Characterization of Phytochemicals, Nutrients, and Antiradical Potential in Slim Amaranth
Abstract
:1. Introduction
- (1)
- To investigate nutraceuticals, phytopigments, bioactive phytochemicals, and the capacity to quench radicals in 12 slim amaranth accessions;
- (2)
- To evaluate the variations of these traits in 12 slim amaranth accessions;
- (3)
- To select appropriate accession(s) with superior capacity to quench radicals, including nutraceuticals, phytopigments, and bioactive phytochemicals for next-generation high-yielding antioxidant-enriched cultivars, or for future breeding programs to improve bioactive compounds of antioxidants from nature.
2. Materials and Methods
2.1. Experimental Materials
2.2. Design and Layout
2.3. Intercultural Practices
2.4. Solvent and Reagents
2.5. Estimation of Proximate Composition
2.6. Estimation of Mineral Composition
2.7. Estimation of Chlorophylls and Carotenoids
2.8. Determination of Betacyanins and Betaxanthins
2.9. Estimation of Beta-Carotene
2.10. Estimation of Ascorbic Acid
2.11. Samples Extraction for TP, TF, and TAC Analysis
2.12. Determination of TP
2.13. Estimation of Total Flavonoid Content
2.14. Radical Quenching Capacity Assay
2.15. Statistical Analysis
3. Results and Discussion
3.1. Composition of Proximate
3.2. Composition of Macroelements and Microelements
3.3. Bioactive Phytopigments
3.4. Bioactive Components and Radical Scavenging Potentiality
3.5. The Correlation Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Das, S. Amaranths: The Crop of Great Prospect. In Amaranthus: A Promising Crop of Future; Springer: Singapore, 2016; pp. 13–48. [Google Scholar]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Variability, heritability and genetic association in vegetable amaranth. Span. J. Agril. Res. 2015, 13, 0702. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Variability in Composition of Vitamins and Mineral Antioxidants in Vegetable Amaranth. Genetika 2015, 47, 85–96. [Google Scholar] [CrossRef]
- Venskutonis, P.R.; Kraujalis, P. Nutritional Components of Amaranth Seeds and Vegetables: A Review on Composition, Properties, and Uses. Comp. Rev. Food Sci. Food Saf. 2013, 12, 381–412. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Genotypic Variability for Nutrient, Antioxidant, Yield and Yield Contributing Traits in Vegetable Amaranth. J. Food Agric. Environ. 2014, 12, 168–174. [Google Scholar]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Genetic Variation and Interrelationships among Antioxidant, Quality, and Agronomic Traits in Vegetable Amaranth. Turk. J. Agric. For. 2016, 40, 526–535. [Google Scholar] [CrossRef]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Genotypic Diversity in Vegetable Amaranth for Antioxidant, Nutrient and Agronomic Traits. Indian J. Genet. Pl. Breed. 2017, 77, 173–176. [Google Scholar] [CrossRef]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Variability in Total Antioxidant Capacity, Antioxidant Leaf Pigments and Foliage Yield of Vegetable Amaranth. J. Integr. Agric. 2018, 17, 1145–1153. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Antioxidant Leaf Pigments and Variability in Vegetable Amaranth. Genetika 2018, 50, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Phenotypic Divergence in Vegetable Amaranth for Total Antioxidant Capacity, Antioxidant Profile, Dietary Fiber, Nutritional and Agronomic Traits. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2018, 68, 67–76. [Google Scholar] [CrossRef]
- Sarker, U.; Lin, Y.P.; Oba, S.; Yoshioka, Y.; Ken, H. Prospects and potentials of underutilized leafy Amaranths as vegetable use for health-promotion. Plant Physiol. Biochem. 2022, 182, 104–123. [Google Scholar] [CrossRef]
- Al-Mamun, M.A.; Husna, J.; Khatun, M.; Hasan, R.; Kamruzzaman, M.; Hoque, K.M.F.; Reza, M.A.; Ferdousi, Z. Assessment of Antioxidant, Anticancer and Antimicrobial Activity of Two Vegetable Species of Amaranthus in Bangladesh. BMC Complement. Altern. Med. 2016, 16, 157. [Google Scholar] [CrossRef] [Green Version]
- FAO; IFAD; WFP. The State of Food Security in The World 2015. Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress. 2015. Available online: http://www.fao.org/3/a-i4646e.pdf (accessed on 3 March 2020).
- Von Grebmer, K.; Saltzman, A.; Birol, E.; Wiesmann, D.; Prasai, N.; Yin, S.; Yohannes, Y.; Menon, P.; Thompson, J.; Sonntag, A. 2014 Global Hunger Index: The Challenge of Hidden Hunger; Welthungerhilfe: Bonn, Germany; International Food Policy Research Institute: Washington, DC, USA; Concern Worldwide: Dublin, Ireland, 2014. [Google Scholar]
- Afari-Sefa, V.; Tenkouano, A.; Ojiewo, C.O.; Keatinge, J.D.H.; Hughes, J.D.A. Vegetable Breeding in Africa: Constraints, Complexity, and Contributions Toward Achieving Food and Nutritional Security. Food Secur. 2011, 4, 115–127. [Google Scholar] [CrossRef]
- Isabelle, M.; Lee, B.L.; Lim, M.T.; Koh, W.P.; Huang, D.; Ong, C.N. Antioxidant Activity and Profiles of Common Fruits in Singapore. Food Chem. 2010, 123, 77–84. [Google Scholar] [CrossRef]
- Randhawa, M.A.; Khan, A.A.; Javed, M.S.; Sajid, M.W. Green Leafy Vegetables: A health-promoting source. In Handbook of Fertility; Watson, R.R., Ed.; Academic Press: San Diego, CA, USA, 2015; pp. 205–220. [Google Scholar]
- Repo-Carrasco-Valencia, R.; Hellstrom, J.K.; Philava, J.M.; Mattila, P.H. Flavonoids and Other Phenolic Compounds in Andean Indigenous Grains: Quinoa (Chenopodium quinoa), Kaniwa (Chenopodium pallidicaule) and Kiwicha (Amaranthus caudatus). Food Chem. 2010, 120, 128–133. [Google Scholar] [CrossRef]
- Dusgupta, N.; De, B. Antioxidant Activity of Some Leafy Vegetables of India: A Comparative Study. Food Chem. 2007, 101, 471–474. [Google Scholar] [CrossRef]
- Steffensen, S.K.; Rinnan, Å.; Mortensen, A.G.; Laursen, B.; de Troiani, R.M.; Noellemeyer, E.J.; Janovska, D.; Dusek, K.; Délano-Frier, J.; Taberner, A.; et al. Variations in the Polyphenol Content of Seeds of Field Grown Amaranthus Accessions. Food Chem. 2011, 129, 131–138. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Response of Nutrients, Minerals, Antioxidant Leaf Pigments, Vitamins, Polyphenol, Flavonoid and Antioxidant Activity in Selected Vegetable Amaranth under Four Soil Water Content. Food Chem. 2018, 252, 72–83. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Drought Stress Enhances Nutritional and Bioactive Compounds, Phenolic Acids and Antioxidant Capacity of Amaranthus Leafy Vegetable. BMC Plant Biol. 2018, 18, 258. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Oba, S. Drought Stress Effects on Growth, ROS Markers, Compatible Solutes, Phenolics, Flavonoids, and Antioxidant Activity in Amaranthus tricolor. Appl. Biochem. Biotechnol. 2018, 186, 999–1016. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Catalase, Superoxide Dismutase and Ascorbate-Glutathione Cycle Enzymes Confer Drought Tolerance of A. tricolor. Sci. Rep. 2018, 8, 16496. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Oba, S. Salinity Stress Enhances Color Parameters, Bioactive Leaf Pigments, Vitamins, Polyphenols, Flavonoids and Antioxidant Activity in Selected Amaranthus Leafy Vegetables. J. Sci. Food Agric. 2019, 99, 2275–2284. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Oba, S. Augmentation of Leaf Color Parameters, Pigments, Vitamins, Phenolic Acids, Flavonoids and Antioxidant Activity in Selected Amaranthus tricolor under Salinity Stress. Sci. Rep. 2018, 8, 12349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarker, U.; Islam, M.T.; Oba, S. Salinity Stress Accelerates Nutrients, Dietary Fiber, Minerals, Phytochemicals and Antioxidant Activity in Amaranthus tricolor Leaves. PLoS ONE 2018, 13, 0206388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarker, U.; Oba, S. The Response of Salinity Stress-Induced A. tricolor to Growth, Anatomy, Physiology, Non-Enzymatic and Enzymatic Antioxidants. Front. Plant Sci. 2020, 11, 559876. [Google Scholar] [CrossRef] [PubMed]
- Rajan, S.; Markose, B.L. Horticultural Science Series-6. In Propagation of Horticultural Crops; Peter, K.M.V., Ed.; New India Publishing Agency: New Delhi, India, 2007; Volume 6, pp. 110–113. [Google Scholar]
- Sarker, U.; Oba, S. Nutritional and Bioactive Constituents and Scavenging Capacity of Radicals in Amaranthus hypochondriacus. Sci. Rep. 2020, 10, 19962. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Oba, S. Nutraceuticals, Phytochemicals, and Radical Quenching Ability of Selected Drought-Tolerant Advance Lines of Vegetable Amaranth. BMC Plant Biol. 2020, 20, 564. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Hossain, M.N.; Iqbal, M.A.; Oba, S. Bioactive Components and Radical Scavenging Activity in Selected Advance Lines of Salt-Tolerant Vegetable Amaranth. Front. Nutr. 2020, 7, 587257. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Antioxidant Constituents of Three Selected Red and Green Color Amaranthus Leafy Vegetable. Sci. Rep. 2019, 9, 18233. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Oba, S. Leaf Pigmentation, Its Profiles and Radical Scavenging Activity in Selected Amaranthus tricolor Leafy Vegetables. Sci. Rep. 2020, 10, 18617. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Color Attributes, Betacyanin, and Carotenoid Profiles, Bioactive Components, and Radical Quenching Capacity in Selected Amaranthus gangeticus Leafy Vegetables. Sci. Rep. 2021, 11, 11559. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Phenolic Profiles and Antioxidant Activities in Selected Drought-Tolerant Leafy Vegetable Amaranth. Sci. Rep. 2020, 10, 18287. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Oba, S. Polyphenol and Flavonoid Profiles and Radical Scavenging Activity in Selected Leafy Vegetable Amaranthus gangeticus. BMC Plant Biol. 2020, 20, 499. [Google Scholar] [CrossRef] [PubMed]
- Khanam, U.K.S.; Oba, S.; Yanase, E.; Murakami, Y. Phenolic Acids, flavonoids and Total Antioxidant Capacity of Selected Leafy Vegetables. J. Funct. Foods. 2012, 4, 979–987. [Google Scholar] [CrossRef]
- Rashad, M.M.I.; Sarker, U. Genetic Variations in Yield and Yield Contributing Traits of Green Amaranth. Genetika. 2020, 52, 393–407. [Google Scholar] [CrossRef]
- Hasan-Ud-Daula, M.; Sarker, U. Variability, Heritability, Character Association, and Path Coefficient Analysis in Advanced Breeding Lines of Rice (Oryza sativa L.). Genetika 2020, 52, 711–726. [Google Scholar] [CrossRef]
- Hasan, M.J.; Kulsum, M.U.; Majumder, R.R.; Sarker, U. Genotypic Variability for Grain Quality Attributes in Restorer Lines of Hybrid Rice. Genetika 2020, 52, 973–989. [Google Scholar] [CrossRef]
- Azad, A.K.; Sarker, U.; Ercisli, S.; Assouguem, A.; Ullah, R.; Almeer, R.; Sayed, A.A.; Peluso, I. Evaluation of Combining Ability and Heterosis of Popular Restorer and Male Sterile Lines for the Development of Superior Rice Hybrids. Agronomy 2022, 12, 965. [Google Scholar] [CrossRef]
- Biswas, A.; Sarker, U.; Banik, B.R.; Rohman, M.M.; Mian, M.A.K. Genetic Divergence Study in Salinity Stress Tolerant Maize (Zea mays L.). Bangladesh J. Agric. Res. 2014, 39, 621–630. [Google Scholar] [CrossRef] [Green Version]
- Azam, M.G.; Sarker, U.; Banik, B.R. Genetic Variability of Yield and Its Contributing Characters on CIMMYT Maize Inbreds under Drought Stress. Bangladesh J. Agric. Res. 2014, 39, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Azam, M.G.A.; Sarker, U.; Mian, M.A.K.; Banik, B.R.; Talukder, M.Z.A. Genetic Divergence on Quantitative Characters of Exotic Maize Inbreds (Zea mays L.). Bangladesh J. Plant Breed. Genet. 2013, 26, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Ganapati, R.K.; Rasul, M.G.; Mian, M.A.K.; Sarker, U. Genetic Variability and Character Association of T-Aman Rice (Oryza sativa L). Int. J. Plant Biol. Res. 2014, 2, 1–4. [Google Scholar]
- Sarker, U.; Mian, M.A.K. Genetic Variations and Correlations between Floral Traits in Rice. Bangladesh J. Agril. Res 2004, 29, 553–558. [Google Scholar]
- Biswas, P.S.; Sarker, U.; Bhuiyan, M.A.R.; Khatun, S. Genetic Divergence in Cold Tolerant Irrigated Rice (Oryza sativa L.). Agriculturists 2006, 4, 15–20. [Google Scholar]
- Sarker, U.; Biswas, P.S.; Prasad, B.; Mian, M.A.K. Correlated Response, Relative Selection Efficiency and Path Analysis in Cold Tolerant Rice. Bangladesh J. Pl. Breed. Genet. 2001, 14, 33–36. [Google Scholar]
- Sarker, U.; Mian, M.A.K. Genetic Variability, Character Association and Path Analysis for Yield and Its Components in Rice. J. Asiat. Soc. Bangladesh Sci. 2003, 29, 47–54. [Google Scholar]
- Ali, M.A.; Sarker, U.; MAK, M.; Islam, M.A. Estimation of Genetic Divergence in Boro Rice (Oryza sativa L.). Int. J. BioRes. 2014, 16, 28–36. [Google Scholar]
- Karim, D.; Sarker, U.; Siddique, M.N.A.; Miah, M.A.K.; Hasnat, M.Z. Variability and Genetic Parameter Analysis in Aromatic Rice. Int. J. Sustain. Crop Prod. 2007, 2, 15–18. [Google Scholar]
- Karim, D.; Siddique, M.N.A.; Sarker, U.; Hasnat, Z.; Sultana, J. Phenotypic and Genotypic Correlation Co-Efficient of Quantitative Characters and Character Association of Aromatic Rice. J. Biosci. Agric. Res. 2014, 1, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Rai, P.K.; Sarker, U.; Roy, P.C.; Islam, A. Character Association in F4 Generation of Rice (Oryza sativa L.). Bangladesh J. Plant Breed. Genet. 2013, 26, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.R.; Sarker, U.; Hossain, M.A.; Huda, K.M.K.; Mian, M.A.K.; Hossain, T.; Zahan, M.S.; Mahmud, M.N.H. Genetic Diversity in Micronutrient Dense Rice and Its Implication in Breeding Program. Ecofriendly Agril. J. 2012, 5, 168–174. [Google Scholar]
- Hasan, M.R.; Sarker, U.; Mian, M.A.K.; Hossain, T.; Mahmud, M.N.H. Genetic Variation in Micronutrient Dense Rice and Its Implication in Breeding for Higher Yield. Eco-Friendly Agril. J. 2012, 5, 175–182. [Google Scholar]
- Siddique, M.N.A.; Sarker, U.; Mian, M.A.K. Genetic diversity in restorer line of rice. In Proceedings of the International Conference on Plant Breeding and Seed for Food Security; Bhuiyan, M.S.R., Rahman, L., Eds.; Plant Breeding and Genetics Society of Bangladesh: Dhaka, Bangladesh, 2009; pp. 137–142. [Google Scholar]
- Nath, J.K.; Sarker, U.; Mian, M.A.K.; Hossain, T. Genetic Divergence in T. Aman Rice. Ann. Bangladesh Agric. 2008, 12, 51–60. [Google Scholar]
- Rahman, M.H.; Sarker, U.; Main, M.A.K. Assessment of Variability of Floral and Yield Traits; I Restorer Lines of Rice. Ann. Bangladesh Agric. 2007, 11, 87–94. [Google Scholar]
- Rahman, M.H.; Sarker, U.; Main, M.A.K. Assessment of Variability of Floral and Yield Traits; II Maintainer Lines of Rice. Ann. Bangladesh Agric. 2007, 11, 95–102. [Google Scholar]
- Ashraf, A.T.M.; Rahman, M.M.; Hossain, M.M.; Sarker, U. Study of Correlation and Path Analysis in the Selected Okra Accessions. Asian Res. J. Agric. 2020, 12, 1–11. [Google Scholar] [CrossRef]
- Ashraf, A.T.M.; Rahman, M.M.; Hossain, M.M.; Sarker, U. Study of the Genetic Analysis of Some Selected Okra Accessions. Int. J. Adv. Res. 2020, 8, 549–556. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, A.T.M.; Rahman, M.M.; Hossain, M.M.; Sarker, U. Performance Evaluation of Some Selected Okra Accessions. Int. J. Plant Soil Sci. 2020, 32, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Talukder, M.Z.A.; Sarker, U.; Harun-Or-Rashid, M.; Zakaria, M. Genetic Diversity of Coconut (Cocos Nucifera L.) in Barisal Region. Ann. Bangladesh Agric. 2015, 19, 13–21. [Google Scholar]
- Talukder, M.Z.A.; Sarker, U.; Khan ABM, M.M.; Moniruzzaman, M.; Zaman, M.M. Genetic Variability and Correlation Coefficient of Coconut (Cocos Nucifera L.) in Barisal Region. Int. J. BioRes. 2011, 11, 15–21. [Google Scholar]
- Kayesh, E.; Sharker, M.S.; Roni, M.S.; Sarker, U. Integrated Nutrient Management for Growth, Yield and Profitability of Broccoli. Bangladesh J. Agric. Res. 2019, 44, 13–26. [Google Scholar] [CrossRef]
- Sun, H.; Mu, T.; Xi, L.; Zhang, M.; Chen, J. Sweet Potato (Ipomoea batatas L.) Leaves as Nutritional and Functional Foods. Food Chem. 2014, 156, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Oba, S. Protein, Dietary Fiber, Minerals, Antioxidant Pigments and Phytochemicals, and Antioxidant Activity in Selected Red Morph Amaranthus Leafy Vegetable. PLoS ONE 2019, 14, 0222517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarker, U.; Oba, S. Nutraceuticals, Antioxidant Pigments, and Phytochemicals in the Leaves of Amaranthus spinosus and Amaranthus viridis Weedy Species. Sci. Rep. 2019, 9, 20413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarker, U.; Hossain, M.M.; Oba, S. Nutritional and Antioxidant Components and Antioxidant Capacity in Green Morph Amaranthus Leafy Vegetable. Sci. Rep. 2020, 10, 1336. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Oba, S.; Daramy, M.A. Nutrients, Minerals, Antioxidant Pigments and Phytochemicals, and Antioxidant Capacity of the Leaves of Stem Amaranth. Sci. Rep. 2020, 10, 3892. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Oba, S. Nutrients, Minerals, Pigments, Phytochemical, and Radical Scavenging Activity in Amaranthus blitum Leafy Vegetable. Sci. Rep. 2020, 10, 3868. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarty, T.; Sarker, U.; Hasan, M.; Rahman, M.M. Variability in Mineral Compositions, Yield and Yield Contributing Traits of Stem Amaranth (Amaranthus lividus). Genetika 2018, 50, 995–1010. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Aguilar, D.M.; Grusak, M.A. Minerals, Vitamin C, Phenolics, Flavonoids and Antioxidant Activity of Amaranthus Leafy Vegetables. J. Food Compos. Anal. 2017, 58, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Bhargava, A.; Chatterjee, A.; Srivastava, J.; Singh, N.; Singh, S.P. Mineral Profile and Variability in Vegetable Amaranth (Amaranthus tricolor). Plant Foods Hum. Nutri. 2006, 61, 23–28. [Google Scholar] [CrossRef]
- Madruga, M.S.; Camara, F.S. The Chemical Composition of “Multimistura” as A Food Supplement. Food Chem. 2000, 68, 41–44. [Google Scholar] [CrossRef]
- Shahidi, F.; Chavan, U.D.; Bal, A.K.; McKenzie, D.B. Chemical Composition of Beach Pea (Lathyrus maritimus L.) Plant Parts. Food Chem. 1999, 64, 39–44. [Google Scholar] [CrossRef]
- Khanam, U.K.S.; Oba, S. Bioactive Substances in Leaves of Two Amaranth Species, Amaranthus lividus, and A. hypochondriacus. Can. J. Plant Sci. 2013, 93, 47–58. [Google Scholar] [CrossRef]
- Raju, M.; Varakumar, S.; Lakshminarayana, R.; Krishnakantha, P.T.; Baskaran, V. Carotenoid Composition and Vitamin A Activity of Medicinally Important Green Leafy Vegetables. Food Chem. 2007, 101, 1598–1605. [Google Scholar] [CrossRef]
- Cai, Y.; Sun, M.; Corke, H. Antioxidant Activity of Betalains from Plants of The Amaranthaceae. J. Agric. Food Chem. 2003, 51, 2288–2294. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.N.; Sarker, U.; Raihan, M.S.; Al-Huqail, A.A.; Siddiqui, M.H.; Oba, S. Influence of Salinity Stress on Color Parameters, Leaf Pigmentation, Polyphenol and Flavonoid Contents, and Antioxidant Activity of Amaranthus lividus Leafy Vegetables. Molecules 2022, 27, 1821. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Oba, S.; Ercisli, S.; Assouguem, A.; Alotaibi, A.; Ullah, R. Bioactive Phytochemicals and Quenching Activity of Radicals in Selected Drought-Resistant Amaranthus tricolor Vegetable Amaranth. Antioxidants 2022, 11, 578. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Rabbani, M.G.; Oba, S.; Eldehna, W.M.; Al-Rashood, S.T.; Mostafa, N.M.; Eldahshan, O.A. Phytonutrients, Colorant Pigments, Phytochemicals, and Antioxidant Potential of Orphan Leafy Amaranthus Species. Molecules 2022, 27, 2899. [Google Scholar] [CrossRef] [PubMed]
Accessions | Moisture | Protein | Fat | Carbohydrates | Energy | Ash | Dietary Fiber |
---|---|---|---|---|---|---|---|
AH1 | 86.62 ± 1.62c | 3.25 ± 0.03b | 0.26 ± 0.02e | 7.59 ± 0.14f | 44.56 ± 0.58c | 2.28 ± 0.01j | 76.65 ± 0.43h |
AH2 | 83.52 ± 1.53h | 2.48 ± 0.03c | 0.41 ± 0.03a | 8.94 ± 0.12b | 45.14 ± 0.54b | 4.65 ± 0.02a | 82.43 ± 0.45e |
AH3 | 87.05 ± 1.06b | 3.63 ± 0.02b | 0.26 ± 0.02e | 6.11 ± 0.15i | 41.06 ± 0.54f | 2.95 ± 0.01h | 88.72 ± 0.48b |
AH4 | 86.92 ± 1.05c | 2.46 ± 0.04c | 0.31 ± 0.03c | 6.98 ± 0.19g | 36.27 ± 0.55j | 3.33 ± 0.02f | 87.64 ± 0.44c |
AH5 | 86.45 ± 1.18d | 1.83 ± 0.05d | 0.15 ± 0.02g | 8.89 ± 0.14c | 41.76 ± 0.58e | 2.68 ± 0.02i | 65.48 ± 0.42j |
AH6 | 85.55 ± 1.52f | 1.53 ± 0.05d | 0.31 ± 0.02c | 9.43 ± 0.13a | 42.98 ± 0.58d | 3.18 ± 0.03g | 77.82 ± 0.46g |
AH7 | 86.57 ± 1.46d | 1.53 ± 0.02d | 0.33 ± 0.02b | 8.16 ± 0.18e | 37.42 ± 0.51i | 3.41 ± 0.01e | 91.66 ± 0.42a |
AH8 | 83.49 ± 1.54h | 2.48 ± 0.05c | 0.43 ± 0.02a | 9.47 ± 0.13a | 45.15 ± 0.56b | 4.13 ± 0.02c | 80.55 ± 0.45f |
AH9 | 84.65 ± 1.34g | 2.47 ± 0.04c | 0.21 ± 0.02f | 9.02 ± 0.19b | 47.58 ± 0.56a | 3.65 ± 0.01d | 85.62 ± 0.48d |
AH10 | 87.58 ± 1.21a | 2.86 ± 0.04c | 0.28 ± 0.03d | 6.30 ± 0.16h | 38.42 ± 0.57h | 2.98 ± 0.01h | 73.52 ± 0.49i |
AH11 | 84.78 ± 1.46g | 1.55 ± 0.04d | 0.41 ± 0.03a | 8.71 ± 0.17d | 40.15 ± 0.52g | 4.55 ± 0.02b | 87.82 ± 0.45c |
AH12 | 86.24 ± 1.18e | 4.53 ± 0.04a | 0.20 ± 0.02f | 5.70 ± 0.10j | 43.14 ± 0.52d | 3.33 ± 0.02f | 61.25 ± 0.48k |
Mean | 85.79 | 2.55 | 0.30 | 7.94 | 41.97 | 3.43 | 79.93 |
CV% | 1.256 | 0.433 | 0.562 | 0.479 | 0.558 | 0.428 | 0.545 |
Accessions | Macroelements | Microelements | |||||
---|---|---|---|---|---|---|---|
K | Ca | Mg | Fe | Mn | Cu | Zn | |
AH1 | 10.75 ± 0.05a | 24.82 ± 0.06e | 24.51 ± 0.24f | 1472.26 ± 0.58b | 351.39 ± 0.25a | 16.03 ± 0.06j | 901.11 ± 0.35j |
AH2 | 10.21 ± 0.05e | 21.62 ± 0.05g | 29.26 ± 0.16d | 980.00 ± 0.62h | 244.14 ± 0.28i | 26.36 ± 0.03f | 1040.21 ± 0.34d |
AH3 | 7.27 ± 0.04j | 27.22 ± 0.04c | 28.95 ± 0.21d | 1020.57 ± 0.58g | 309.23 ± 0.24d | 20.06 ± 0.05i | 992.12 ± 0.39g |
AH4 | 10.24 ± 0.06d | 34.82 ± 0.04a | 30.51 ± 0.17b | 1055.33 ± 0.59e | 192.19 ± 0.26j | 24.02 ± 0.04h | 841.44 ± 0.32k |
AH5 | 5.86 ± 0.05k | 26.42 ± 0.04d | 29.26 ± 0.21d | 902.95 ± 0.46i | 283.14 ± 0.21g | 26.06 ± 0.04g | 1001.88 ± 0.38f |
AH6 | 9.49 ± 0.06f | 26.42 ± 0.05d | 29.88 ± 0.18c | 783.30 ± 0.52k | 316.31 ± 0.26c | 29.35 ± 0.04c | 1702.95 ± 0.39a |
AH7 | 7.46 ± 0.04i | 26.42 ± 0.06d | 29.26 ± 0.18d | 882.28 ± 0.49j | 176.49 ± 0.21k | 20.09 ± 0.06i | 1020.62 ± 0.38e |
AH8 | 7.83 ± 0.06h | 24.02 ± 0.05f | 30.51 ± 0.15b | 1176.16 ± 0.58d | 245.96 ± 0.24i | 28.12 ± 0.03e | 1102.38 ± 0.37c |
AH9 | 10.46 ± 0.04c | 24.82 ± 0.04e | 29.88 ± 0.20c | 904.90 ± 0.51i | 332.64 ± 0.22b | 29.08 ± 0.04d | 980.45 ± 0.32h |
AH10 | 8.50 ± 0.04g | 20.82 ± 0.06h | 31.13 ± 0.16a | 1393.34 ± 0.56c | 295.16 ± 0.24e | 24.12 ± 0.05h | 1000.44 ± 0.36f |
AH11 | 10.69 ± 0.05b | 28.02 ± 0.05b | 29.88 ± 0.23c | 1048.82 ± 0.51f | 291.83 ± 0.28f | 32.19 ± 0.06b | 1304.92 ± 0.34b |
AH12 | 7.55 ± 0.05i | 28.02 ± 0.05b | 28.63 ± 0.15e | 1486.72 ± 0.58a | 266.59 ± 0.24h | 38.10 ± 0.04a | 950.60 ± 0.37i |
Mean | 8.86 | 26.12 | 29.31 | 1092.22 | 275.42 | 26.13 | 1069.93 |
CV% | 2.358 | 1.368 | 1.554 | 0.673 | 0.588 | 0.872 | 0.248 |
Accessions | Chlorophyll a | Chlorophyll b | Chlorophyll ab | Betacyanins | Betaxanthins | Betalains | Total Carotenoids |
---|---|---|---|---|---|---|---|
AH1 | 38.48 ± 0.06b | 13.60 ± 0.04d | 52.11 ± 0.14b | 28.75 ± 0.21e | 28.23 ± 0.16e | 57.10 ± 0.21e | 1538.28 ± 1.52e |
AH2 | 25.44 ± 0.08e | 9.23 ± 0.04h | 34.70 ± 0.15g | 22.67 ± 0.19h | 25.35 ± 0.19g | 48.03 ± 0.24h | 1641.07 ± 1.53a |
AH3 | 16.17 ± 0.07i | 6.68 ± 0.05 j | 22.88 ± 0.12j | 24.62 ± 0.22g | 26.77 ± 0.21f | 51.40 ± 0.24g | 721.51 ± 1.38j |
AH4 | 23.47 ± 0.08g | 7.65 ± 0.06i | 31.15 ± 0.16h | 17.57 ± 0.23j | 18.57 ± 0.16i | 36.14 ± 0.28j | 1492.79 ± 1.27f |
AH5 | 24.28 ± 0.08f | 10.78 ± 0.06f | 35.08 ± 0.16f | 21.46 ± 0.26i | 23.80 ± 0.21h | 45.27 ± 0.22i | 1314.34 ± 1.48g |
AH6 | 12.63 ± 0.07k | 5.47 ± 0.05k | 18.12 ± 0.14k | 34.13 ± 0.22c | 34.62 ± 0.22c | 68.75 ± 0.28c | 696.24 ± 1.25k |
AH7 | 23.60 ± 0.06g | 12.73 ± 0.06e | 36.36 ± 0.17e | 16.56 ± 0.25k | 16.59 ± 0.23j | 33.16 ± 0.22k | 1635.56 ± 1.23b |
AH8 | 47.55 ± 0.08a | 27.22 ± 0.06a | 74.80 ± 0.15a | 27.88 ± 0.25f | 28.33 ± 0.22e | 56.22 ± 0.22f | 748.24 ± 1.46i |
AH9 | 15.78 ± 0.08j | 6.57 ± 0.05j | 22.38 ± 0.13j | 31.28 ± 0.25d | 32.13 ± 0.19d | 63.43 ± 0.25d | 1583.61 ± 1.25d |
AH10 | 35.88 ± 0.06c | 15.84 ± 0.06b | 51.74 ± 0.15c | 35.43 ± 0.24b | 35.66 ± 0.16b | 71.09 ± 0.21b | 484.33 ± 1.54l |
AH11 | 34.48 ± 0.07d | 15.25 ± 0.05c | 49.76 ± 0.15d | 39.36 ± 0.26a | 39.53 ± 0.16a | 78.90 ± 0.23a | 1145.78 ± 1.32h |
AH12 | 17.58 ± 0.08h | 9.56 ± 0.04g | 27.15 ± 0.19i | 13.55 ± 0.26l | 12.84 ± 0.21k | 26.41 ± 0.21l | 1631.77 ± 1.32c |
Mean | 26.28 | 11.72 | 38.02 | 26.11 | 26.87 | 52.99 | 1219.46 |
CV% | 4.535 | 2.365 | 3.366 | 3.425 | 2.418 | 3.624 | 5.452 |
Accessions | β-Carotene | Vitamin C | TP (GAE) | TF | TA (DPPH) | TA (ABTS+) |
---|---|---|---|---|---|---|
AH1 | 1165.23 ± 1.44c | 805.66 ± 1.15e | 136.28 ± 0.27f | 108.38 ± 0.16d | 14.85 ± 0.15e | 27.75 ± 0.06e |
AH2 | 1240.36 ± 1.66a | 308.26 ± 1.26h | 156.21 ± 0.22e | 62.54 ± 0.15k | 10.18 ± 0.16i | 18.03 ± 0.05k |
AH3 | 551.72 ± 1.24h | 924.22 ± 1.24d | 104.25 ± 0.25j | 72.65 ± 0.15i | 15.55 ± 0.18d | 26.06 ± 0.04g |
AH4 | 1137.48 ± 1.11d | 431.57 ± 1.16g | 98.52 ± 0.24k | 46.03 ± 0.14l | 13.35 ± 0.16f | 25.95 ± 0.05h |
AH5 | 997.22 ± 1.24e | 1293.65 ± 1.22a | 135.29 ± 0.24g | 94.34 ± 0.19f | 12.78 ± 0.15g | 22.89 ± 0.04j |
AH6 | 530.22 ± 1.29i | 985.68 ± 1.18c | 112.42 ± 0.34i | 85.27 ± 0.12g | 11.62 ± 0.18h | 24.72 ± 0.03i |
AH7 | 1242.25 ± 1.19a | 1047.54 ± 1.28b | 165.24 ± 0.26d | 105.64 ± 0.15e | 13.35 ± 0.21f | 28.95 ± 0.06d |
AH8 | 562.92 ± 1.35g | 1047.22 ± 1.29b | 69.75 ± 0.26l | 65.39 ± 0.15j | 14.31 ± 0.19e | 27.75 ± 0.06f |
AH9 | 1206.55 ± 1.35b | 616.52 ± 1.28f | 201.36 ± 0.25a | 124.38 ± 0.23c | 8.94 ± 0.12j | 14.67 ± 0.05l |
AH10 | 365.27 ± 1.29j | 616.11 ± 1.39f | 196.77 ± 0.25b | 135.7 ± 0.16a | 24.28 ± 0.22b | 44.38 ± 0.05b |
AH11 | 868.27 ± 1.22f | 98.67 ± 1.29j | 175.27 ± 0.29c | 127.34 ± 0.19b | 27.58 ± 0.22a | 50.55 ± 0.04a |
AH12 | 1241.65 ± 1.32a | 147.64 ± 1.19i | 116.10 ± 0.27h | 75.64 ± 0.12h | 16.14 ± 0.14c | 31.17 ± 0.05c |
Mean | 925.76 | 693.56 | 138.96 | 91.94 | 15.24 | 28.57 |
CV% | 3.754 | 1.426 | 2.234 | 0.362 | 0.265 | 0.625 |
Traits | Ch b | Ch ab | BC | BX | BL | T-car | β-Car | AsA | TP | TF | TA (DPPH) | TA (ABTS) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ch a | 0.85 ** | 0.87 ** | 0.76 ** | 0.76 ** | 0.78 ** | −0.76 ** | −0.87 ** | −0.02 | 0.77 ** | 0.86 ** | 0.89 ** | 0.86 ** |
Ch b | 0.85 ** | 0.77 ** | 0.86 ** | 0.77 ** | −0.78 ** | −0.84 ** | −0.04 | 0.78 ** | 0.78 ** | 0.87 ** | 0.88 ** | |
Ch ab | 0.73 ** | 0.79 ** | 0.76 ** | −0.74 ** | −0.81 ** | −0.03 | 0.79 ** | 0.89 ** | 0.85 ** | 0.86 ** | ||
BC | 0.83 ** | 0.86 ** | −0.85 ** | −0.78 ** | −0.14 | 0.76 ** | 0.86 ** | 0.78 ** | 0.89 ** | |||
BX | 0.93 ** | −0.78 ** | −0.76 ** | −0.16 | 0.75 ** | 0.86 ** | 0.86 ** | 0.87 ** | ||||
BL | −0.75 ** | −0.78 ** | −0.18 | 0.76 ** | 0.84 ** | 0.77 ** | 0.86 ** | |||||
T-car | 0.89 ** | −0.16 | 0.72 ** | 0.88 ** | 0.86 ** | 0.88 ** | ||||||
β-Car | −0.19 | 0.71 * | 0.84 ** | 0.88 ** | 0.87 ** | |||||||
AsA | 0.07 | 0.08 | 0.09 | 0.19 | ||||||||
TP | 0.77 ** | 0.88 ** | 0.96 ** | |||||||||
TF | 0.89 ** | 0.92 ** | ||||||||||
TA (DPPH) | 0.96 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarker, U.; Oba, S.; Alsanie, W.F.; Gaber, A. Characterization of Phytochemicals, Nutrients, and Antiradical Potential in Slim Amaranth. Antioxidants 2022, 11, 1089. https://doi.org/10.3390/antiox11061089
Sarker U, Oba S, Alsanie WF, Gaber A. Characterization of Phytochemicals, Nutrients, and Antiradical Potential in Slim Amaranth. Antioxidants. 2022; 11(6):1089. https://doi.org/10.3390/antiox11061089
Chicago/Turabian StyleSarker, Umakanta, Shinya Oba, Walaa F. Alsanie, and Ahmed Gaber. 2022. "Characterization of Phytochemicals, Nutrients, and Antiradical Potential in Slim Amaranth" Antioxidants 11, no. 6: 1089. https://doi.org/10.3390/antiox11061089
APA StyleSarker, U., Oba, S., Alsanie, W. F., & Gaber, A. (2022). Characterization of Phytochemicals, Nutrients, and Antiradical Potential in Slim Amaranth. Antioxidants, 11(6), 1089. https://doi.org/10.3390/antiox11061089