The Effect of Dietary Patterns and Nutrient Intake on Oxidative Stress Levels in Pregnant Women: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Quality Assessment
3. Results
3.1. Study and Participant Characteristics
3.2. Biomarkers of OS
3.3. Dietary Assessment
3.4. Dietary Patterns and Dietary Exposure Assessment
3.5. Dietary Patterns, Nutrient Intakes and OS Biomarkers
3.5.1. OS and Dietary Patterns
3.5.2. OS and Fruit and Vegetable
3.5.3. OS and Dietary Fats
3.5.4. OS and Vitamins
3.6. Risk of Bias (RoB) Assessment
4. Discussion
Strength and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- World Health Organization. WHO Recommendations on Antenatal Care for a Positive Pregnancy Experience. Available online: https://www.who.int/publications/i/item/9789241549912 (accessed on 23 June 2023).
- Hussain, T.; Murtaza, G.; Metwally, E.; Kalhoro, D.H.; Kalhoro, M.S.; Rahu, B.A.; Sahito, R.G.A.; Yin, Y.; Yang, H.; Chughtai, M.I.; et al. The Role of Oxidative Stress and Antioxidant Balance in Pregnancy. Mediat. Inflamm. 2021, 2021, 9962860. [Google Scholar] [CrossRef] [PubMed]
- Matsubasa, T.; Uchino, T.; Karashima, S.; Tanimura, M.; Endo, F. Oxidative Stress in Very Low Birth Weight Infants as Measured by Urinary 8-OHdG. Free Radic. Res. 2002, 36, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Scholl, T.O.; Stein, T.P. Oxidant Damage to DNA and Pregnancy Outcome. J. Matern. -Fetal Med. 2001, 10, 182–185. [Google Scholar] [CrossRef]
- Agarwal, A.; Gupta, S.; Sharma, R.K. Role of Oxidative Stress in Female Reproduction. Reprod. Biol. Endocrinol. 2005, 3, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyake, Y.; Tanaka, K.; Okubo, H.; Sasaki, S.; Arakawa, M. Maternal Consumption of Vegetables, Fruit, and Antioxidants during Pregnancy and Risk for Childhood Behavioral Problems. Nutrition 2020, 69, 110572. [Google Scholar] [CrossRef]
- Kelly, J.T. Dietary Patterns. In Nutrition in Kidney Disease; IntechOpen: London, UK, 2020; pp. 583–597. ISBN 978-1-80356-522-4. [Google Scholar]
- Hu, F.B. Dietary Pattern Analysis: A New Direction in Nutritional Epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Tabung, F.K.; Smith-Warner, S.A.; Chavarro, J.E.; Wu, K.; Fuchs, C.S.; Hu, F.B.; Chan, A.T.; Willett, W.C.; Giovannucci, E.L. Development and Validation of an Empirical Dietary Inflammatory Index. J. Nutr. 2016, 146, 1560–1570. [Google Scholar] [CrossRef] [Green Version]
- Prins, J.R.; Schoots, M.H.; Wessels, J.I.; Campmans-Kuijpers, M.J.E.; Navis, G.J.; van Goor, H.; Robertson, S.A.; van der Beek, E.M.; Sobrevia, L.; Gordijn, S.J. The Influence of the Dietary Exposome on Oxidative Stress in Pregnancy Complications. Mol. Asp. Med. 2022, 87, 101098. [Google Scholar] [CrossRef]
- Yeh, K.L.; Kautz, A.; Lohse, B.; Groth, S.W. Associations between Dietary Patterns and Inflammatory Markers during Pregnancy: A Systematic Review. Nutrients 2021, 13, 834. [Google Scholar] [CrossRef]
- Ferreira, L.B.; Lobo, C.V.; Miranda, A.E.D.S.; Carvalho, B.D.C.; Santos, L.C. Dos Dietary Patterns during Pregnancy and Gestational Weight Gain: A Systematic Review. Rev. Bras. Ginecol. Obs. 2022, 44, 540–547. [Google Scholar] [CrossRef]
- Morales, E.; García-Serna, A.M.; Larqué, E.; Sánchez-Campillo, M.; Serrano-Munera, A.; Martinez-Graciá, C.; Santaella-Pascual, M.; Suárez-Martínez, C.; Vioque, J.; Noguera-Velasco, J.A.; et al. Dietary Patterns in Pregnancy and Biomarkers of Oxidative Stress in Mothers and Offspring: The NELA Birth Cohort. Front. Nutr. 2022, 9, 869357. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, 105906. [Google Scholar]
- Motamed, S.; Nikooyeh, B.; Anari, R.; Motamed, S.; Mokhtari, Z.; Neyestani, T. The Effect of Vitamin D Supplementation on Oxidative Stress and Inflammatory Biomarkers in Pregnant Women: A Systematic Review and Meta-Analysis of Clinical Trials. BMC Pregnancy Childbirth 2022, 22, 816. [Google Scholar] [CrossRef]
- National Institutes of Health, Quality Assessment Tool. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 23 June 2023).
- Kelly, S.E.; Greene-Finestone, L.S.; Yetley, E.A.; Benkhedda, K.; Brooks, S.P.J.; Wells, G.A.; Macfarlane, A.J. NUQUEST—NUtrition QUality Evaluation Strengthening Tools: Development of Tools for the Evaluation of Risk of Bias in Nutrition Studies. Am. J. Clin. Nutr. 2022, 115, 256–271. [Google Scholar] [CrossRef]
- Kim, H.; Hwang, J.Y.; Ha, E.H.; Park, H.; Ha, M.; Lee, S.H.; Hong, Y.C.; Chang, N. Fruit and Vegetable Intake Influences the Association between Exposure to Polycyclic Aromatic Hydrocarbons and a Marker of Oxidative Stress in Pregnant Women. Eur. J. Clin. Nutr. 2011, 65, 1118–1125. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Cano, A.M.; González-Ludlow, I.; Suárez-Rico, B.V.; Montoya-Estrada, A.; Piña-Ramírez, O.; Parra-Hernández, S.B.; Reyes-Muñoz, E.; Estrada-Gutierrez, G.; Calzada-Mendoza, C.C.; Perichart-Perera, O. Ultra-Processed Food Consumption during Pregnancy and Its Association with Maternal Oxidative Stress Markers. Antioxidants 2022, 11, 1415. [Google Scholar] [CrossRef]
- Scholl, T.O.; Leskiw, M.; Chen, X.; Sims, M.; Stein, T.P. Oxidative Stress, Diet, and the Etiology of Preeclampsia 1–3. Am. J. Clin. Nutr. 2005, 81, 1390–1396. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Scholl, T.O.; Leskiw, M.J.; Donaldson, M.R.; Stein, T.P. Association of Glutathione Peroxidase Activity with Insulin Resistance and Dietary Fat Intake during Normal Pregnancy. J. Clin. Endocrinol. Metab. 2003, 88, 5963–5968. [Google Scholar] [CrossRef] [Green Version]
- Tylavsky, F.A.; Han, L.; Sims Taylor, L.M.; Alex Mason, W.; Carroll, K.N.; Bush, N.R.; Lewinn, K.Z.; Melough, M.M.; Hartman, T.J.; Zhao, Q. Oxidative Balance Score during Pregnancy Is Associated with Oxidative Stress in the CANDLE Study. Nutrients 2022, 14, 2327. [Google Scholar] [CrossRef]
- Diaz-Garcia, H.; Vilchis-Gil, J.; Garcia-Roca, P.; Klünder-Klünder, M.; Gomez-Lopez, J.; Granados-Riveron, J.T.; Sanchez-Urbina, R. Dietary and Antioxidant Vitamins Limit the DNA Damage Mediated by Oxidative Stress in the Mother–Newborn Binomial. Life 2022, 12, 1012. [Google Scholar] [CrossRef]
- Hwang, J.; Shin, D.; Kim, H.; Kwon, O. Association of Maternal Dietary Patterns during Pregnancy with Small-for-Gestational-Age Infants: Korean Mothers and Children’s Environmental Health (MOCEH) Study. Am. J. Clin. Nutr. 2022, 115, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, M.; Haruna, M.; Ota, E.; Murayama, R.; Yamaguchi, T.; Shioji, I.; Sasaki, S.; Yamaguchi, T.; Murashima, S. Effects of Lifestyle Factors on Urinary Oxidative Stress and Serum Antioxidant Markers in Pregnant Japanese Women: A Cohort Study. Biosci Trends 2014, 8, 176–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.J.; Hong, Y.C.; Lee, K.H.; Park, H.J.; Park, E.A.; Moon, H.S.; Ha, E.H. Oxidative Stress in Pregnant Women and Birth Weight Reduction. Reprod. Toxicol. 2005, 19, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Blanco, A.L.Y.; Díaz-López, K.M.; Vilchis-Gil, J.; Diaz-Garcia, H.; Gomez-Lopez, J.; Medina-Bravo, P.; Granados-Riveron, J.T.; Gallardo, J.M.; Klünder-Klünder, M.; Sánchez-Urbina, R. Diet and Maternal Obesity Are Associated with Increased Oxidative Stress in Newborns: A Cross-Sectional Study. Nutrients 2022, 14, 746. [Google Scholar] [CrossRef]
- Ballesteros-Guzmán, A.K.; Carrasco-Legleu, C.E.; Levario-Carrillo, M.; Chávez-Corral, D.V.; Sánchez-Ramírez, B.; Mariñelarena-Carrillo, E.O.; Guerrero-Salgado, F.; Reza-López, S.A. Prepregnancy Obesity, Maternal Dietary Intake, and Oxidative Stress Biomarkers in the Fetomaternal Unit. Biomed Res. Int. 2019, 2019, 5070453. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The Un Decade of Nutrition, the NOVA Food Classification and the Trouble with Ultra-Processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Zabaleta, M.E.; Forbes-Hernández, T.Y.; Simal-Gandara, J.; Quiles, J.L.; Cianciosi, D.; Bullon, B.; Giampieri, F.; Battino, M. Effect of Polyphenols on HER2-Positive Breast Cancer and Related MiRNAs: Epigenomic Regulation. Food Res. Int. 2020, 137, 109623. [Google Scholar] [CrossRef]
- Cespedes, E.M.; Hu, F.B. Dietary Patterns: From Nutritional Epidemiologic Analysis to National Guidelines. Am. J. Clin. Nutr. 2015, 101, 899–900. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.-S.; Oh, K.; Kim, H.C. Dietary Assessment Methods in Epidemiologic Studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef] [Green Version]
- Mendez, M.A.; Popkin, B.M.; Buckland, G.; Schroder, H.; Amiano, P.; Barricarte, A.; Huerta, J.M.; Quirós, J.R.; Sánchez, M.J.; González, C.A. Alternative Methods of Accounting for Underreporting and Overreporting When Measuring Dietary Intake-Obesity Relations. Am. J. Epidemiol. 2011, 173, 448–458. [Google Scholar] [CrossRef] [Green Version]
- Malinowska, A.M.; Mlodzik-Czyzewska, M.A.; Chmurzynska, A. Dietary Patterns Associated with Obesity and Overweight: When Should Misreporters Be Included in Analysis? Nutrition 2020, 70, 110605. [Google Scholar] [CrossRef]
- Potischman, N. Biomarkers of Nutritional Exposure and Nutritional Status. J. Nutr. 2003, 133, 875S–880S. [Google Scholar] [CrossRef] [Green Version]
- Bacchetti, T.; Turco, I.; Urbano, A.; Morresi, C.; Ferretti, G. Relationship of Fruit and Vegetable Intake to Dietary Antioxidant Capacity and Markers of Oxidative Stress: A Sex-Related Study. Nutrition 2019, 61, 164–172. [Google Scholar] [CrossRef]
- World Health Organization Nutrition—Maintaining a Healthy Lifestyle. Available online: https://www.who.int/europe/news-room/fact-sheets/item/nutrition---maintaining-a-healthy-lifestyle (accessed on 23 June 2023).
- Simmons, K.; Meloncelli, N.; Kearney, L.; Maher, J. Low Vegetable Intake in Pregnancy and Associated Maternal Factors: A Scoping Review. Nutr. Res. 2022, 99, 78–97. [Google Scholar] [CrossRef]
- Blumfield, M.L.; Hure, A.J.; MacDonald-Wicks, L.; Smith, R.; Collins, C.E. A Systematic Review and Meta-Analysis of Micronutrient Intakes during Pregnancy in Developed Countries. Nutr. Rev. 2013, 71, 118–132. [Google Scholar] [CrossRef]
- Sultana, Z.; Maiti, K.; Aitken, J.; Morris, J.; Dedman, L.; Smith, R. Oxidative Stress, Placental Ageing-Related Pathologies and Adverse Pregnancy Outcomes. Am. J. Reprod. Immunol. 2017, 77, e12653. [Google Scholar] [CrossRef] [Green Version]
- Duhig, K.; Chappell, L.C.; Shennan, A.H. Oxidative Stress in Pregnancy and Reproduction. Obstet. Med. 2016, 9, 113–116. [Google Scholar] [CrossRef] [Green Version]
- Martínez Leo, E.E.; Peñafiel, A.M.; Hernández Escalante, V.M.; Cabrera Araujo, Z.M. Ultra-Processed Diet, Systemic Oxidative Stress, and Breach of Immunologic Tolerance. Nutrition 2021, 91–92, 111419. [Google Scholar] [CrossRef]
- Malesza, I.J.; Malesza, M.; Walkowiak, J.; Mussin, N.; Walkowiak, D.; Aringazina, R.; Bartkowiak-Wieczorek, J.; Mądry, E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021, 10, 3164. [Google Scholar] [CrossRef]
- Tsikas, D. Assessment of Lipid Peroxidation by Measuring Malondialdehyde (MDA) and Relatives in Biological Samples: Analytical and Biological Challenges. Anal. Biochem. 2017, 524, 13–30. [Google Scholar] [CrossRef]
- Da Silva, M.S.; Bilodeau, J.F.; Julien, P.; Rudkowska, I. Dietary Fats and F2-Isoprostanes: A Review of the Clinical Evidence. Crit. Rev. Food Sci. Nutr. 2017, 57, 3929–3941. [Google Scholar] [CrossRef] [PubMed]
- Petrosino, T.; Serafini, M. Antioxidant Modulation of F2-Isoprostanes in Humans: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1202–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunii, H.; Ishikawa, K.; Yamaguchi, T.; Komatsu, N.; Ichihara, T.; Maruyama, Y. Bilirubin and Its Oxidative Metabolite Biopyrrins in Patients with Acute Myocardial Infarction. Fukushima J. Med. Sci. 2009, 55, 39–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mistry, H.D.; Williams, P.J. The Importance of Antioxidant Micronutrients in Pregnancy. Oxid. Med. Cell. Longev. 2011, 2011, 841749. [Google Scholar] [CrossRef] [Green Version]
- Padayatty, S.J.; Levine, M. Vitamin C: The Known and the Unknown and Goldilocks. Oral Dis. 2016, 22, 463–493. [Google Scholar] [CrossRef] [Green Version]
- Kaźmierczak-Barańska, J.; Boguszewska, K.; Adamus-Grabicka, A.; Karwowski, B.T. Two Faces of Vitamin C—Antioxidative and pro-Oxidative Agent. Nutrients 2020, 12, 1501. [Google Scholar] [CrossRef]
- Blaner, W.S.; Shmarakov, I.O.; Traber, M.G. Vitamin A and Vitamin E: Will the Real Antioxidant Please Stand Up? Annu. Rev. Nutr. 2021, 41, 105–131. [Google Scholar] [CrossRef]
- Santiago-Torres, M.; Kratz, M.; Lampe, J.W.; Tapsoba, J.D.D.; Breymeyer, K.L.; Levy, L.; Villaseñor, A.; Wang, C.Y.; Song, X.; Neuhouser, M.L. Metabolic Responses to a Traditional Mexican Diet Compared with a Commonly Consumed US Diet in Women of Mexican Descent: A Randomized Crossover Feeding Trial. Am. J. Clin. Nutr. 2016, 103, 366–374. [Google Scholar] [CrossRef] [Green Version]
Study Reference | Country | Study Design | Sample Size | Maternal Age (Mean ± s.d.) | Dietary Exposure/Assessment Method | OS Biomarkers | Main Findings | Risk of Bias |
---|---|---|---|---|---|---|---|---|
Ballesteros-Guzmán, A.K. 2019 [28] | Mexico | Cross-sectional | 33 | 30.1 ± 3.6 | Average macro and micronutrients/FFQ | MDA/TAC | No significant associations between maternal diet and MDA, TAC. ↑Vit C significantly associated with ↑MDA | Medium |
Chen, X. 2003 [21] | USA | Cohort | 408 | 29.6 ± 3.8 | Dietary fat intake/24 h recall | GPx | ↑PUFA, n-3 and n-6 FA significantly associated with ↑GPx activity | High |
Diaz-Garcia, H. 2022 [23] | Mexico | Cohort | 90 | 24.4 ± 5.5 | Daily nutrients intake/FFQ | 8OHdG | ↑Vit A intake significantly related to ↓8OHdG levels | Medium |
Hwang, J. 2021 [24] | Korea | Cohort | 1158 | 32.7 ± 4.5 | Dietary pattern 1, 2, 3/SFFQ | MDA | Dietary pattern 1 significantly associated to ↓MDA in urine | Medium |
Kim, H. 2011 [18] | South Korea | Cohort | 715 | 29.52 ± 4.97 | Fruits and vegetables intake/SFFQ | MDA | Significant correlation between ↑fruit and vegetable intake and ↓MDA | Medium |
Kim, Y. J. 2005 [26] | Korea | Cross-sectional | 235 | NA | Meat and vegetables consumption/Questionnaire | MDA/ 8OHdG | No significant differences between patterns and their association with OS | Medium |
Lopez-Yañez Blanco A. 2022 [27] | Mexico | Cross-sectional | 238 | 22.9 ± 0.78 | Fruits and vegetables intake/FFQ | MDA/NO | ↑ Fruit and vegetables intake significantly associated to ↓OS | Medium |
Matsuzaki, M. 2014 [25] | Japan | Cohort | 49 | 26.3 ± 5.4 | PUFA intake/BDHQ | Biopyrrin/ CoQ10 | ↑ PUFA intake during the 3rd trimester significantly associated with ↑ biopyrrin | High |
Morales, E. 2022 [13] | Spain | Cohort | 665 | 20 to 40 | Mediterranean diet, DASH diet, AHEI/FFQ | 8OHdG/Isoprostane | ↑ Adherence to rMED significantly associated with ↓8OHdG levels, ↑ adherence to DASH diet marginally associated to ↓ Isop | Medium |
Rodriguez-Cano A. M. 2022 [19] | Mexico | Cohort | 119 | 21.86 ± 0.23 | Ultra-processed food consumption/24 h recall | TAC/MDA/PC | ↓UPF intake significantly associated to ↑ TAC, UPF negatively associated with MDA | High |
Scholl, T. O. 2001 [4] | USA | Case–control | 52 | 24.1 ± 5.2 | Dietary fat, vitamins intake/24 h recall | 8OHdG | Significant correlation between ↑SFA and ↑8OHdG | High |
Scholl, T. O. 2005 [20] | USA | Cohort | 307 | NA | Daily nutrients intake/24 h recall | Isoprostane/TAC | Maternal diet significantly associated with ↑Isop, ↑PUFA significantly associated with ↑Isop | Medium |
Tylavsky, F. A. 2022 [22] | USA | Cohort | 1019 | 31 | OBS/FFQ | Isoprostane | ↑ OBS significantly associated with ↓ Isop | Medium |
Study Reference | Biological Matrix | OS Biomarker | Analytical Method |
---|---|---|---|
Kim, H. 2011 [18] | Urine * | MDA [µmol/g creatinine] | HPLC |
Kim, Y. J. 2005 [26] | MDA [µmol/g creatinine] | HPLC | |
Kim, Y. J. 2005 [26] | 8OHdG [µg/g creatinine] | ELISA | |
Scholl, T. O. 2001 [4] | 8OHdG | ELISA | |
Tylavsky, F. A. 2022 [22] | Isoprostane | MS | |
Hwang, J. 2021 [24] | MDA [µmol/g creatinine] | HPLC | |
Matsuzaki, M. 2014 [25] | Biopyrrin [µmol/g creatinine] | ELISA | |
Matsuzaki, M. 2014 [25] | CoQ10 [ng/mL] | HPLC | |
Diaz-Garcia, H. 2022 [23] | Blood (Plasma) | 8OHdG [ng/mL] | ELISA |
Lopez-Yañez Blanco A. 2022 [27] | MDA [µmol/L] | Colorimetric (TBARS) | |
Lopez-Yañez Blanco A. 2022 [27] | NO [µmol/L] | Colorimetric (Griess assay) | |
Ballesteros-Guzmán, A.K. 2019 [28] | MDA [µmol/L] | Colorimetric (TBARS) | |
Ballesteros-Guzmán, A.K. 2019 [28] | Blood (Serum) | TAC [nmol/µL/µg protein] | Colorimetric |
Rodriguez-Cano A. M. 2022 [19] | Blood (Serum and Plasma) | MDA [nmol/mg dry weight] | Colorimetric (Gérard-Monnier) |
Rodriguez-Cano A. M. 2022 [19] | TAC [nmol/mg protein] | Colorimetric (CUPRAC) | |
Rodriguez-Cano A. M. 2022 [19] | PC [pmol trolox equivalent/mg protein] | DNPH method | |
Chen, X. 2003 [21] | GPx [mU/mg Hb] | Colorimetric | |
Morales, E. 2022 [13] | Urine * and Blood (Serum and Plasma) | Isoprostane [ng/mg creatinine] | ELISA |
Morales, E. 2022 [13] | 8OHdG [ng/mL] | ELISA | |
Scholl, T. O. 2005 [20] | Isoprostane [ng/mg creatinine] | ELISA | |
Scholl, T. O. 2005 [20] | TAC [µmol/L] | ELISA |
Biomarker | Quantification Rate in Included Studies | Significant Association between OS and Diet in the Included Studies | Dietary Exposure |
---|---|---|---|
MDA | 46% | 83% | Dietary pattern/fruit and vegetables intake |
Isoprostane | 23% | 67% | Antioxidant diet/fat and PUFA intake |
8OHdG | 31% | 75% | Dietary pattern/fat and PUFA intake/vitamins intake |
TAC | 23% | 33% | Dietary pattern |
Others | 31% | 75% | Fat and PUFA intake/fruit and vegetables intake |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Sherbiny, S.; Squillacioti, G.; Colombi, N.; Ghelli, F.; Lenta, E.; Dalla Costa, C.; Bono, R. The Effect of Dietary Patterns and Nutrient Intake on Oxidative Stress Levels in Pregnant Women: A Systematic Review. Antioxidants 2023, 12, 1427. https://doi.org/10.3390/antiox12071427
El Sherbiny S, Squillacioti G, Colombi N, Ghelli F, Lenta E, Dalla Costa C, Bono R. The Effect of Dietary Patterns and Nutrient Intake on Oxidative Stress Levels in Pregnant Women: A Systematic Review. Antioxidants. 2023; 12(7):1427. https://doi.org/10.3390/antiox12071427
Chicago/Turabian StyleEl Sherbiny, Samar, Giulia Squillacioti, Nicoletta Colombi, Federica Ghelli, Elena Lenta, Cloè Dalla Costa, and Roberto Bono. 2023. "The Effect of Dietary Patterns and Nutrient Intake on Oxidative Stress Levels in Pregnant Women: A Systematic Review" Antioxidants 12, no. 7: 1427. https://doi.org/10.3390/antiox12071427
APA StyleEl Sherbiny, S., Squillacioti, G., Colombi, N., Ghelli, F., Lenta, E., Dalla Costa, C., & Bono, R. (2023). The Effect of Dietary Patterns and Nutrient Intake on Oxidative Stress Levels in Pregnant Women: A Systematic Review. Antioxidants, 12(7), 1427. https://doi.org/10.3390/antiox12071427