Innovations in Meta-Analytic and Computational Methods in the Neuroscientific Investigation of Psychiatric and Neurological Disorders
Abstract
1. Introduction
2. Multilevel Kernel Density Analysis of Functional Magnetic Resonance Imaging Studies
2.1. Overview
2.2. Methodology
2.3. Applications and Findings
3. Meta-Analyses of Positron Emission Tomography Neuroimaging of Neuroinflammation
3.1. Overview
3.2. Methodology
3.3. Applications and Findings
4. Enhancing Neuroimaging Genetics Through Meta-Analysis (ENIGMA) Consortium Neuroimaging Protocols
4.1. Overview
4.2. Methodology
4.3. Applications and Findings
5. Meta-Genome-Wide-Association Studies and Polygenic Risk Scores
5.1. Overview
5.2. Methodology
5.3. Applications and Findings
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| MKDA | multilevel kernel density analysis |
| fMRI | functional magnetic resonance imaging |
| PET | positron emission tomography |
| ENIGMA | Enhancing Neuroimaging Genetics through Meta-Analysis |
| GWAS | genome-wide association study |
| PRS | polygenic risk score |
| CBMA | coordinate-based meta-analysis |
| MAST | meta-analytic threshold |
| CST | cluster size threshold |
| FDR | false-discovery rate |
| ALE | activation likelihood estimation |
| SDM | signed differential mapping |
| PTSD | post-traumatic stress disorder |
| SAD | social anxiety disorder |
| HC | healthy control |
| dACC | dorsal anterior cingulate cortex |
| vmPFC | ventromedial prefrontal cortex |
| MDD | major depressive disorder |
| dlPFC | dorsolateral prefrontal cortex |
| sgACC | subgenual anterior cingulate cortex |
| BD | bipolar disorder |
| GAD | generalized anxiety disorder |
| DMN | default mode network |
| FPN | frontoparietal network |
| DAN | dorsal attention network |
| DTI | diffusion tensor imaging |
| MRI | magnetic resonance imaging |
| PD | panic disorder |
| rACC | rostral anterior cingulate cortex |
| SVM | support vector machine |
| TSPO | translocator protein |
| BP | binding potential |
| Vt | distribution volume |
| SUVR | standardized uptake value ratio |
| ROI | region of interest |
| SMD | standardized mean difference |
| AD | Alzheimer’s disease |
| IPD-MA | individualized participant data meta-analysis |
| FA | fractional anisotropy |
| DVAE | denoising variational autoencoder |
| C + T | clumping and thresholding |
| SNP | single nucleotide polymorphism |
| LD | linkage disequilibrium |
| ISC | International Schizophrenia Consortium |
| PGC | Psychiatric Genomics Consortium |
| ASD | autism spectrum disorder |
| ADHD | attention-deficit/hyperactivity disorder |
Appendix A
| Item Number | Study Design Feature | Description |
|---|---|---|
| 1 | PROSPERO pre-registration | Pre-registration of study design and protocol |
| 2 | PRISMA checklist | Standardized set of items to report to ensure transparency, completeness, and reproducibility |
| 3 | Inclusion criteria | Predefined inclusion criteria used to screen literature |
| 4 | Double screening | Duplicate literature screening by independent teams to ensure completeness and accuracy |
| 5 | Monte Carlo simulations * | Compute cluster sizes needed to achieve correction for multiple comparisons and false discovery rates |
| 6 | Ensemble thresholding * | Stepwise examination of statistical thresholds to minimize cluster size detection bias |
| 7 | Risk of bias assessment | Conduct quality assessment of primary studies |
| 8 | Leave-one-out analysis | Compute robustness to single study removal |
| 9 | Fail-safe N analysis | Determine robustness to publication bias |
| 10 | File sharing | Sharing of tracker files and analysis script to promote reproducibility |
References
- Simard, M.-A.; Kozlowski, D.; Segal, J.; Messer, M.; Ocay, D.D.; Saari, T.; Ferland, C.E.; Larivière, V. Trends in brain research: A bibliometric analysis. Can. J. Neurol. Sci. 2025, 52, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Yeung, A.W.K.; Goto, T.K.; Leung, W.K. A bibliometric review of research trends in neuroimaging. Curr. Sci. 2017, 112, 725–734. [Google Scholar] [CrossRef]
- Gurevitch, J.; Koricheva, J.; Nakagawa, S.; Stewart, G. Meta-analysis and the science of research synthesis. Nature 2018, 555, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Wager, T.D.; Lindquist, M.; Kaplan, L. Meta-analysis of functional neuroimaging data: Current and future directions. Soc. Cogn. Affect. Neurosci. 2009, 4, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Button, K.S.; Ioannidis, J.P.A.; Mokrysz, C.; Nosek, B.A.; Flint, J.; Robinson, E.S.J.; Munafò, M.R. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013, 14, 365–376. [Google Scholar] [CrossRef]
- Eklund, A.; Nichols, T.E.; Poline, J.B. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. USA 2016, 113, 7900–7905. [Google Scholar] [CrossRef]
- Miller, C.H. Disorder-Specific and Transdiagnostic Functional Neuroimaging Abnormalities in Major Depressive Disorder. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2018. [Google Scholar]
- Wager, T.D.; Lindquist, M.; Kaplan, L. Evaluating the consistency and specificity of neuroimaging data using meta-analysis: The MKDA framework. NeuroImage 2009, 45 Suppl. 1, S210–S221. [Google Scholar] [CrossRef]
- Etkin, A.; Wager, T.D. Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry 2007, 164, 1476–1488. [Google Scholar] [CrossRef]
- Hamilton, J.P.; Etkin, A.; Furman, D.J.; Lemus, M.G.; Johnson, R.F.; Gotlib, I.H. Functional neuroimaging of major depressive disorder: A meta-analysis and new integration of baseline activation and neural response data. Am. J. Psychiatry 2012, 169, 693–703. [Google Scholar] [CrossRef]
- Miller, C.H.; Hamilton, J.P.; Sacchet, M.D.; Gotlib, I.H. Functional neuroimaging of major depressive disorder in youth: A meta-analysis. JAMA Psychiatry 2015, 72, 1045–1053. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Booth, A.; Clarke, M.; Dooley, G.; Ghersi, D.; Moher, D.; Petticrew, M.; Stewart, L. The nuts and bolts of PROSPERO: An international prospective register of systematic reviews. Syst. Rev. 2012, 1, 2. [Google Scholar] [CrossRef]
- Talairach, J.; Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System—An Approach to Cerebral Imaging; Thieme Medical Publishers: New York, NY, USA, 1988. [Google Scholar]
- Evans, A.C.; Collins, D.L.; Neelin, P.; Peters, T.M.; White, T.D. 3D statistical neuroanatomical models from 305 MRI volumes. In Proceedings of the 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference, San Francisco, CA, USA, 31 October–6 November 1993; 1993; pp. 1813–1817. [Google Scholar]
- Eickhoff, S.B.; Laird, A.R.; Fox, P.T.; Lancaster, J.L.; Fox, P.M. Activation likelihood estimation meta-analysis revisited. NeuroImage 2011, 59, 2349–2361. [Google Scholar] [CrossRef] [PubMed]
- Radua, J.; Mataix-Cols, D. A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. Eur. Psychiatry 2012, 27, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Müller, V.I.; Cieslik, E.C.; Laird, A.R.; Fox, P.T.; Radua, J.; Mataix-Cols, D.; Tench, C.R.; Yarkoni, T.; Nichols, T.E.; Turkeltaub, P.E.; et al. Ten simple rules for neuroimaging meta-analysis. Neurosci. Biobehav. Rev. 2018, 84, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Baten, C.; Klassen, A.M.; Shepherd, J.H.; Zamora, G.; Pritchard, E.; Saravia, S.; Ali, z.; Zamora, G.; Jordan, J.; Kahlon, S.K. Effects of developmental age and length of illness in major depressive disorder: A meta-analysis of functional magnetic resonance imaging studies. In Proceedings of the Society of Biological Psychiatry Annual Meeting, San Diego, CA, USA, 27–29 April 2023. [Google Scholar] [CrossRef]
- Kaiser, R.H.; Andrews-Hanna, J.R.; Wager, T.D.; Pizzagalli, D.A. Large-Scale Network Dysfunction in Major Depressive Disorder: A Meta-analysis of Resting-State Functional Connectivity. JAMA Psychiatry 2015, 72, 603–611. [Google Scholar] [CrossRef]
- Schmaal, L.; Veltman, D.J.; Van Erp, T.G.M.; Sämann, P.G.; Frodl, T.; Jahanshad, N.; Loehrer, E.; Tiemeier, H.; Hofman, A.; Niessen, W.J.; et al. Subcortical brain alterations in major depressive disorder: Findings from the ENIGMA Major Depressive Disorder Working Group. Mol. Psychiatry 2016, 21, 806–812. [Google Scholar] [CrossRef]
- Kelly, S.; Jahanshad, N.; Zalesky, A.; Kochunov, P.; Agartz, I.; Alloza, C.; Andreassen, O.A.; Arango, C.; Banaj, N.; Bouix, S.; et al. Widespread white matter microstructural differences in schizophrenia across 4322 individuals: Results from the ENIGMA Schizophrenia DTI Working Group. Mol. Psychiatry 2018, 23, 1261–1269. [Google Scholar] [CrossRef]
- Zhu, X.; Kim, Y.; Ravid, O.; He, X.; Suarez-Jimenez, B.; Zilcha-Mano, S.; Lazarov, A.; Lee, S.; Abdallah, C.G.; Angstadt, M.; et al. Neuroimaging-based classification of PTSD using data-driven computational approaches: A multisite big data study from the ENIGMA-PGC PTSD Consortium. NeuroImage 2023, 283, 120412. [Google Scholar] [CrossRef]
- Pan, J.; Hu, J.; Meng, D.; Chen, L.; Wei, X. Neuroinflammation in dementia: A meta-analysis of PET imaging studies. Medicine 2024, 103, e38086. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.-F.; Gao, F. Neuroinflammation in Parkinson’s disease: A meta-analysis of PET imaging studies. J. Neurol. 2022, 269, 2304–2314. [Google Scholar] [CrossRef] [PubMed]
- De Picker, L.J.; Morrens, M.; Branchi, I.; Haarman, B.C.; Terada, T.; Kang, M.S.; Boche, D.; Tremblay, M.-E.; Leroy, C.; Bottlaender, M.; et al. TSPO PET brain inflammation imaging: A transdiagnostic systematic review and meta-analysis of 156 case-control studies. Brain Behav. Immun. 2023, 113, 415–431. [Google Scholar] [CrossRef]
- Mayberg, H.S. Limbic-cortical dysregulation: A proposed model of depression. J. Neuropsychiatry Clin. Neurosci. 1997, 9, 471–481. [Google Scholar] [CrossRef]
- Chaudhary, S.; Chao, H.; Agarwal, K.; Gupta, S.; Li, C. Imaging Markers of Neuroinflammation in Aging and Alzheimer’s Disease and Related Dementia: A Comprehensive Review. Neurosci. Biobehav. Rev. 2025, 176, 106270. [Google Scholar] [CrossRef]
- Beurel, E.; Toups, M.; Nemeroff, C.B. The bidirectional relationship of depression and inflammation: Double trouble. Neuron 2020, 107, 234–256. [Google Scholar] [CrossRef]
- Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: The role of microglia and astrocytes. Neurodegener. 2020, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Canário, N.; Jorge, L.; Martins, R.; Santana, I.; Castelo-Branco, M. Dual PET-fMRI reveals a link between neuroinflammation, amyloid binding and compensatory task-related brain activity in Alzheimer’s disease. Commun. Biol. 2022, 5, 804. [Google Scholar] [CrossRef]
- Thompson, P.M.; Stein, J.L.; Medland, S.E.; Hibar, D.P.; Vasquez, A.A.; Renteria, M.E.; Toro, R.; Jahanshad, N.; Schumann, G.; Franke, B.; et al. The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav. 2014, 8, 153–182. [Google Scholar] [CrossRef]
- ENIGMA Consortium. ENIGMA: Enhancing NeuroImaging Genetics Through Meta-Analysis. Available online: https://enigma.ini.usc.edu/ (accessed on 29 June 2025).
- Schmaal, L.; Pozzi, E.; Ho, T.C.; van Velzen, L.S.; Veer, I.M.; Opel, N.; Van Someren, E.J.W.; Han, L.K.M.; Aftanas, L.; Aleman, A.; et al. ENIGMA MDD: Seven years of global neuroimaging studies of major depression through worldwide data sharing. Psychiatry 2020, 10, 172. [Google Scholar] [CrossRef]
- Zeggini, E.; Ioannidis, J.P. Meta-analysis in genome-wide association studies. Pharmacogenomics 2009, 10, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Andreoli, L.; Peeters, H.; Van Steen, K.; Dierickx, K. Polygenic risk scores in the clinic: A systematic review of stakeholders’ perspectives, attitudes, and experiences. Eur. J. Hum. Genet. 2025, 33, 266–280. [Google Scholar] [CrossRef]
- Choi, S.W.; Mak, T.S.; O’Reilly, P.F. Tutorial: A guide to performing polygenic risk score analyses. Nat. Rev. Genet. 2020, 21, 322–337. [Google Scholar] [CrossRef] [PubMed]
- Ndong Sima, C.A.A.; Step, K.; Swart, Y.; Schurz, H.; Uren, C.; Möller, M. Methodologies underpinning polygenic risk scores estimation: A comprehensive overview. Hum. Genet. 2024, 143, 1265–1280. [Google Scholar] [CrossRef] [PubMed]
- Wray, N.R.; Ripke, S.; Mattheisen, M.; Trzaskowski, M.; Byrne, E.M.; Abdellaoui, A.; Adams, M.J.; Agerbo, E.; Air, T.M.; Andlauer, T.M.F.; et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 2018, 50, 668–681. [Google Scholar] [CrossRef]
- International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009, 460, 748–752. [Google Scholar] [CrossRef]
- Grove, J.; Ripke, S.; Als, T.D.; Mattheisen, M.; Walters, R.K.; Won, H.; Pallesen, J.; Agerbo, E.; Andreassen, O.A.; Anney, R.; et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 2019, 51, 431–444. [Google Scholar] [CrossRef] [PubMed]
- Kubota, T.; Ngadimon, I.W.; Ohseto, H.; Viswanathan, S.; Ravat, P.; Acharya, M.K.; Kuroda, N.; Konomatsu, K.; Obara, T.; Jin, K.; et al. Predictive value of the polygenic risk score for developing epilepsy: A systematic review and meta-analysis. Epilepsy Behav. 2025, 169, 110438. [Google Scholar] [CrossRef] [PubMed]
- Green, A.; Baroud, E.; DiSalvo, M.; Faraone, S.V.; Biederman, J. Examining the impact of ADHD polygenic risk scores on ADHD and associated outcomes: A systematic review and meta-analysis. J. Psychiatr. Res. 2022, 155, 49–67. [Google Scholar] [CrossRef]
- Sullivan, P.F.; Agrawal, A.; Bulik, C.M.; Andreassen, O.A.; Børglum, A.D.; Breen, G.; Cichon, S.; Edenberg, H.J.; Faraone, S.V.; Gelernter, J.; et al. Psychiatric genomics: An update and an agenda. Am. J. Psychiatry 2018, 175, 15–27. [Google Scholar] [CrossRef]
- Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014, 511, 421–427. [Google Scholar] [CrossRef]
- Mullins, N.; Forstner, A.J.; O’connell, K.S.; Coombes, B.; Coleman, J.R.I.; Qiao, Z.; Als, T.D.; Bigdeli, T.B.; Børte, S.; Bryois, J.; et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat. Genet. 2021, 53, 817–829. [Google Scholar] [CrossRef]
- Nievergelt, C.M.; Maihofer, A.X.; Klengel, T.; Atkinson, E.G.; Chen, C.-Y.; Choi, K.W.; Coleman, J.R.I.; Dalvie, S.; Duncan, L.E.; Gelernter, J.; et al. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat. Commun. 2019, 10, 4558. [Google Scholar] [CrossRef]
- Cross-Disorder Group of the Psychiatric Genomics Consortium. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet. 2013, 45, 984–994. [Google Scholar] [CrossRef] [PubMed]
| Imaging Technique | Study | Diagnosis | Primary Studies | Findings |
|---|---|---|---|---|
| fMRI activation & metabolic PET | Etkin & Wager (2007) [9] | PTSD, social anxiety, & specific phobia | 20 fMRI & PET studies | Hyperactivation across disorders in amygdala & insula during negative emotional processing & fear conditioning; hypoactivation in PTSD in dACC & vmPFC during affective processing; findings support transdiagnostic and disorder-specific neural circuitry |
| fMRI task-based & resting-state & metabolic & perfusion PET | Hamilton et al. (2012) [10] | MDD | 49 fMRI & PET studies | Hypoactivation in MDD in emotion regulation regions (e.g., dlPFC & dACC) during cognitive control & reappraisal & hyperactivation in limbic regions (e.g., rACC, insula, amygdala) during negative emotional processing; findings support frontolimbic model of MDD |
| fMRI activation | Miller et al. (2015) [11] | MDD in youth | 14 fMRI studies | Hyperactivation in multiple cortical & limbic regions (e.g., dlPFC, sgACC, insula) across variety of affective & executive tasks; findings partially diverge from those of adults with MDD |
| fMRI activation | Baten et al. (2023) [19] | MDD in youth vs. adults | 135 fMRI studies | Hyperactivation in multiple cortical & basal ganglia regions, particularly the dlPFC, that were differentially attributable to age & length of illness; finding support developmental differences in MDD |
| fMRI activation | Miller (2018) [7] | MDD, BD, & GAD | 96 fMRI studies | Hyperactivation in multiple cortical & limbic regions across variety of affective & executive tasks; findings support transdiagnostic, category-specific, & disorder-specific effects |
| fMRI functional connectivity | Kaiser et al. (2015) [20] | MDD | 25 fMRI studies | Hyperconnectivity within the DMN; hypoconnectivity within the FPN & between the FPN & DAN |
| MRI | Schmaal et al. (2016) [21] | MDD | 15 MRI cohorts | Reduced hippocampal volume in MDD |
| DTI | Kelly et al. (2018) [22] | Schizophrenia | 29 DTI cohorts | Reduced fractional anisotropy across brain and in multiple tracts (e.g., corpus callosum, superior longitudinal fasciculus, internal capsule) in schizophrenia) |
| Resting-state fMRI | Zhu et al. (2023) [23] | PTSD | 20 fMRI sites | SVM distinguished between PTSD and HC participants with up to 75% accuracy |
| TSPO PET | Pan et al., 2024 [24] | Dementia (AD, MCI, & others) | 12 PET studies | Elevated TSPO in dementia in hippocampus |
| TSPO PET | Zhang & Gao, 2022 [25] | Parkinson’s disease | 15 PET studies | Elevated TSPO in PD in multiple regions, including midbrain; findings differ by ligand & tracer generation |
| TSPO PET | De Picker et al., 2023 [26] | Transdiagnostic (11 illness categories) | 156 PET studies | Elevated TSPO across all included disorders in cortical grey matter; elevated TSPO by disorder in particular regions |
| Genetic Technique | Study | Diagnosis | Data Source | Findings |
|---|---|---|---|---|
| Meta-GWAS & PRS | International Schizophrenia Consortium 2009 [40] | Schizophrenia | Consortium with over 6800 cases & controls | Risk model explained significant proportion of risk for schizophrenia; demonstrated shared genetic risk between schizophrenia & bipolar disorder |
| Meta-GWAS & PRS | Grove et al. (2019) [41] | Autism spectrum disorder | Registries with over 45,000 cases & controls | Identified several genetic loci that reached genome-wide significance for ASD; demonstrated differential genetic loadings for ASD phenotypes with and without intellectual disability |
| Meta-GWAS & PRS | Kubota et al. (2025) [42] | Epilepsy | 11 primary studies | Risk model predicted significant proportion of risk for epilepsy, particularly for those with more extreme genetic loadings and for generalized epilepsy |
| Meta-GWAS & PRS | Green et al. (2022) [43] | Attention-deficit/hyperactivity disorder | 16 primary studies | Higher PRSs associated with increased risk of ADHD diagnosis & symptom severity as well as psychiatric comorbidities |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, C.H.; Farrer, T.J.; Moore, J.D.; Wright, M.J.; Baten, C.; Woo, E.; Hamilton, J.P.; Sacchet, M.D.; Erickson, L.D.; Gale, S.D.; et al. Innovations in Meta-Analytic and Computational Methods in the Neuroscientific Investigation of Psychiatric and Neurological Disorders. Brain Sci. 2025, 15, 1323. https://doi.org/10.3390/brainsci15121323
Miller CH, Farrer TJ, Moore JD, Wright MJ, Baten C, Woo E, Hamilton JP, Sacchet MD, Erickson LD, Gale SD, et al. Innovations in Meta-Analytic and Computational Methods in the Neuroscientific Investigation of Psychiatric and Neurological Disorders. Brain Sciences. 2025; 15(12):1323. https://doi.org/10.3390/brainsci15121323
Chicago/Turabian StyleMiller, Chris H., Thomas J. Farrer, Jonathan D. Moore, Matthew J. Wright, Caitlin Baten, Ellen Woo, J. Paul Hamilton, Matthew D. Sacchet, Lance D. Erickson, Shawn D. Gale, and et al. 2025. "Innovations in Meta-Analytic and Computational Methods in the Neuroscientific Investigation of Psychiatric and Neurological Disorders" Brain Sciences 15, no. 12: 1323. https://doi.org/10.3390/brainsci15121323
APA StyleMiller, C. H., Farrer, T. J., Moore, J. D., Wright, M. J., Baten, C., Woo, E., Hamilton, J. P., Sacchet, M. D., Erickson, L. D., Gale, S. D., & Hedges, D. W. (2025). Innovations in Meta-Analytic and Computational Methods in the Neuroscientific Investigation of Psychiatric and Neurological Disorders. Brain Sciences, 15(12), 1323. https://doi.org/10.3390/brainsci15121323

