical alterations in mice. Ecotoxicol. Environ. Saf. 2010, 73, 1084–1091. [Google Scholar] [CrossRef]
- Tananaki, C.; Thrasyvoulou, A.; Giraudel, J.L.; Montury, M. Determination of volatile characteristics of Greek and Turkish pine honey samples and their classification by using Kohonen self organising maps. Food Chem. 2007, 101, 1687–1693. [Google Scholar] [CrossRef]
- Tsavea, E.; Vardaka, F.-P.; Savvidaki, E.; Kellil, A.; Kanelis, D.; Bucekova, M.; Grigorakis, S.; Godocikova, J.; Gotsiou, P.; Dimou, M.; et al. Physicochemical Characterization and Biological Properties of Pine Honey Produced across Greece. Foods 2022, 11, 943. [Google Scholar] [CrossRef] [PubMed]
- Sarı, F.; Kavallieratos, N.G.; Eleftheriadou, N. Determination of forest fire risk with respect to Marchalina hellenica potential distribution to protect pine honey production sites in Turkey. Environ. Sci. Pollut. Res. 2024, 31, 53348–53368. [Google Scholar] [CrossRef]
- Akbulut, M.; Ozcan, M.M.; Coklar, H. Evaluation of antioxidant activity, phenolic, mineral contents and some physicochemical properties of several pine honeys collected from Western Anatolia. Int. J. Food Sci. Nutr. 2009, 60, 577–589. [Google Scholar] [CrossRef]
- Sıcak, Y.; Şahin-Yağlıoğlu, A.; Öztürk, M. Bioactivities and phenolic constituents relationship of Muğla thyme and pine honey of Turkey with the chemometric approach. J. Food Meas. Charact. 2021, 15, 3694–3707. [Google Scholar] [CrossRef]
- Baatache, O.; Derbal, K.; Benalia, A.; Aberkane, I.; Guizah, Q.E.; Khalfaoui, A.; Pizzi, A. Valorization of Pine Cones (Pinus nigras) for Industrial Wastewater Treatment and Crystal Violet Removal: A Sustainable Approach Based on Bio-Coagulants and a Bio-Adsorbent. Water 2024, 16, 260. [Google Scholar] [CrossRef]
- Chammam, A.; Fillaudeau, L.; Romdhane, M.; Bouajila, J. Chemical Composition and In Vitro Bioactivities of Extracts from Cones of P. halepensis, P. brutia, and P. pinea: Insights into Pharmaceutical and Cosmetic Potential. Plants 2024, 13, 1802. [Google Scholar] [CrossRef]
- Erol, K.F.; Kutlu, G.; Tornuk, F.; Guzel, M.; Donmez, I.E. Determination of Antioxidant, Anticancer, Antidiabetic and Antimicrobial Activities of Turkish Red Pine (Pinus brutia Ten.) Bark Ultrasound-Assisted Extract as a Functional Food Additive. Published 10 March 2023. Available online: https://akjournals.com/view/journals/066/52/1/article-p102.xml (accessed on 10 September 2025).
- Ji, W.; Ji, X. Comparative Analysis of Volatile Terpenes and Terpenoids in the Leaves of Pinus Species—A Potentially Abundant Renewable Resource. Molecules 2021, 26, 5244. [Google Scholar] [CrossRef]
- Mittu, B.; Chaubey, N.; Singh, M.; Begum, Z. Cosmeceutical applications of terpenes and terpenoids. In Specialized Plant Metabolites as Cosmeceuticals; Elsevier: Amsterdam, The Netherlands, 2024; pp. 25–41. [Google Scholar]
- Adjaoud, A.; Laouer, H.; Braca, A.; Cioni, P.; Moussi, K.; Berboucha-Rahmani, M.; Abbaci, H.; Falconieri, D. Chemical Composition, Antioxidant and Insecticidal Activities of a New Essential Oil Chemotype of Pinus nigra ssp. mauritanica (Pinaceae), Northern Algeria. Plant Biosyst. 2020, 156, 358–369. [Google Scholar] [CrossRef]
- Oleszek, W.; Stochmal, A.; Karolewski, P.; Simonet, A.M.; Macias, F.A.; Tava, A. Flavonoids from Pinus sylvestris Needles and Their Variation in Trees of Different Origin Grown for Nearly a Century at the Same Area. Biochem. Syst. Ecol. 2002, 30, 1011–1022. [Google Scholar] [CrossRef]
- Koutsaviti, A.; Toutoungy, S.; Saliba, R.; Loupassaki, S.; Tzakou, O.; Roussis, V.; Ioannou, E. Antioxidant Potential of Pine Needles: A Systematic Study on the Essential Oils and Extracts of 46 Species of the Genus Pinus. Foods 2021, 10, 142. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Castro, M.; González-Laredo, R.F.; Rivas-Arreola, M.J.; Karchesy, J. Chemical Analysis of Polyphenols with Antioxidant Capacity from Pinus durangensis Bark. J. Wood Chem. Technol. 2017, 37, 393–404. [Google Scholar] [CrossRef]
- Popescu, D.I.; Botoran, O.R.; Cristea, R.M. Investigation of Phytochemical Composition, Antioxidant and Antibacterial Activity of Five Red Flower Extracts. Antioxidants 2025, 14, 151. [Google Scholar] [CrossRef]
- Ramos, P.A.B.; Pereira, C.; Gomes, A.P.; Neto, R.T.; Almeida, A.; Santos, S.A.O.; Silva, A.M.S.; Silvestre, A.J.D. Chemical Characterisation, Antioxidant and Antibacterial Activities of Pinus pinaster Ait. and Pinus pinea L. Bark Polar Extracts: Prospecting Forestry By-Products as Renewable Sources of Bioactive Compounds. Appl. Sci. 2022, 12, 784. [Google Scholar] [CrossRef]
- Dziedziński, M.; Kobus-Cisowska, J.; Stachowiak, B. Pinus Species as Prospective Reserves of Bioactive Compounds with Potential Use in Functional Food—Current State of Knowledge. Plants 2021, 10, 1306. [Google Scholar] [CrossRef]
- Santos, J.; Escobar-Avello, D.; Fuentealba, C.; Cabrera-Barjas, G.; González-Álvarez, J.; Martins, J.M.; Carvalho, L.H. Forest by-Product Valorization: Pilot-Scale Pinus radiata and Eucalyptus globulus Bark Mixture Extraction. Forests 2023, 14, 895. [Google Scholar] [CrossRef]
- Santos, J.; Pereira, J.; Ferreira, N.; Paiva, N.; Ferra, J.; Magalhães, F.D.; Martins, J.M.; Dulyanska, Y.; Carvalho, L.H. Valorisation of non-timber by-products from maritime pine (Pinus pinaster, Ait) for particleboard production. Ind. Crop. Prod. 2021, 168, 113581. [Google Scholar] [CrossRef]
- Marrelli, M.; Sprovieri, P.; Conforti, F.; Statti, G. Phytochemical Content and Antioxidant Activity of Ancient Majorca and Carosella (Triticum aestivum L.) Wheat Flours. Agronomy 2021, 11, 1217. [Google Scholar] [CrossRef]
- Ceramella, J.; Troiano, R.; Iacopetta, D.; Mariconda, A.; Pellegrino, M.; Catalano, A.; Saturnino, C.; Aquaro, S.; Sinicropi, M.S.; Longo, P. Synthesis of Novel N-Heterocyclic Carbene-Ruthenium (II) Complexes, “Precious” Tools with Antibacterial, Anticancer and Antioxidant Properties. Antibiotics 2023, 12, 693. [Google Scholar] [CrossRef]
- Marrelli, M.; Argentieri, M.P.; Alexa, E.; Meleleo, D.; Statti, G.; Avato, P.; Conforti, F.; Mallamaci, R. Antioxidant activity and protective effect of the outer scales hydroalcoholic extract of Allium cepa L. var. Tropea on toxicity damage induced by Cadmium in Caco-2 cells. Food Chem. Toxicol. 2022, 170, 113495. [Google Scholar] [CrossRef]
- Lee, H.; Jeong, G.H.; Lee, S.S.; Lee, K.-B.; Park, S.; Kim, T.H.; Bai, H.-W.; Chung, B.Y. Rosmarinosin A Inhibits Inflammatory Response in Lipopolysaccharide-Induced RAW 264.7 Macrophages via Suppressing NF-κB and MAPK Signaling Pathway. Molecules 2025, 30, 3752. [Google Scholar] [CrossRef]
- Grande, F.; Marrelli, M.; Amodeo, V.; Occhiuzzi, M.A.; Pinzaru, I.; Fucile, M.; Dehelean, C.A.; Alexa, E.; Conforti, F.; Statti, G. Molecular Docking Studies and In Vitro Activity of Paliurus spina-christi Mill Extracts as Pancreatic Lipase Inhibitors. Antioxidants 2024, 13, 160. [Google Scholar] [CrossRef]
- Fucile, M.; Lupia, C.; Armentano, M.; Marrelli, M.; Zicarelli, L.; Toma, C.-C.; Statti, G.; Conforti, F. Anti-Obesity and Weight Management-Related Antioxidant Potential Properties of Calabrian Pine Extracts: Pinus nigra Subsp. laricio (Poir.) Maire. Plants 2025, 14, 851. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Hossain, R.; Herrera-Bravo, J.; Islam, M.T.; Atolani, O.; Adeyemi, O.S.; Owolodun, O.A.; Kambizi, L.; Daştan, S.D.; Calina, D.; et al. Natural Antioxidants from Some Fruits, Seeds, Foods, Natural Products, and Associated Health Benefits: An Update. Food Sci. Nutr. 2023, 11, 1657–1670. [Google Scholar] [CrossRef]
- McNeill, E.; Crabtree, M.J.; Sahgal, N.; Patel, J.; Chuaiphichai, S.; Iqbal, A.J.; Hale, A.B.; Greaves, D.R.; Channon, K.M. Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation. Free Radic. Biol. Med. 2015, 79, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Chao, A.M.; Moore, M.; Wadden, T.A. The past, present, and future of behavioral obesity treatment. Int. J. Obes. 2025, 49, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Chia, T.Y.; Gan, C.-Y.; Shafie, M.H.; Yap, P.G.; Mohd Rodhi, A.; Ahmad, A.; Murugaiyah, V.; Abdulla, M.H.; Johns, E.J. A comprehensive review on the pancreatic lipase inhibitory peptides: A future anti-obesity strategy. Electron. J. Gen. Med. 2003, 20, 470. [Google Scholar] [CrossRef]
- Einarson, T.R.; Acs, A.; Ludwig, C.; Panton, U.H. Prevalence of cardiovascular disease in type 2 diabetes: A systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc. Diabetol. 2018, 17, 83. [Google Scholar] [CrossRef]
- Van Sloten, T.T.; Sedaghat, S.; Carnethon, M.R.; Launer, L.J.; Stehouwer, C.D. Cerebral Microvascular Complications of Type 2 Diabetes: Stroke, Cognitive Dysfunction, and Depression. Lancet Diabetes Endocrinol. 2020, 8, 325–336. [Google Scholar] [CrossRef]
- Santos, J.; Delgado, N.; Fuentes, J.; Fuentealba, C.; Vega-Lara, J.; García, D.E. Exterior grade plywood adhesives based on pine bark polyphenols and hexamine. Ind. Crops Prod. 2018, 122, 340–348. [Google Scholar] [CrossRef]
- Mongioví, C.; Jaillet, M.; Lacalamita, D.; Morin-Crini, N.; Lecourt, M.; Tapin-Lingua, S.; Crini, G. A Strategy to Valorize a By-Product of Pine Wood (Pinus pinaster) for Copper Removal from Aqueous Solutions. Molecules 2023, 28, 6436. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Zanuso, E.; Genisheva, Z.; Rocha, C.M.R.; Teixeira, J.A. Green and sustainable valorization of bioactive phenolic compounds from Pinus by-products. Molecules 2020, 25, 2931. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, T.; Visi-Rajczi, E.; Albert, L. Antioxidant properties assessment of the cones of conifers through the combined evaluation of multiple antioxidant assays. Ind. Crops Prod. 2020, 145, 111935. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef]
- Hofmann, T.; Albert, L.; Bocz, B.; Bocz, D.; Visi-Rajczi, E. Coniferous cones as a forestry waste biomass—A source of antioxidants. Environ. Sci. Proc. 2021, 3, 82. [Google Scholar]
- Mozdastan, S.; Ebrahimzadeh, M.A.; Eslami, S. Effect of Increasing the Polarity of Solvent on Total Phenol and Flavonoid Contents and Antioxidant Activity of Myrtle (Myrtus communis L.). J. Mazandaran Univ. Med. Sci. 2015, 25, 68–81. [Google Scholar]
- Liu, Y.; Liao, B.; Guo, W.; Fu, Y.; Sun, W.; Fu, Y.; Wang, D.; Kang, H. Study on Separation and Purification of Chemical Components of Dichloromethane from Pine Needle Extract. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 714, p. 032039. [Google Scholar] [CrossRef]
- Guan, L.; Long, H.; Ren, F.; Li, Y.; Zhang, H. A Structure—Activity Relationship Study of the Inhibition of α-Amylase by Benzoic Acid and Its Derivatives. Nutrients 2022, 14, 1931. [Google Scholar] [CrossRef]
- Mohamed, G.A.; Omar, A.M.; El-Araby, M.E.; Mass, S.; Ibrahim, S.R.M. Assessments of Alpha-Amylase Inhibitory Potential of Tagetes Flavonoids through In Vitro, Molecular Docking, and Molecular Dynamics Simulation Studies. Int. J. Mol. Sci. 2023, 24, 10195. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Choi, W.S.; Kwon, O.S.; Lee, J.S.; Son, S.Y.; Lee, C.H.; Lee, S.; Song, J.Y.; Lee, Y.J.; Lee, J.Y. Extract of Pinus densiflora needles suppresses acute inflammation by regulating inflammatory mediators in RAW264.7 macrophages and mice. Pharm. Biol. 2022, 60, 1148–1159. [Google Scholar] [CrossRef]
- Santa-María, C.; López-Enríquez, S.; Montserrat-de la Paz, S.; Geniz, I.; Reyes-Quiroz, M.E.; Moreno, M.; Palomares, F.; Sobrino, F.; Alba, G. Update on Anti-Inflammatory Molecular Mechanisms Induced by Oleic Acid. Nutrients 2023, 15, 224. [Google Scholar] [CrossRef] [PubMed]
- Anand, R.; Kaithwas, G. Anti-inflammatory Potential of Alpha-Linolenic Acid Mediated Through Selective COX Inhibition: Computational and Experimental Data. Inflammation 2014, 37, 1297–1306. [Google Scholar] [CrossRef]



| Sample | TPC 1 | TFC 2 |
|---|---|---|
| Female cones | 76.4 ± 1.80 a | 0.54 ± 0.03 b |
| Male cones | 18.2 ± 0.60 b | 1.02 ± 0.03 a |
| N. | Compound (a) | Rt (b) | Mass Fragmentation (Mass m/z Values) | RAP (c) |
|---|---|---|---|---|
| n-hexane | ||||
| 1 | α-Fenchyl acetate | 11.26 | 196 (M+), 80, 95, 121, 136, 154 | 0.1 |
| 2 | 2-Phenylethyl isovalerate | 13.05 | 206 (M+), 57, 91, 104 | 0.1 |
| 3 | Palmitic acid | 16.49 | 256 (M+), 57, 60, 73, 213 | 0.7 |
| 4 | Cyclohexadecane | 16.36 | 224 (M+), 55, 83, 97 | 1.5 |
| 5 | Oleic acid | 16.43 | 282 (M+), 41, 55, 73, 264 | 3.7 |
| 6 | 1-Octadecene | 17.00 | 252 (M+), 55, 69, 97, 125 | 4.7 |
| 7 | Linoleic acid, methyl ester | 17.12 | 294 (M+), 67, 81, 95, 263 | 0.8 |
| 8 | Ethyl linoleate | 17.51 | 308 (M+), 67, 81, 220, 263 | 0.8 |
| 9 | α-Linolenic acid | 17.55 | 306 (M+), 55, 79, 95, 241, 261 | 0.6 |
| 10 | 1-phenanthrenecarboxaldehyde, 1,2,3,4,4a,9,10,10a-octahydro-1,4a-dimethyl-7(1-methylethyl)-1R-(1.α, 4a β, 10a.α) | 18.33 | 284 (M+), 91, 159, 173, 241, 269 | 3.2 |
| 11 | 4-Epidehydroabietol | 18.84 | 286 (M+), 159, 173, 253, 271 | 4.0 |
| 12 | Kauren-19-ol | 19.50 | 287 (M+), 81, 95, 121, 257, 271 | 1.5 |
| Dichloromethane | ||||
| 1 | 2-Ethylhexyl-4-methoxycinnamate | 18.48 | 290 (M+), 133, 161, 178 | 1.4 |
| 2 | 2,6,10,14,18,22-Tetracosahexaene,2,6,10,15,19,23-hexamethyl | 21.78 | 410 (M+), 69, 81, 136 | 3.1 |
| N. | Compound (a) | Rt (b) | Mass Fragmentation (Mass m/z Values) | RAP (c) |
|---|---|---|---|---|
| n-hexane | ||||
| 1 | 2-Heptenal | 6.81 | 112 (M+), 55, 70, 83, 97 | 0.5 |
| 2 | Nonanal | 9.19 | 142 (M+), 57, 82, 98, 114 | 0.3 |
| 3 | 2-Decenal | 11.00 | 154 (M+), 55, 70, 83, 98, 110 | 1.1 |
| 4 | Lauric acid | 13.79 | 200 (M+), 43, 60, 73, 129 | 0.2 |
| 5 | 2-Pentadecanone, 6,10,14-trimethyl | 15.57 | 268 (M+), 58, 85, 109, 124, 179 | 0.2 |
| 6 | 14-Methylpentadecanoic acid | 16.06 | 270 (M+), 55, 74, 87, 143 | 0.9 |
| 7 | Palmitic acid | 16.49 | 256 (M+), 55, 73, 129, 213 | 1.1 |
| 8 | Manoyl oxide | 16.73 | 290 (M+), 81, 137, 192, 257, 275 | 0.7 |
| 9 | 1-Octadecene | 17.00 | 252 (M+), 55, 69, 97, 125 | 0.6 |
| 10 | 9-Octadecenoic acid | 17.16 | 282 (M+), 55, 83, 97, 264 | 0.8 |
| 11 | Ethyl linoleate | 17.51 | 308 (M+),55, 67, 81, 95, 157, 263 | 1.0 |
| 12 | α-Linolenic acid | 17.55 | 306 (M+), 67, 79, 95, 108, 241, 261 | 2.2 |
| 13 | Methyl Palustrate derivate | 18.68 | 314 (M+), 159, 197, 239, 299 | 3.5 |
| 14 | Heptadecanoic acid, ethyl ester | 18.75 | 298(M+), 69, 88, 101, 157 129 | 2.8 |
| 15 | 9-(2-Cyclohexylethyl) heptadecane | 19.29 | 350 (M+), 55, 83, 97, 239 | 1.7 |
| 16 | Cyclotetracosane | 20.60 | 336 (M+), 56, 69, 83, 97, 279 | 3.6 |
| Dichloromethane | ||||
| 1 | 1,2-Diphenylcyclobutane | 15.09 | 208 (M+), 51, 78, 89, 104 | 1.3 |
| 2 | 1-propene-1,2,3-tricarboxylic acid,tributyl ester | 17.50 | 342 (M+), 57, 84, 112, 139, 157, 213 | 1.6 |
| 3 | Palmitic acid β-monoglyceride | 19.44 | 330 (M+), 84, 98, 134, 239, 257 | 1.5 |
| Sample | Fraction | IC50 (µg/mL) | |
|---|---|---|---|
| NO Inhibition | Cytotoxicity | ||
| Female cones | Raw extract | 382.00 ± 13.85 d | 969.10 ± 10.78 f |
| n-hexane | 107.50 ± 15.22 b | 776.90 ± 13.81 e | |
| CH2Cl2 | 226.10 ± 35.77 c | 309.10 ± 29.32 c | |
| AcOEt | n.a. | - | |
| H2O | n.a. | - | |
| Male cones | Raw extract | 267.10 ± 22.28 c | - |
| n-hexane | 253.50 ± 23.81 c | 285.40 ± 10.59 c | |
| CH2Cl2 | 337.30 ± 35.52 d | 336.50 ± 17.28 d | |
| AcOEt | n.a. | - | |
| H2O | n.a. | - | |
| Indomethacin * | 53.00 ± 0.81 a | ||
| L-NAME * | 45.86 ± 0.46 a | ||
| Sample | Fraction | IC50 (mg/mL) |
|---|---|---|
| Female cones | Raw extract | 0.20 ± 0.01 a |
| H2O | 2.23 ± 0.67 b | |
| Male cones | Raw extract | 0.52 ± 0.01 a |
| H2O | 6.30 ± 0.05 c | |
| Orlistat * | 0.018 ± 0.001 a |
| Sample | Fraction | IC50 (µg/mL) |
|---|---|---|
| Female cones | Raw extract | 58.54 ± 2.32 b |
| n-hexane | n.a. | |
| CH2Cl2 | n.a. | |
| AcOEt | 121.40 ± 21.22 c | |
| H2O | 212.60 ± 27.52 d | |
| Male cones | Raw extract | 69.33 ± 7.22 b |
| n-hexane | 101.00 ± 3.03 c | |
| CH2Cl2 | 35.28 ± 3.08 a | |
| AcOEt | 192.10 ± 6.79 d | |
| H2O | 46.77 ± 3.15 a | |
| Acarbose * | 12.68 ± 0.54 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fucile, M.; Lupia, C.; Armentano, M.; Marrelli, M.; Kozuharova, E.; Statti, G.; Conforti, F. Phytochemical Screening and Biological Activity of Female and Male Cones from Pinus nigra subsp. laricio (Poir.) Maire. Antioxidants 2025, 14, 1368. https://doi.org/10.3390/antiox14111368
Fucile M, Lupia C, Armentano M, Marrelli M, Kozuharova E, Statti G, Conforti F. Phytochemical Screening and Biological Activity of Female and Male Cones from Pinus nigra subsp. laricio (Poir.) Maire. Antioxidants. 2025; 14(11):1368. https://doi.org/10.3390/antiox14111368
Chicago/Turabian StyleFucile, Mary, Carmine Lupia, Martina Armentano, Mariangela Marrelli, Ekaterina Kozuharova, Giancarlo Statti, and Filomena Conforti. 2025. "Phytochemical Screening and Biological Activity of Female and Male Cones from Pinus nigra subsp. laricio (Poir.) Maire" Antioxidants 14, no. 11: 1368. https://doi.org/10.3390/antiox14111368
APA StyleFucile, M., Lupia, C., Armentano, M., Marrelli, M., Kozuharova, E., Statti, G., & Conforti, F. (2025). Phytochemical Screening and Biological Activity of Female and Male Cones from Pinus nigra subsp. laricio (Poir.) Maire. Antioxidants, 14(11), 1368. https://doi.org/10.3390/antiox14111368

