Understanding COVID-19 Vaccine Hesitancy: A Neuroscientific Protocol
Abstract
:1. Introduction
- Investigate sensorimotor mapping and affective-autonomic responses in vaccine-hesitant and accepting individuals, assessing emotional and physiological reactions to vaccination-related and unrelated stimuli. We will measure motor evoked potentials (MEPs) from the deltoid muscle—a relevant muscle for vaccine inoculation—and the extensor carpi radialis as a control muscle. Additionally, facial electromyography (EMG) will be recorded to assess fear and disgust responses, providing physiological markers of affective processing in response to these stimuli.
- Examine affective learning processes in VH through a Pavlovian fear conditioning and extinction paradigm, testing whether hesitant individuals exhibit altered fear acquisition, extinction patterns compared to non-hesitant controls. Importantly, no explicit information about vaccination will be provided during the task, allowing us to probe whether differences in basic fear learning mechanisms—independent of vaccine-related content—might underlie or predict vaccine hesitancy. This approach aimed to identify whether disruptions at any stage of the conditioning process are associated with negative attitudes toward vaccination. Skin conductance response (SCR) will serve as the primary psychophysiological marker of conditioned fear responses.
- Analyze demographic and psychological characteristics associated with VH by comparing experimental and control group on disgust sensitivity, paranoia, anxiety, empathy, intelligence, personality traits, political orientation, and dogmatism, using validated questionnaires.
2. Methods and Analysis
2.1. Experiment 1
2.1.1. Participants
- Vaccine-Accepting Group (n = 20): Individuals who are vaccinated or express no hesitation toward vaccination. They will serve as controls.
2.1.2. Sample Size Calculation
2.2. Experiment 2
2.2.1. Participants
- Vaccine-Accepting Group (n = 20): Individuals who are vaccinated or express no hesitation toward vaccination. They will serve as controls.
2.2.2. Sample Size Calculation
2.3. Inclusion Criteria
- Age range of 18–50 years.
- Right-handedness, evaluated by the Edinburgh Inventory [30].
- Normal vision.
2.4. Exclusion Criteria
- History of neurological or psychiatric disorders.
- Central nervous system-acting medications.
- Contraindications for Transcranial Magnetic Stimulation (TMS) [31].
- History of substance abuse or alcohol dependence.
- Participation in other neurophysiological studies within the last six months to avoid potential carryover effects.
2.5. Screening and Psychological Assessments
- Each participant will undergo a comprehensive psychological evaluation using validated instruments designed to assess emotional, cognitive, and ideological dimensions.
- Disgust Sensitivity Scale [32]: Evaluates individual sensitivity to disgust. Individuals with high disgust sensitivity may react more strongly to perceived bodily invasions (e.g., needles, foreign substances), associating vaccines with contamination or violation of purity. This heightened aversive response can contribute to intuitive vaccine rejection rooted in pathogen avoidance and moral purity schemas.
- State-Trait Anxiety Inventory [33]: Assesses both situational (state) and dispositional (trait) anxiety levels. Elevated trait anxiety may increase health-related fears, including vaccine side effects, leading to avoidant behaviors. High state anxiety during periods of public health uncertainty (e.g., pandemics) may amplify mistrust in medical systems or increase susceptibility to fear-based misinformation.
- Revised Green et al. Paranoid Thoughts Scale [34]: Measures paranoia-related cognitive patterns. Higher levels of paranoia are associated with suspicion toward authorities, including health institutions and pharmaceutical companies. Individuals with elevated paranoid thinking may interpret public health messages as manipulative or coercive, fostering conspiratorial beliefs about vaccines.
- Interpersonal Reactivity Index [35]: Assesses empathy through Empathic Concern and Personal Distress subscales. High empathic concern might reduce hesitancy, as empathy fosters prosocial motivation, including protecting vulnerable populations through herd immunity.
- Updated Rokeach Dogmatism Scale [36]: Evaluates the degree of rigid, dogmatic thinking. High dogmatism reflects cognitive rigidity and resistance to information that contradicts pre-existing beliefs. Dogmatic individuals are less likely to accept evolving scientific recommendations and more prone to ideologically driven vaccine skepticism, especially if their belief system is anti-establishment or mistrustful of science.
- Political Orientation: Determines self-reported political inclination (liberal, centrist, or conservative) through a direct verbal question during the screening process. Moreover, we will include left-right self-placement [37]. Compared to liberal, Conservatives may show higher hesitancy in contexts where vaccines are framed as government mandates.
2.6. Techniques
2.6.1. Experiment 1
Transcranial Magnetic Stimulation (TMS) and Motor Evoked Potentials (MEPs)
Electromyography (EMG)
2.6.2. Experiment 2
Virtual Reality (VR)
Skin Conductance Response (SCR)
2.7. Interventions
2.7.1. Experiment 1
2.7.2. Experiment 2
2.8. Statistical Methods
2.8.1. Experiment 1
2.8.2. Experiment 2
3. Discussion
3.1. Experiment 1
3.2. Experiment 2
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
COVID-19 | Coronavirus Disease 2019 |
VH | Vaccine Hesitancy |
MEPs | Motor Evoked Potentials |
EMG | Electromyography |
SCR | Skin Conductance Response |
WHO | World Health Organization |
Vax | Vaccinated individuals |
No-Vax | Non-Vaccinated individuals |
TMS | Transcranial Magnetic Stimulation |
IQ | Intelligence Quotient |
OSP | Optimal Scalp Positions |
ECR | Extensor Carpi Radialis |
rMT | Resting Motor Threshold |
μV | Microvolt |
mV | Millivolt |
Hz | Hertz |
3D | Three Dimensional |
VR | Virtual Reality |
EDA | Electrodermal Activity |
dB | Decibel |
ANOVA | Analysis of Variance |
CS+ | Conditioned Stimulus Positive |
CS- | Conditioned Stimulus Negative |
Tukey’s HSD | Tukey’s Honestly Significant Difference |
References
- Adam, D. The Pandemic’s True Death Toll: Millions More than Official Counts. Nature 2022, 601, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J.; Dalamitros, A.A.; Beltran-Velasco, A.I.; Mielgo-Ayuso, J.; Tornero-Aguilera, J.F. Social and Psychophysiological Consequences of the COVID-19 Pandemic: An Extensive Literature Review. Front. Psychol. 2020, 11, 580225. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lange, K.W. Coronavirus Disease 2019 (COVID-19) and Global Mental Health. Glob. Health J. 2021, 5, 31–36. [Google Scholar] [CrossRef]
- Excler, J.-L.; Saville, M.; Berkley, S.; Kim, J.H. Vaccine Development for Emerging Infectious Diseases. Nat. Med. 2021, 27, 591–600. [Google Scholar] [CrossRef]
- MacDonald, N.E. SAGE Working Group on Vaccine Hesitancy Vaccine Hesitancy: Definition, Scope and Determinants. Vaccine 2015, 33, 4161–4164. [Google Scholar] [CrossRef] [PubMed]
- Soares, P.; Rocha, J.V.; Moniz, M.; Gama, A.; Laires, P.A.; Pedro, A.R.; Dias, S.; Leite, A.; Nunes, C. Factors Associated with COVID-19 Vaccine Hesitancy. Vaccines 2021, 9, 300. [Google Scholar] [CrossRef]
- Murphy, J.; Vallières, F.; Bentall, R.P.; Shevlin, M.; McBride, O.; Hartman, T.K.; McKay, R.; Bennett, K.; Mason, L.; Gibson-Miller, J.; et al. Psychological Characteristics Associated with COVID-19 Vaccine Hesitancy and Resistance in Ireland and the United Kingdom. Nat. Commun. 2021, 12, 29. [Google Scholar] [CrossRef]
- Neumann-Böhme, S.; Varghese, N.E.; Sabat, I.; Barros, P.P.; Brouwer, W.; van Exel, J.; Schreyögg, J.; Stargardt, T. Once We Have It, Will We Use It? A European Survey on Willingness to Be Vaccinated against COVID-19. Eur. J. Health Econ. 2020, 21, 977–982. [Google Scholar] [CrossRef]
- Hornsey, M.J.; Harris, E.A.; Fielding, K.S. The Psychological Roots of Anti-Vaccination Attitudes: A 24-Nation Investigation. Health Psychol. 2018, 37, 307–315. [Google Scholar] [CrossRef]
- Browne, M.; Thomson, P.; Rockloff, M.J.; Pennycook, G. Going against the Herd: Psychological and Cultural Factors Underlying the ‘Vaccination Confidence Gap’. PLoS ONE 2015, 10, e0132562. [Google Scholar] [CrossRef]
- Pomares, T.D.; Buttenheim, A.M.; Amin, A.B.; Joyce, C.M.; Porter, R.M.; Bednarczyk, R.A.; Omer, S.B. Association of Cognitive Biases with Human Papillomavirus Vaccine Hesitancy: A Cross-Sectional Study. Hum. Vaccin. Immunother. 2020, 16, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Okay, S. COVID-19 Vaccine Hesitancy Among Various Segments of the Population in Turkey: A Literature Review. Vaccines 2025, 13, 44. [Google Scholar] [CrossRef]
- de Figueiredo, A.; Simas, C.; Karafillakis, E.; Paterson, P.; Larson, H.J. Mapping Global Trends in Vaccine Confidence and Investigating Barriers to Vaccine Uptake: A Large-Scale Retrospective Temporal Modelling Study. Lancet 2020, 396, 898–908. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Tu, P.; Beitsch, L.M. Confidence and Receptivity for COVID-19 Vaccines: A Rapid Systematic Review. Vaccines 2020, 9, 16. [Google Scholar] [CrossRef]
- Lazarus, J.V.; Ratzan, S.C.; Palayew, A.; Gostin, L.O.; Larson, H.J.; Rabin, K.; Kimball, S.; El-Mohandes, A. A Global Survey of Potential Acceptance of a COVID-19 Vaccine. Nat. Med. 2021, 27, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Roozenbeek, J.; Schneider, C.R.; Dryhurst, S.; Kerr, J.; Freeman, A.L.J.; Recchia, G.; van der Bles, A.M.; van der Linden, S. Susceptibility to Misinformation about COVID-19 around the World. R. Soc. Open Sci. 2020, 7, 201199. [Google Scholar] [CrossRef]
- Loomba, S.; de Figueiredo, A.; Piatek, S.J.; de Graaf, K.; Larson, H.J. Measuring the Impact of COVID-19 Vaccine Misinformation on Vaccination Intent in the UK and USA. Nat. Hum. Behav. 2021, 5, 337–348. [Google Scholar] [CrossRef]
- Olagoke, A.A.; Olagoke, O.O.; Hughes, A.M. Intention to Vaccinate Against the Novel 2019 Coronavirus Disease: The Role of Health Locus of Control and Religiosity. J. Relig. Health 2021, 60, 65–80. [Google Scholar] [CrossRef]
- Huynh, H.P.; Senger, A.R. A Little Shot of Humility: Intellectual Humility Predicts Vaccination Attitudes and Intention to Vaccinate against COVID-19. J. Appl. Soc. Psychol. 2021, 51, 449–460. [Google Scholar] [CrossRef]
- Candio, P.; Violato, M.; Clarke, P.M.; Duch, R.; Roope, L.S. Prevalence, Predictors and Reasons for COVID-19 Vaccine Hesitancy: Results of a Global Online Survey. Health Policy 2023, 137, 104895. [Google Scholar] [CrossRef]
- Vicario, C.M.; Mucciardi, M.; Faraone, G.; Lucifora, C.; Schade, H.M.; Falzone, A.; Salehinejad, M.A.; Craparo, G.; Nitsche, M.A. Individual Predictors of Vaccine Hesitancy in the Italian Post COVID-19 Pandemic Era. Human. Vaccines Immunother. 2024, 20, 2306677. [Google Scholar] [CrossRef] [PubMed]
- Freeman, D.; Lambe, S.; Yu, L.-M.; Freeman, J.; Chadwick, A.; Vaccari, C.; Waite, F.; Rosebrock, L.; Petit, A.; Vanderslott, S.; et al. Injection Fears and COVID-19 Vaccine Hesitancy. Psychol. Med. 2023, 53, 1185–1195. [Google Scholar] [CrossRef]
- Fridman, A.; Gershon, R.; Gneezy, A. COVID-19 and Vaccine Hesitancy: A Longitudinal Study. PLoS ONE 2021, 16, e0250123. [Google Scholar] [CrossRef]
- Engin, C.; Vezzoni, C. Who’s Skeptical of Vaccines? Prevalence and Determinants of Anti-Vaccination Attitudes in Italy. Popul. Rev. 2020, 59, 156–179. [Google Scholar] [CrossRef]
- Damasio, A.R.; Tranel, D.; Damasio, H.C. Somatic Markers and the Guidance of Behavior: Theory and Preliminary Testing. In Frontal Lobe Function and Dysfunction; Levin, H.S., Eisenberg, H.M., Benton, A.L., Eds.; Oxford University Press: New York, NY, USA, 1991; pp. 217–229. ISBN 978-0-19-506284-7. [Google Scholar]
- Shapiro, G.K.; Tatar, O.; Dube, E.; Amsel, R.; Knauper, B.; Naz, A.; Perez, S.; Rosberger, Z. The Vaccine Hesitancy Scale: Psychometric Properties and Validation. Vaccine 2018, 36, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, V.J.; Alcaide, M.L.; Salazar, A.S.; Montgomerie, E.K.; Maddalon, M.J.; Jones, D.L. Psychometric Properties of a Vaccine Hesitancy Scale Adapted for COVID-19 Vaccination Among People with HIV. AIDS Behav. 2022, 26, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical Power Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Gignac, G.E.; Szodorai, E.T. Effect size guidelines for individual differences researchers. Personal. Individ. Differ. 2016, 102, 74–78. [Google Scholar] [CrossRef]
- Oldfield, R.C. The Assessment and Analysis of Handedness: The Edinburgh Inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Rossi, S.; Antal, A.; Bestmann, S.; Bikson, M.; Brewer, C.; Brockmöller, J.; Carpenter, L.L.; Cincotta, M.; Chen, R.; Daskalakis, J.D.; et al. Safety and Recommendations for TMS Use in Healthy Subjects and Patient Populations, with Updates on Training, Ethical and Regulatory Issues: Expert Guidelines. Clin. Neurophysiol. 2021, 132, 269–306. [Google Scholar] [CrossRef]
- Fergus, T.A.; Valentiner, D.P. The Disgust Propensity and Sensitivity Scale–Revised: An Examination of a Reduced-Item Version. J. Anxiety Disord. 2009, 23, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Spielberger, C.D.; Gorsuch, R.L.; Lushene, P.R.; Vagg, P.R.; Jacobs, G.A. Manual for the State-Trait Anxiety Inventory (Form Y); State-Trait Anxiety Inventory; Consulting Psychologists Press: Palo Alto, CA, USA, 1983. [Google Scholar]
- Freeman, D.; Loe, B.S.; Kingdon, D.; Startup, H.; Molodynski, A.; Rosebrock, L.; Brown, P.; Sheaves, B.; Waite, F.; Bird, J.C. The Revised Green et al., Paranoid Thoughts Scale (R-GPTS): Psychometric Properties, Severity Ranges, and Clinical Cut-Offs. Psychol. Med. 2021, 51, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.H. Interpersonal Reactivity Index 2011. Available online: https://backend.fetzer.org/sites/default/files/images/stories/pdf/selfmeasures/EMPATHY-InterpersonalReactivityIndex.pdf (accessed on 17 May 2025).
- Shearman, S.M.; Levine, T.R. Dogmatism Updated: A Scale Revision and Validation. Commun. Q. 2006, 54, 275–291. [Google Scholar] [CrossRef]
- Breyer, B. Left–Right Self-Placement (ALLBUS); GESIS—Leibniz Institute for the Social Sciences: Mannheim, Germany, 2015. [Google Scholar] [CrossRef]
- Brasil-Neto, J.P.; Cohen, L.G.; Panizza, M.; Nilsson, J.; Roth, B.J.; Hallett, M.J. Optimal focal transcranial magnetic activation of the human motor cortex: Effects of coil orientation, shape of the induced current pulse, and stimulus intensity. Clin. Neurophysiol. 1992, 9, 132–136. [Google Scholar] [CrossRef]
- Mills, K.R.; Boniface, S.J.; Schubert, M. Magnetic brain stimulation with a double coil: The importance of coil orientation. Electroencephalogr. Clin. Neurophysiol. 1992, 85, 17–21. [Google Scholar] [CrossRef]
- Chen, R.; Samii, A.; Caños, M.; Wassermann, E.M.; Hallett, M. Effects of Phenytoin on Cortical Excitability in Humans. Neurology 1997, 49, 881–883. [Google Scholar] [CrossRef]
- Vicario, C.M.; Candidi, M.; Aglioti, S.M. Cortico-Spinal Embodiment of Newly Acquired, Action-Related Semantic Associations. Brain Stimul. 2013, 6, 952–958. [Google Scholar] [CrossRef]
- Vicario, C.M.; Rafal, R.D.; Avenanti, A. Counterfactual Thinking Affects the Excitability of the Motor Cortex. Cortex 2015, 65, 139–148. [Google Scholar] [CrossRef]
- Vicario, C.M.; Rafal, R.D.; Borgomaneri, S.; Paracampo, R.; Kritikos, A.; Avenanti, A. Pictures of Disgusting Foods and Disgusted Facial Expressions Suppress the Tongue Motor Cortex. Social. Cogn. Affect. Neurosci. 2017, 12, 352–362. [Google Scholar] [CrossRef]
- Tassinary, L.G.; Cacioppo, J.T. The Skeletomotor System: Surface Electromyography. In Handbook of Psychophysiology; Cambridge University Press: Cambridge, UK, 2000; pp. 163–198. [Google Scholar]
- Lucifora, C.; Grasso, G.M.; Nitsche, M.A.; D’Italia, G.; Sortino, M.; Salehinejad, M.A.; Falzone, A.; Avenanti, A.; Vicario, C.M. Enhanced fear acquisition in individuals with evening chronotype. A virtual reality fear conditioning/extinction study. J. Affect. Disord. 2022, 311, 344–352. [Google Scholar] [CrossRef]
- Vicario, C.M.; Culicetto, L.; Lucifora, C.; Ferraioli, F.; Massimino, S.; Martino, G.; Tomaiuolo, F.; Falzone, A.M. The power of belief? Evidence of reduced fear extinction learning in Catholic God believers. Front. Public. Health. 2025, 12, 1509388. [Google Scholar] [CrossRef]
- Lucifora, C.; Gangemi, A.; D’Italia, G.; Culicetto, L.; Ferraioli, F.; Grasso, G.M.; Vicario, C.M. PanicRoom: A Virtual Reality-Based Pavlovian Fear Conditioning Paradigm. Front. Psychol. 2024, 15, 1432141. [Google Scholar] [CrossRef] [PubMed]
- Avenanti, A.; Bueti, D.; Galati, G.; Aglioti, S.M. Transcranial Magnetic Stimulation Highlights the Sensorimotor Side of Empathy for Pain. Nat. Neurosci. 2005, 8, 955–960. [Google Scholar] [CrossRef]
- Vicario, C.M.; Newman, A. Emotions affect the recognition of hand gestures. Front. Hum. Neurosci. 2013, 7, 906. [Google Scholar] [CrossRef] [PubMed]
- Vicario, C.M.; Rafal, R.D.; Di Pellegrino, G.; Lucifora, C.; Salehinejad, M.A.; Nitsche, M.A.; Avenanti, A. Indignation for Moral Violations Suppresses the Tongue Motor Cortex: Preliminary TMS Evidence. Social. Cogn. Affect. Neurosci. 2022, 17, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Vicario, C.M.; Turrini, S.; Lucifora, C.; Culicetto, L.; Ferraioli, F.; Falzone, A.; Nitsche, M.A.; Avenanti, A. When defeat leaves a bad taste in the mouth: Modulation of tongue corticobulbar output during monetary loss in a gambling task. Brain Stimul. 2022, 15, 1448–1450. [Google Scholar] [CrossRef]
- Fiori, F.; Ciricugno, A.; Cattaneo, Z.; Ferrari, C. The Impact of the Perception of Primary Facial Emotions on Corticospinal Excitability. Brain Sci. 2023, 13, 1291. [Google Scholar] [CrossRef] [PubMed]
- Borgomaneri, S.; Vitale, F.; Avenanti, A. Behavioral inhibition system sensitivity enhances motor cortex suppression when watching fearful body expressions. Brain Struct. Funct. 2017, 222, 3267–3282. [Google Scholar] [CrossRef]
- Ney, L.J.; Vicario, C.M.; Nitsche, M.A.; Felmingham, K.L. Timing matters: Transcranial direct current stimulation after extinction learning impairs subsequent fear extinction retention. Neurobiol. Learn. Mem. 2021, 177, 107356. [Google Scholar] [CrossRef]
- Culicetto, L.; Ferraioli, F.; Lucifora, C.; Falzone, A.; Martino, G.; Craparo, G.; Avenanti, A.; Vicario, C.M. Disgust as a transdiagnostic index of mental illness: A narrative review of clinical populations. Bull. Menn. Clin. 2023, 87 (Suppl. A), 53–91. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pisano, F.; Massimino, S.; Craparo, G.; Martino, G.; Tomaiuolo, F.; Caruso, V.; Avenanti, A.; Vicario, C.M. Understanding COVID-19 Vaccine Hesitancy: A Neuroscientific Protocol. Brain Sci. 2025, 15, 563. https://doi.org/10.3390/brainsci15060563
Pisano F, Massimino S, Craparo G, Martino G, Tomaiuolo F, Caruso V, Avenanti A, Vicario CM. Understanding COVID-19 Vaccine Hesitancy: A Neuroscientific Protocol. Brain Sciences. 2025; 15(6):563. https://doi.org/10.3390/brainsci15060563
Chicago/Turabian StylePisano, Francesca, Simona Massimino, Giuseppe Craparo, Gabriella Martino, Francesco Tomaiuolo, Vanni Caruso, Alessio Avenanti, and Carmelo Mario Vicario. 2025. "Understanding COVID-19 Vaccine Hesitancy: A Neuroscientific Protocol" Brain Sciences 15, no. 6: 563. https://doi.org/10.3390/brainsci15060563
APA StylePisano, F., Massimino, S., Craparo, G., Martino, G., Tomaiuolo, F., Caruso, V., Avenanti, A., & Vicario, C. M. (2025). Understanding COVID-19 Vaccine Hesitancy: A Neuroscientific Protocol. Brain Sciences, 15(6), 563. https://doi.org/10.3390/brainsci15060563